
Contents
General purpose registers ... 1

Flag registers .. 2

Address registers ... 4

Descriptor cache registers ... 5

System control registers ... 6

DTR. Descriptor Table Register ... 7

MPCR. Multiprocessor Control Register ... 8

CSR. Core State Register ... 9

CPSR. Current Process state object Selector Register ... 9

PLR. Process List Register .. 10

TFMR. Total Free Memory Register .. 10

CFMR. Cached Free Memory Register ... 10

INTCR. Interrupt Control Register ... 10

ESR. Error Status Register ... 11

PTR. Process Timer Register ... 11

CLSR. Clear selector register .. 11

AVCNTR. Average counter .. 11

MINCNTR. Minimum counter ... 12

MAXCNTR. Maximum counter.. 12

PMCSR, PMPSR. Performance monitor selector registers 12

PMCR. Performance monitor control register ... 12

General purpose registers
 Registers 128-bit, designed to store the processed data and do not have any

specialized differences among themselves, they can all be used in any instructions.

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

08163264127 63 31 15 7

8-bit integer

16-bit integer

32-bit integer/floating point

64-bit integer qword/floating point

128-bit floating point

The data of integer formats can be 8-, 16-, 32- and 64-bit. Supports three formats

with a floating point - 32, 64 and 128 bits.

Name Significand

bits

Exponent

bits

Decimal

digits

Decimal Exp.

Max.

Single prec. 24 8 7.22 38.23

Double prec. 53 11 15.95 307.95

Quadruple prec. 113 15 34.02 4931.77

Flag registers
 Each general purpose register has its own register of status flags. So, the core

has sixteen flag registers named AFR [15: 0]. The flag register displays the state of

the result of arithmetic/logic operations placed in the general purpose register,

displays the size of data contained in the general-purpose register, the offset

generation mode, and the byte number of the data loaded by LI instruction (see

instruction set reference).

C
F

1
5

C
F

0

C
F

1

C
F

2

C
F

3

C
F

4

C
F

5

C
F

6

C
F

7

C
F

8

C
F

9

C
F

1
0

C
F

1
1

C
F

1
2

C
F

1
3

C
F

1
4

Z
F

S
F

O
F

0123456789

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

IF
1

9

N
F

2
0

D
B

F
2

1

OpSize

2
2

2
3

2
4

AMode

2
5

2
6

2
7

LICntr

2
8

2
9

3
0

3
1

CF[15:0] – Carry flags. Used to perform binary-coded decimal correction of the results

of addition or subtraction.

ZF. Zero Flag.

SF. Sign Flag.

OF. Overflow Flag.

IF. Infinity Flag.

NF. Not-a-Number Flag.

DBF. Data Bit Flag.

OpSize. Operand Size determines the bit width of the operand located in the general-

purpose register. In instructions, there is no explicit indication of the width of the data

being processed, except for the instructions for loading data from memory. The size of

the operands is determined by the OpSize fields of the registers involved in the

operation. The width of the result is chosen from the maximum value of the width of

the initial operands. For example, if the operation involves a byte and a 32-bit word,

the result will be 32-bit.

OpSize Integer Floating point

000 Byte (8-bit) Single precision (32-bit)

001 Word (16-bit) Single precision (32-bit)

010 DWord (32-bit) Single precision (32-bit)

011 QWord (64-bit) Double precision (64-bit)

100 Not used, reserved. Quadruple precision (128-bit)

101
Not used, reserved.

110

111 Not-A-Number

AMode. Address Mode selects the offset generation method in the data transfer

commands between general-purpose registers and memory.

AMode Forming an offset and modifying the address register

000

The contents of the address register completely determine the offset in

the object and after the execution of the transaction it does not receive
an increment.

001
The content of the address register completely determines the offset in
the object and increments by the value from the general register after the

transaction is completed.

010
The offset is completely determined by the contents of the general-

purpose register.

AMode Forming an offset and modifying the address register

011
The offset in the object is obtained by summing the contents of the
address register and the bit [36: 0] of the content of the general-purpose

register.

100

The content of the address register completely determines the offset in

the object and after the transaction is increased by the number of bytes
that made up the data element.

101
The content of the address register completely determines the offset in
the object and after the transaction is performed, it decreases by the

number of bytes that made up the data element.

110

The contents of the address register, in sum with the bits [36: 0] of the

contents of the general-purpose register, determine the offset in the
object. After the transaction is completed, the contents of the address

register will be increased by the number of bytes that made up the data
element.

111

The contents of the address register, in sum with the bits [36: 0] of the
contents of the general purpose register, determine the offset in the
object. After the transaction is completed, the contents of the address

register will be decreased by the number of bytes that made up the data
element.

LICntr. LI instruction counter - the LI instruction counter, which determines which

byte of the general register will be loaded by the next LI instruction. LICntr is set to 0

by any instruction other than LI, which uses the register as the source of the operand

or the result receiver. The LICntr state is stored in the process state object when the

running process is interrupted in the middle of the LI command sequence and a

transition to another process is performed. When the core returns to the execution of

the interrupted process, LICnt will be restored according to the image stored in the

process state object.

Address registers
 Address registers used to address memory in read/write transactions. The core

has 16 address registers AR0-AR15. Address registers grouped into MAR0-MAR7

groups of two registers. Each group holds a 2-component address. One register of the

group defines a 37-bit offset, and the second - a 32-bit selector. Registers AR0, AR2,

AR4, AR6, AR8, AR10, AR12 and AR14 contain 37-bit offsets. Registers AR1, AR3,

AR5, AR7, AR9, AR11, AR13 and AR15 are used for storing object selectors.

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

AR8

AR9

AR10

AR11

AR12

AR13

AR14

AR15

03136

MAR0

MAR1

MAR2

MAR3

MAR4

MAR5

MAR6

MAR7
Stack offset

Stack selector

Code selector

Some registers have a special purpose. AR13 from the pair MAR6 is used to store the

code object selector. It cannot be modified by program at privilege levels of

executable code other than CPL = 0 (CPL is a Current Privilege Level). With CPL <> 0

AR13 is set only when the core context is changed. The AR12 register can be used in

the same way as any other register storing the offset. The MAR7 pair is initialized

when the process context is loaded into the core. The AR14 pointer modified in the

PUSH / POP / CALL / RET instructions when information pushed to the stack or

retrieving information from the stack.

Descriptor cache registers
 An individual descriptor register is associated with each AR1, AR3, AR5, AR7,

AR9, AR11, AR13, and AR15 address register. Descriptor registers are not available

for software. In these registers are stored the parameters of the current segment of

the object used for memory access control, when the corresponding MAR register is

selected for addressing.

Base addressLower limitUpper limitUpper link selector Lower link selector
A
R

04
0

7
2

1
0

4

1
2

8

1
5

5

1
5

2

DTR0

DTR1

DTR2

DTR3

DTR4

DTR5

DTR6

DTR7

01
5

5

REWESTRVF

Read enabled

Write enabled

Stream descriptor

Valid flag

Each descriptor register contains:

 40 bits of the base address, the address expressed in 32-byte paragraphs;

 32 bits of the lower limit of the segment;

 32 bits of the upper object limit;

 24 bits of the lower link selector;

 24 bits of the upper link selector;

 4 bits of flags that allow or forbid reading/writing of an object, a flag of an

object of the type ―stream‖ and a flag of the validity of the descriptor register.

The VF flag is reset to 0 each time a new object selector is written to the

corresponding address register. VF is set to 1 after a valid descriptor has been loaded.

After a system reset, all base addresses except DTR5 are reset. The base address of

the DTR5 is set to a value of 0FFFFFFFFFCh, which defines the base address of the

system register block. All lower limits are set to zero, all upper limits are initialized to

the value 0FFFFFFFFh - the maximum object size. Communication selectors are reset.

Four bits of flags are initialized to 1011b.

System control registers
 System registers are addressed as memory locations. They have fixed physical

addresses. System registers can be modified only on CPL=0.

DTR

MPCR

1FFFFFFFFF80h

1FFFFFFFFF88h

CSRCPSR 1FFFFFFFFF90h

PLR 1FFFFFFFFF98h

TFMR 1FFFFFFFFFA0h

CFMR 1FFFFFFFFFA8h

INTCR 1FFFFFFFFFB0h

ESR 1FFFFFFFFFB8h

PTR 1FFFFFFFFFC0h

1FFFFFFFFFC8h

1FFFFFFFFFD0h

1FFFFFFFFFD8h

1FFFFFFFFFE0h

1FFFFFFFFFE8h

1FFFFFFFFFF0h

1FFFFFFFFFF8h

X

X

X

AVCNTR0

MINCNTRMAXCNTR

PMCSRPMPSR

PMCR

063

0

CLSR

DTR. Descriptor Table Register

Base (40 bit)Limit (24 bit)

63 3940 0

DTR

1FFFFFFFFF80h

The register defines the base address of the descriptor table, represented in 32-bit

paragraphs. To get the address expressed in bytes, the 40-bit value must be shifted 5

bits to the left. The 24-bit limit of the table contains the maximum number of object

selectors whose descriptors are placed in the table. The DTR can be modified byte by

byte.

MPCR. Multiprocessor Control Register

Ctrl &
status

0

Lane

WDH

[1..0]

CPUNRMultiprocessor network control

Lane

NUM

[2..0]

E

N

E

N

E

R

R

Lane

WDH

[1..0]

0781516232431

1FFFFFFFFF88h

E

R

R

Lane

NUM

[2..0]

Lane

NUM

[2..0]

E

R

R

E

N

E

N

L

E

Lane

WDH

[1..0]

L

E

L

E

E

R

R

Lane

WDH

[1..0]

Lane

NUM

[2..0]

L

E

North directionEast directionSouth directionWest direction

C
E
N
A

31 03263

MPCR

78

0

24 23

C
R
D
Y

F
R
D
Y

S
R
D
Y

31 24

M
A
L
F

CPUNR – processor number in the network.

SRDY. Stream controller ready. The bit indicates the readiness of the stream

controller to operate. The bit is cleared at system reset and is set when the stream

controller completes the internal initialization.

 FRDY. FPU Ready. The bit indicates that the FPU is ready for use. The bit is

cleared during system reset and is set when the FPU completes the internal

initialization.

 CRDY. Context controller ready. The bit indicates that the context controller is

ready for use. The bit is cleared during system reset or when CENA = 0 and is set

when the context controller completes the internal initialization.

 MALF. Memory Allocation Lock Flag. This bit is used to block the memory

allocation system (blocking with MALF = 1). The lock should be used when changing

the parameters of the descriptors of free memory blocks in the descriptor table. This

is necessary to prevent disruptions in the memory allocation system. Transition of the

MALF bit from 1 to 0 enables the operation of the memory allocation system and

causes its re-initialization, which is necessary for analyzing the new state of the

descriptor table.

 CENA. Context controller enable bit. Bit of the work permit / initialization of the

context controller. When CENA = 0 (state after reset), the controller is disabled, the

start code is executed, the processor is unable to process messages, switch process

contexts, and can't manage the memory allocation. The bit is used when the system

initialization process occurs and the system tables are not yet ready to fully support

the work of high-level functions.

 LaneNUM (read only) The field displays the number of physical channels in the

corresponding direction of multiprocessor communication.

 LaneWDH (read only) The field displays the channel width in the corresponding

direction of 8-, 16-, 32- or 64-bit.

 ERR (read only) A bit of hardware error in the channel. The bit can be cleared

by the software.

 LE (read only) The presence of the connection by direction. It is set to 1 if at

least one of the channels of the north / east / south / west direction has a connection

to another processor.

 EN Bit enable work direction. If EN = 1, work in the appropriate direction is

allowed.

CSR. Core State Register

STATE TASK IDCPL 00ILOCK1 00h

31 24 23 20 16 15 0

CSR

1FFFFFFFFF90h

27 26

 Task ID. Task ID for the current process. It is used in the work of the memory

protection system when checking the accessibility of the process to an object.

 CPL. Current Privilege Level. It is used in the work of the memory protection

system when checking the accessibility of the process to an object. The CPL is also

used to verify the possibility of transmitting a message from one process to another.

 ILOCK. Interrupt Lock bits. ILOCK [0] = 0 blocks the call to the system error

handling routine. ILOCK[1]=0 blocks the hardware interrupts. ILOK [2] = 0 blocks

hardware switching of processes. ILOCK [3] = 0 blocks the processing of messages.

 STATE. Determines the current state of the process.

STATE Description

0 The main process code.

1 Sleep state.

2 Exception processing.

3 Interrupt processing.

4 System message processing.

5 Regular message processing.

6 Reserved.

7 Reserved.

CPSR. Current Process state object Selector Register

Current PSO Selector0

31 24 23 0

CPSR

1FFFFFFFFF94h

The register contains the PSO selector of the current process.

PLR. Process List Register

P
S
E

Table length Table pointer Table selector0

31 24 23 032

PLR

48 4763

1FFFFFFFFF98h

The register is used in the automatic process switching mechanism. Table selector -

an object selector in which the table of processes processed in the time-division mode

is placed from the zero offset. The PSE bit allows (with PSE = 1) the operation of the

automatic process switching mechanism. Table Pointer A 16-bit process table pointer.

The pointer is incremented by 1 every time the process activity timer completes the

count. The pointer goes to 0 when it reaches the Table Length value. Table Length A

16-bit table limit that determines the number of records in the table.

TFMR. Total Free Memory Register

Total free memory0 1FFFFFFFFFA0h

063 40 39

TFMR

The register contains the results of calculating the value of the total amount of free

memory space. This calculation periodically produces a memory manager built into

the context controller. The amount of free space is expressed in 32-byte paragraphs.

CFMR. Cached Free Memory Register

Cached free memory0 1FFFFFFFFFA8h

063 40 39

CFMR

Free memory space can be divided into many separate objects in such a number that

references to all these objects will not fit into the cache table of the memory allocation

system. In this case, the TFMR and CFMR registers will contain different values. This

situation may tell the operating system to start a search procedure and merge

adjacent free objects, since the memory allocation system built into the context

controller, does not perform such a function.

INTCR. Interrupt Control Register

Table length 0
I
E
N

Interrupt table selector0
R
E
S

1FFFFFFFFFB0h

063 48 47

INTCR

24 233132

The register contains an object selector in which an interrupt table is placed from the

zero offset. RES - interrupt controller reset bit. The IEN interrupt enable bit. Table

length - the number of records in the interrupt table.

ESR. Error Status Register

Object selectorProcess selectorError Code

63

ESR

32 31 056 55

1FFFFFFFFFB8h

The register displays an object selector that, when accessed, detected a violation of

the protection rules, the PSO selector of the process that caused the violation and the

error code. The register is the FIFO output when reading which, the next value of the

error code is output. The presence of a valid error message can be determined by the

error code, if it is not 0, then the value read from the register is valid.

PTR. Process Timer Register

Timer BaseTimer Count

PTR

31 016 15

1FFFFFFFFFC0h

The lower 16 bits display the base value of the process activity counter. Bits [31:16]

display the current status of the process counter. A process change is initiated when

the current process counter value transition from state 1 to state 0 occurs. Modify

only the lower 16 bits of the register, while resetting the counter to a new value.

CLSR. Clear selector register

Clear PSO selector0

31 24 23 0

CLSR

1FFFFFFFFFC4h

This register is used only in multi-threaded cores and is intended to stop the execution

of a process whose PSO selector is written to the CLSR register. In multithreaded

cores, situations are possible when a system process removes another process from

execution, which is currently executed by a parallel thread. To correctly stop the

process, use the CLSR register. Writing to this register causes the process of

searching and stopping the specified process in the context controller, and if such a

process is detected, its current context is saved in the PSO, and the thread is released

to perform any other processes.

AVCNTR. Average counter

Average counter0

31 21 20 0

AVCNTR

1FFFFFFFFFE0h

The counter contains the current value of the number of instructions executed over a

specified period of time.

MINCNTR. Minimum counter

Minimum counter0

31 21 20 0

MINCNTR

1FFFFFFFFFE8h

The minimum value of the number of instructions counted for a specified time

interval.

MAXCNTR. Maximum counter

Maximum counter0

31 21 20 0

MAXCNTR

1FFFFFFFFFECh

The maximum value of the instructions counter calculated for the specified time

interval.

PMCSR, PMPSR. Performance monitor selector registers

PMPSR PMCSR

63 32 31 0

1FFFFFFFFFF0h

Performance monitor code selector register and Performance monitor process selector

register. Registers are used to tune the performance monitor to analyze processor

performance when executing a specific process and/or a specific code object. If the

PMCSR register is 0, then the performance monitor calculates the number of

instructions executed regardless of the code object selector. If the PMPSR register is

0, then the performance monitor calculates the number of instructions executed,

regardless of the process currently running. The presence of two filtering parameters

— the code object selector and the process selector — allows, for example, to

evaluate the performance of a separate procedure performed in the context of a

specific process.

PMCR. Performance monitor control register

PM measure interval

1617

0
P
S
M

SMASK

31 02728

PMCR

1FFFFFFFFFF8h

The performance monitor control register contains the value of the measurement

interval, expressed in core clock cycles, three bits of the process status mask,

allowing you to select at which process state the performance measurement will be

performed, as well as the bit allowing the process switching time to be taken into

account when measuring performance. With PSM = 1, the performance monitor will

take into account the cycles during which context switching is performed. If SMASK is

not 0, then performance will be calculated only when the SMASK field is equal to the

value of the STATE field of the CSR register.

