
Table of contents

Table of contents ... 1

Transactions multiplexer. .. 4

Internal tag of Base Execution Unit. .. 5

Internal tag of ASR Portal... 5

Internal tag of FPU. ... 5

Stream controller’s tag. ... 6

Tags of Context controller and Messenger. ... 6

Allocation of physical address space. ... 6

BootSRAM module. .. 7

Main memory space. .. 9

SDRAM main memory mode. .. 9

Internal SSRAM main memory mode. .. 9

ISI main memory mode. .. 9

Base Execution Unit. .. 12

General Purpose Registers. ... 14

Data processing units. ... 14

Prefetcher. ... 14

Sequencer. ... 15

Data distribution circuit. ... 17

Address Translation Unit. ... 17

Stream controller. .. 17

Context Controller. ... 17

Messenger. ... 23

Frame Processing Unit – FPU. .. 24

Routing Engine – RTE. .. 25

Application-specific resource. .. 26

Instruction subsection diagram. .. 30

Context store diagram. .. 31

Context load diagram. ... 31

Messages subsection diagram. .. 32

Memory interface subsection diagram. ... 33

System registers. ... 34

X32Carrier processor architecture.

The basic core configuration consists of the following blocks.

1. Transaction multiplexer — TMUX.

2. BootSRAM Module.

3. Main memory provided as an option:

 SSRAM module;

 Cache module and SDRAM controllers;

 In-System Interface.

4. Basic Execution Unit containing:

 Instruction flow unit - Prefetcher;

 Instruction Manager - Sequencer;

 General purpose registers file;

 Floating-point adder, vector adder;

 Floating-point multiplier, vector multiplier and integer multiplier;

 Floating-point divider, vector divider and integer divider;

 Integer ALU;

 Parallel shifter;

 Miscellaneous instructions unit;

 Read/Write instructions channel and address translation unit.

5. Stream controller.

6. Context controller.

7. Message passing controller - Messenger.

8. Block for processing multiprocessor transactions – Frame Processing Unit (FPU).

9. Routing block of multiprocessor transactions – Routing Transactions Engine.

10. Portal used to connect Application-Specific Resource (ASR) to the base core.

Portal contains channels:

 Application-specific instructions;

 Access channel to basic general purpose registers;

 Loading/unloading context of application-specific registers;

 Data transfer channel between application-specific resource and memory

subsystem.

 Channel for sending messages.

11. A set of system control registers.

Context
controller

Messenger

Stream
controllerBase Execution Unit

TMUX

Application-
specific

hardware
Portal

MUX

FPU

System
control

registers

Boot SRAM
with KERNEL

code

S
P
I

External
SPI NOR

Flash

Cache
controller

4*64*2048 or
4*256*2048 or
4*512*1024

Memory
mapped IO
channel ISI

64-bit ISI or
256-bit Half-rate Avalon-MM or
512-bit Quarter-rate Avalom-MM

RTE

N Port

S Port

E
P
o
r
t

W
P
o
r
t

1

2

3

4

5

6

7

8

9

10

11

Local data

Legend

Stream data

Network data

Messages

Control

Transactions multiplexer.

 This block serves memory read and write requests from 6 devices of processor's

core /written in descending order of service priority/:

 Base execution unit channel;

 Application-specific resource (ASR) Portal channel;

 Multiprocessor Frame Processing Unit (FPU) channel;

 Stream controller channel;

 Context controller channel;

 Messages processing unit (Messenger) channel.

The multiplexer processes all transactions in a pipelined mode and different memory

devices can return read data with different time delays. This can change the order in

which data arrives at read transaction initiators. To determine the ownership of a

transaction, the transaction multiplexer generates a complete 21-bit transaction sys-

tem tag. This tag must accompany the data being read from the memory device.

The figure below shows the format of the transaction tag.

Channel’s internal tag

012

Channel
number

15 13

Size

17

Address
[2:0]

1820

Bits [20:18] copy the least significant 3 bits of the address. Bits [17:16] contain the

operand's bit width code.

Size Description

0 8-bit

1 16-bit

2 32-bit

3 64-bit

Together, the Address and Size fields allow you to define the data bus lines from

which the operand must be received in read transactions and placed on the internal

bus starting from bit 0. For example, if Address=2 and Size=1, then the transaction

multiplexer extracts a 16-bit value from lines [31:16] of the input bus and places it on

lines [15:0] of the internal data bus.

 Channel Number - defines the channel number to which the transaction multip-

lexer should send the data read from the memory subsystem.

Channel Number Destination

0 Base Execution Unit registers.

Channel Number Destination

1 ASR Portal.

2 Multiprocessor Frame Processing Unit channel.

3 Stream controller channel.

4 Context controller channel.

5 Messenger channel.

6, 7 Reserved.

Internal tag of Base Execution Unit.

Local tag [12:0] Register

001Fh – 0000h Bits [63:0] of General-Purpose Registers R[31:0]

003Fh – 0020h Bits [127:64] of General Purpose Registers R[31:0]

005Fh – 0040h Flag registers AFR[31:0]

006Fh – 0060h Address registers AR[15:0]

011Fh – 0100h Descriptor cache registers DTR[7:0]

0140h Loading program code into the instruction cache.

0144h Loading program code into the instruction cache, the last

word.

0149h Loading a new value into the instruction pointer.

0150h Loading program code in violation of code object limit.

0154h Loading program code into the instruction cache, the last

word. Code object limit violation detected.

Internal tag of ASR Portal.

Local tag [12:0] Register

00FFh – 0000h ASR registers defined as a switchable resource context.

011Fh – 0100h Descriptor Cache Registers. Portal has 8 descriptor cache

registers.

Internal tag of FPU.

Network transaction tag

034

Core number

11

0

12

This tag is used by the multiprocessor transaction block to identify the core to which

the data read from local memory should be returned and to indicate which transaction

within this core the data corresponds to.

1 0

1112

Descriptor cache index 0 0 Word Num

10 034 2 1

The tag is used to load descriptors into the local descriptor cache of a FPU. The cache

is designed for 128 object descriptors, the cache index is specified in bits [10:4] of the

tag. The lower 2 bits determine the number of the 64-bit descriptor word to be

loaded.

Stream controller’s tag.

0 0 0 0 0 0 0

12

0

45

Last
R\W

Last stream data read or write transaction

Cache line
number

3 2

Up to four streams can be locally cached in
the stream controller hardware

Load

1 – Load stream data to the local FIFO

01

Last
word

1 – Read last descriptor word or read last
data element from the stream

Tags of Context controller and Messenger.

 These controllers do not use a transaction tag, their transaction tags are always

0. The specifics of these controllers is that they always wait for the requested data to

be received from memory before initiating the next read transaction. Therefore, there

is no need to identify the internal ownership of the read data and there is no need to

use a tag.

Allocation of physical address space.

 The figure below shows the allocation of the processor's physical address space.

Physical address
space 32768 Gb

Boot memory with
SPI Flash interface

000000000000h

00003FFFFFFFh

000040000000h

System registers

IO memory mapped
block

1FFFFFFEFFFFh

1FFFFFFFFF80h

SDRAM
or

SSRAM
or
ISI

1FFFFFFF0000h

1FFFFFFFFFFFh

RAM
with KERNEL code

64Kb

Reserved

SPI Control register

Reserved

SPI Flash

00000000h

0000FFFFh

01000000h

1FFFFFFFh

20000000h

3FFFFFFFh

1FFFFFFFFFFFh

IO block
64Kb-192

1FFFFFFF0000h

1FFFFFFFFF7Fh

Timer, UART, IO & config,
Interrupt controller

1FFFFFFF0040h

The lower 64K is the built-in RAM, which also contains the KERNEL system software

code.

 Reading data from an external SPI Flash is carried out at addresses in the range

from 20000000h to 3FFFFFFFh. Reading an array can be done with regular machine

instructions for loading data from memory, but the SPI control register must contain

an array read command code, the default value of which is 0Bh.

 Starting from the address 000040000000h and 1FFFFFFEFFFFh, the transaction

multiplexer accesses the main RAM space. It can be like an SDRAM controller with a

cache system, it can be a static memory buffer implemented on internal FPGA memo-

ry blocks, the In-System Interface (ISI) option is also possible, to which you can con-

nect any other specific memory subsystem.

BootSRAM module.

 The module contains a memory buffer with a capacity of 64K and an organiza-

tion of 8K*64. This buffer contains the KERNEL system software code and initial im-

ages of the descriptor table, interrupt table, and system process state object (PSO).

When starting the Kernel after a system reset or restarting when a fatal system error

occurs, the system structures are expanded, as shown in the figure below.

Kernel code

Descriptor table image

Interrupt table image

System PSO

Free space

0000h

0FFFFh Flash write buffer 1K

Kernel program stack 3K

0FFFFh

Kernel code

Descriptor table initial
image

Interrupt table image

System PSO initial image

Sys.error log. 512bytes

Breakpoint log. 256bytes

Process table 64bytes

Echo stream buffer 1K

Cmd stream buffer 1K

System PSO operating
image 5472bytes

Interrupt table 128bytes

Descriptor table

Free space SRAM 19K

0BEE0h

7120h

0000h

Before Kernel startup

7120h

After Kernel startup

The module also contains an SPI controller to which you can connect an external SPI

Flash memory chip. The controller has a 32-bit control register located at physical ad-

dress 01000000h. Its format is shown in the figure below.

Bytes count

09

X X X X X X

1015

Instruction for read
operations

1623

X X X X X X X X

31 24

The lower 10 bits of the register are used to indicate the count of bytes that are in the

Flash write buffer and that must be transferred to Flash. The instruction code byte

used when reading data from Flash is located in bits [23:16] of the control register.

Writing the two most significant bits of the counter [9:8] starts the Flash controller to

transfer the specified number of bytes located in the Flash write buffer /physical ad-

dress 00FC00h/ to the Flash chip. For example, to write 100 bytes to Flash, you need

to do the following:

 Place the 02h write command byte in the Flash write buffer.

 After the write command byte, 3 bytes of the write address of the first

data byte must be marked.

 Following the address, 100 bytes of data must be written.

 In bits [9:0] of the control register put the number 104 /100 bytes of da-

ta + 3 bytes of address + command byte/ Only after that the controller

will transfer to Flash a sequence of 104 bytes.

To unlock write protection in Flash you need:

 Put the code 06h into the write buffer.

 Write the data length to the control register - 001h.

To read data from Flash you need:

 In bits [23:16] of the control register, put the data read command code -

0Bh.

 And then read data from the Flash address space with the memory read

instructions with any addresses.

To read the status register of the Flash chip:

 In bits [23:16] put the command code for reading the status register -

05h.

 Read a byte at any address belonging to the Flash space.

Main memory space.

SDRAM main memory mode.

 The connection of the core to the SDRAM controller is always done through the

cache controller. There are 3 types of cache controllers available:

1. Cache4x64x2048 - 4 channels with a capacity of 2K * 64 each with an external

64-bit ISI bus designed to connect a pre-defined type of physical interface to

the memory.

2. Cache4x256x2048DDR3 - 4 channels with a capacity of 2K * 256 each and an

external Avalon-MM interface with a bit width of 256 bits, a packet length of 4,

used to connect to the DDR3 SDRAM Controller with UniPHY IP module with

Half-rate mode.

3. Cache4x512x1024DDR3 - 4 channels with a capacity of 1K * 512 each and an

external Avalon-MM interface with a bit width of 512 bits, a packet length of 4,

used to connect to the DDR3 SDRAM Controller with UniPHY IP module with

Quarter-rate mode.

Internal SSRAM main memory mode.

 4 internal SSRAM options are available: 256Kb, 512Kb, 1Mb, 2Mb. FPGA block

memory blocks are used to build SSRAM.

ISI main memory mode.

 The ISI variant can be used when it is assumed that the RAM space will contain

different types of memory modules. In this case, additional transaction demultiplexing

and read data multiplexing are required. An additional transaction multiplexer in this

case is connected via ISI to the core transaction multiplexer. The table below shows

the composition and description of the lines of the ISI interface.

Bus Direction Description

CLK - Main clock for ISI-Master and ISI-Slave.

RESETn - Main RESET for ISI-Master and ISI-Slave. Active – 0.

NEXT MS Slave is ready to accept a new transaction in the current

cycle when NEXT=1. NEXT=0 – the master must hold the

transaction parameters until the end of the next cycle.

ACT MS Transaction activation.

CMD MS CMD=1 – read transaction activation, 0 – write activation.

ADDR[44:0] MS Address, specifies the address of the low byte of the data

element to be transmitted.

BE[7:0] MS The bus defines the active bytes on the data lines in write

transactions. The active level is 0. For example, BE=0F3h

defines the transfer of two bytes over the DATA[31:16]

lines.

DATAm[63:0] MS Data to be written to a memory location or register of a

Slave device.

TAGm[20:0] MS Transaction tag. Used in read transactions to determine

the destination of data within the processor’s core. The

slave device must return the transaction tag along with

the retrieved data to the master device.

DRDY MS data ready. The readiness of the data requested in the

read transaction.

DATAs[63:0] MS Read data.

TAGs[20:0] MS Read transaction tag.

Diagrams of ISI work.

CLK

RESET

NEXT

Idle

WData 0

ACT

CMD

ADDR, BE, TAGm Read 0 Write 0 Idle Read 1

DATAm Idle

Idle

Idle

DRDY

TAGs Idle TAG 1 TAG 0 Idle

DATAs RData 1 RData 0 IdleIdle

The data returned by the slave device may not be returned in the order in which the

corresponding requests were received from the master. But that doesn't matter, be-

cause in the core, data ownership is determined by the transaction tag.

Placement of the written data on the DATAm bus depending on the address and data

width.

ADDR[2:0] BE[7:0] DATAm lines state

Byte width

0 0FEh

Data byte Data byte Data byte Data byte Data byte Data byte Data byte Data byte

63 55 71523313947 08162432404856

1 0FDh

2 0FBh

3 0F7h

4 0EFh

5 0DFh

6 0BFh

7 7Fh

Word width

0,1 0FCh

Data word Data word Data word Data word

63 153147 0163248

2,3 0F3h

4,5 0CFh

6,7 3Fh

DWord width

0-3 0F0h
Data Dword

63 31 032

Data Dword

 4-7 0Fh

QWord width

0-7 00h
Data Qword

63 0

Placement of data on the DATAs bus as it is received from the slave.

ADDR[2:0] Data location on the DATAs lines

Byte width

0 DATAs[7:0]

1 DATAs[15:8]

2 DATAs[23:16]

3 DATAs[31:24]

4 DATAs[39:32]

5 DATAs[47:40]

6 DATAs[55:48]

7 DATAs[63:56]

Word width

0,1 DATAs[15:0]

2,3 DATAs[31:16]

4,5 DATAs[47:32]

6,7 DATAs[63:48]

DWord width

ADDR[2:0] Data location on the DATAs lines

0-3 DATAs[31:0]

4-7 DATAs[63:32]

QWord width

0-7 DATAs[63:0]

Base Execution Unit.

FP/Integer
multiplier

FP
adder

FP/Integer
divider

Integer
ALU

Parallel
shifter

Misc.
unit

Read/Write
channel

SequencerConfiguration registers

Instruction cache
4K*128

Prefetcher
IP register

Flow control

128 bit

AR0

AR1

AR15

AR14

Data
channel

Code
fetch

channel

DTR0

DTR1

DTR6

DTR7

ATU

Data distribution circuit

D
a
t
a

p
o
r
t

I
n
s
t

p
o
r
t

Base Execution Unit

To TMUX

To FPU

To Stream
Controller

From TMUX

From Context
controller
From Stream
controller

From FPU

Messenger
control

Context controller
control

In
s
tr

u
c
ti
o
n
s

P
a
ra

m
e
te

rs
 a

n
d

re
s
u
lt
s

T
o

 t
h

e
 a

p
p

lic
a

ti
o

n
-s

p
e

c
if
ic

c
o

re
 e

x
te

n
s
io

n

R0 AFR0

R1 AFR1

R2 AFR2

R31 AFR31

AFR30

AFR29

R30

R29

v

v

v

v

v

v

127 310 0

General Purpose Registers.

 BEU Contains 32 general purpose registers. Associated with each general pur-

pose register is a register of operation result flags. These flags are written to the AFR

at the same time as the result is written to the appropriate general purpose register.

Each general purpose register has a valid flag indicating that the contents of the regis-

ter are ready to be used as a source operand, or the register is ready to accept new

data.

Data processing units.

 There are 6 main data processing units.

1. A floating point adder that performs addition and subtraction operations.

2. Multiplier.

3. Divider.

4. Integer ALU.

5. Parallel shifter.

6. Miscellaneous operations unit.

7. The channel for data read/write operations and data exchange with address

registers.

Floating point processing blocks (adder, multiplier, divider) work with four data for-

mats:

 Single-Precision (32 bit);

 Double-Precision (64 bit);

 Extended-Precision (128 bit);

 Vector data.

In turn, vector data can be of two types:

 A single-precision vector, when four single-precision numbers are packed into a

128-bit word;

 A double-precision vector when two double-precision numbers are packed into a

128-bit word.

The divider also implements the calculation of the square root. The operation of ex-

tracting the square root is possible only on floating point numbers. The divider and

multiplier are also capable of handling signed or unsigned integer data.

Prefetcher.

 Prefetcher pumps the instruction cache from external memory and forms a 128-

bit stream that transfers 4 instructions per cycle to the Sequencer. The instruction

cache is cleared each time the current code object changes, either as a result of a

process-to-process switch or a transfer of control to a message handler. Prefetcher

generates read requests to the address translation unit when loading the instruction

string into the cache. The line length is 32 64-bit words, which corresponds to 64 in-

structions. From the Sequencer, the Prefetcher receives a stream of control transfer

instructions within the current code object, as well as instructions for allocating mem-

ory, reading a message parameter, and transmitting a message. These instructions

cause the corresponding requests to be generated in the Context Controller and in the

Messenger.

Sequencer.

 Sequencer analyzes the readiness of instructions for execution depending on

the readiness of their source operands and the result receiver. The readiness of the

registers involved in the operation is determined by a special 32-bit flag register. Each

bit of this register indicates that the corresponding general purpose register is ready

for use. Sequencer performs competitive execution of instructions. The order in which

instructions are executed may not match their sequence in the program. This is true

for almost all types of instructions except control transfer instructions, instructions for

transferring data between memory and internal registers, and transferring data be-

tween general purpose registers and address registers. The data transfer and control

transfer sequences are carried out strictly as specified in the program.

 The sequencer has a 256-bit instruction register, into which 4 instructions are

loaded from the Prefetcher. Instructions are stored in this register until they are ready

to be executed when the source operands are ready or the result destination is ready.

Ins. 7 Ins. 6 Ins. 5 Ins. 4 Ins. 3 Ins. 2 Ins. 1 Ins. 0128

To Execution unit

From
Prefetcher

Situations are possible when all 8 instructions from the instruction register will be

transferred for execution to the execution unit simultaneously on one cycle, if they do

not depend on each other in terms of operands and result receivers. Up to 4 instruc-

tions can be executed at the each clock cycle at the same time, as they come from

Prefetcher. Prefetcher fills the register with instructions [7:4]. When the instruction

register [3:0] is empty, instructions [7:4] that have not yet been executed are trans-

ferred to positions [3:0], and positions [7:4] are loaded with a new set from the Pre-

fetcher.

 The dependencies of instructions on the readiness of the source operands and

the result receiver are determined using special configuration registers located in the

Sequencer and initialized at the start of the processor from a special configuration

ROM located in the Context Controller. Configuration registers are 256-bit. Each bit

determines what the Sequencer does with a specific instruction field, depending on

the 8-bit instruction code. There are 7 configuration registers in total, containing the

following 256-bit vectors (in parentheses are the base values that support the basic

instruction set).

InvdVector /FFFFFFFFFFFFFF3DFFFFFFFFFFFFFDDDFFFFFFFFFF008000FFFFFFFFF0000000/

0255

NopVector /FFFFFFFFFFFFC000FFFFFFFFFFFFE00CFFFFFFFFFF008000FFFFFFFFF0000000/

Op0Vector /002F7BFF000000000DEFFFFF/

Op1Vector /0000000000000000000000000000110300000000000000800000000005EFFFFF/

Op2Vector /00000000000000FF000000000000023300000000002F7FFF000000000DEFFFFF/

SkipVector /00/

PortalVector /00/

 InvdVector determines which machine instructions will modify the general

purpose register. An instruction that modifies a general-purpose register resets the

register's validity flag when it is started for execution. The zero bit of the vector indi-

cates that the corresponding instruction sets the unavailability of the register-receiver

of the result at the time of launch for execution. For example, all 28 instructions with

codes from 00h to 1Bh place the results in the general purpose register and cause the

receiver's register ready flags to be reset.

 NopVector defines invalid opcodes that the Sequencer ignores. If a bit in Nop-

Vector is set to 1, then the corresponding opcode for that bit is an invalid instruction

and the instruction is ignored.

 Op0Vector tells the Sequencer to check if the register specified in bits [12:8]

of the instruction can be used. If the Op0Vector bit is set to 1, then the Sequencer

must check the readiness of the register indicated in bits [12:8], and also whether

this register is used as a result receiver in instructions that have not yet been trans-

ferred for execution and are found in the text of the program previously checked in-

structions.

 Op1Vector tells the Sequencer to check if the register specified in bits [20:16]

of the instruction can be used as the operand source. The readiness of the register is

checked, as well as its use as a result receiver in instructions located earlier in the

program text, before the instruction being checked.

 Op2Vector tells the Sequencer to check the register specified in bits [28:24] of

the instruction to see if it can be used as a result destination. It can be used in in-

structions previously loaded into the Sequencer but not yet submitted for execution.

 SkipVector is used only in instructions that work with the portal. The bits in

this vector enable or disable checking that the application-specific resource is ready to

receive a new instruction. If the vector bit is 0, then the instruction is considered

transferred to the portal as soon as it is ready for execution. If the bit for an instruc-

tion is set to 1, then the Base Execution Unit, after sending this instruction to the por-

tal, will not send any other instructions to it until it receives a signal to complete the

current one. Thus, the vector allows you to separate the instructions of the applica-

tion-specific resource into FlyBy and those whose execution must be waited for before

submitting the next instruction to the portal.

 PortalVector itself determines which instructions are instructions for an appli-

cation-specific resource. A bit set to 1 indicates that the corresponding opcode be-

longs to an application-specific resource instruction.

Data distribution circuit.

The circuit distributes data read from the memory subsystem to recipients de-

pending on the transaction tag. Multiplexes data from TMUX, the context controller,

the flow controller, and the frame handler of the multiprocessor interface.

Address Translation Unit.

 The unit contains 16 address registers AR[15:0] and 8 descriptor cache regis-

ters DTR[7:0]. Descriptor selector DTR0 is located in register AR1, descriptor DTR1 -

in register AR3, DTR2 - AR5 and DTR7 - AR15 respectively. A descriptor register be-

comes invalid whenever a new object selector is written to its corresponding address

register, and if the same value is entered into the register as it was before, the de-

scriptor's valid flag is not cleared. This is done in order to suppress unnecessary de-

scriptor loading procedures.

 The address translation unit implements the following checks:

 Determining the transaction mode - local to an object in memory, local to a

thread, or access to another core of a multiprocessor network.

 Checking offset for violation of object limits when accessing local objects.

 Checking whether an object can be accessed by privilege level, by whether the

object is available for reading or writing, by whether the object belongs to the

current process or group of processes.

 Support for object segmentation system. Finding an object segment and load-

ing a descriptor of the object’s segment for which the offset specified in the log-

ical address is valid.

Stream controller.

 There are 2 types of objects: objects that are arrays of data bytes and stream

objects. Both types are described by the corresponding access descriptors and are ac-

cessed via object selectors. Threads are virtual queues, similar to FIFO queues. Work-

ing with such objects is supported by special hardware called a stream controller.

Each stream has bit width and length its main parameters. Each stream has its own

representation in RAM in the form of a buffer, the size of which depends on the de-

clared queue length and data width. The stream controller converts a regular array of

RAM cells into a queue, saving the application using the streams from having to expli-

citly work with read/write pointers, check their mutual status, and simplifies the han-

dling of situations of lack of data or overflow of the stream queue.

 The stream controller is connected by data channels to:

 An application-specific resource portal that has both read and write access to

streams;

 Basic execution unit, read and write;

 A frame processing unit that has access only to write data to the stream.

Context Controller.

 The main purpose of the Context Controller is to manage the context of the

processor's execution unit and, possibly, the context of an application-specific re-

source, if it provides the ability to change the context to serve different processes in

time-sharing mode. The context is understood as information that is unique for each

process running in the time-sharing mode on a common processor hardware resource

for all processes. The context of processor execution units can be changed when

processing a request from a process timer, when processing a hardware interrupt, or

when processing a message.

 The second function of the Context Controller is to configure the Sequencer be-

fore starting work, taking into account the features of the machine instruction set, ex-

tended by application-specific instructions.

 The third function of the Context Controller is the processing of macro

instructions for requesting memory blocks for creating objects and requests for

deleting unnecessary objects.

 The block diagram of the Context Controller is shown in the figure below.

FCC

P
0

P
1

P
2

P
3

FreeRAM
&
controller

Free DT entries:
selectors

Available objects:
selector & length

length

Selector

M
U
X

Message Parameter [31:0]
Message Parameter [63:32]

0

1

2

3

4

5

6

7

Message Parameter [95:64]
CSR

CPU Number, DT Limit
CPSR

Real IP [31:0]
DT scanning register

Total free memory size [31:0]
Total free memory size [39:32]

From Messenger

From System
registers

Cached free memory size [39:32]
Cached free memory size [31:0]

EU parameter [31:0]
EU parameter [63:32]

Real IP [36:32]
Portal status

Control register &
reconfiguration control

register

ConfigROM

M
e
m

o
ry

 i
n
te

rf
a
c
e

Context
Load/store

engine
MUX

To
TMUX

To EU

The Context Controller contains a firmware-controlled controller /FCC/ in which algo-

rithms for managing the execution unit, switching its context, algorithms for allocating

and releasing memory blocks are implemented at the firmware level.

 The FreeRAM buffer contains 256 56-bit cells. Designed to support the opera-

tion of the system for creating and deleting objects. Logically, it is divided into 2

halves. The lower half contains selectors corresponding to empty positions in the de-

scriptor table. The table is designed to quickly find positions in the descriptor table, in

which descriptors of created objects can be placed. The top 128 FreeRAM cells contain

the free object selectors and their size in 32-byte paragraphs from which memory

blocks can be sliced for new objects. The FreeRAM cache is updated periodically dur-

ing memory allocation operations. With each program intervention in the contents of

the descriptor table, KERNEL re-initializes the memory allocation subsystem by updat-

ing the FreeRAM context.

 ConfigROM contains a configuration block that describes the portal settings and

instruction set configuration.

Offset Description

00h InvdVector[31:0]

01h InvdVector[63:32]

02h InvdVector[95:64]

03h InvdVector[127:96]

04h InvdVector[159:128]

05h InvdVector[191:160]

06h InvdVector[223:192]

07h InvdVector[255:224]

08h NopVector[31:0]

09h NopVector[63:32]

0Ah NopVector[95:64]

0Bh NopVector[127:96]

0Ch NopVector[159:128]

0Dh NopVector[191:160]

0Eh NopVector[223:192]

0Fh NopVector[255:224]

10h Op0Vector[31:0]

11h Op0Vector[63:32]

12h Op0Vector[95:64]

13h Op0Vector[127:96]

14h Op0Vector[159:128]

15h Op0Vector[191:160]

16h Op0Vector[223:192]

17h Op0Vector[255:224]

18h Op1Vector[31:0]

19h Op1Vector[63:32]

1Ah Op1Vector[95:64]

1Bh Op1Vector[127:96]

1Ch Op1Vector[159:128]

1Dh Op1Vector[191:160]

1Eh Op1Vector[223:192]

Offset Description

1Fh Op1Vector[255:224]

20h Op2Vector[31:0]

21h Op2Vector[63:32]

22h Op2Vector[95:64]

23h Op2Vector[127:96]

24h Op2Vector[159:128]

25h Op2Vector[191:160]

26h Op2Vector[223:192]

27h Op2Vector[255:224]

28h SkipVector[31:0]

29h SkipVector[63:32]

2Ah SkipVector[95:64]

2Bh SkipVector[127:96]

2Ch SkipVector[159:128]

2Dh SkipVector[191:160]

2Eh SkipVector[223:192]

2Fh SkipVector[255:224]

30h PortalVector[31:0]

31h PortalVector[63:32]

32h PortalVector[95:64]

33h PortalVector[127:96]

34h PortalVector[159:128]

35h PortalVector[191:160]

36h PortalVector[223:192]

37h PortalVector[255:224]

38h

Base
ISET

C
F

REC
E
R

S
o
E

WSC Context Length
C
P

Control DWORD 38h

31 07815161921

Offset Description

39h

Messages TimerMessages Counter

Control DWORD 39h

31 015162324

3Ah

GPR WDT Portal WDT

Control DWORD 3Ah

31 015162324

3Bh

PL Task ID

Control DWORD 3Bh

31 015161920

3Ch

Portal PSO

2324 031

Control DWORD 3Ch

3Dh Reserved

3Eh

3Fh Instruction set extension ID

 InvdVector, NopVector, Op0Vector, Op1Vector, Op2Vector, SkipVector,

and PortalVector are loaded into their respective Sequencer configuration registers

at processor startup.

 Base ISET Basic instruction set index, 4 bits. This field will be used in the fu-

ture, when the processor configuration will change dynamically, and there will be sev-

eral basic instruction sets. Currently there is only one version of the base set and its

index is 1h.

 REC the field defines who can reconfigure the resource:

 0 - no one can, the resource is static, the value is currently in use.

 1 - only a more privileged process than the RPL (Resource Privilege Level).

 2 - only a process with the same TaskID as the resource or more privileged.

 3 – any process.

 CF. CF=0 - the resource is always stopped along with the base core when

switching to another process and can be reconfigured if necessary. CF=1 - the re-

source can continue to work after a process change in the base core.

 CP indicates the presence of the persisted context. If CP=1, then there is a

saved context and its length is Context Length+1.

 Context Length. Together with the CP bit, this field specifies the length of the

application-specific resource context.

 WSC A count of the wait cycles inserted into transactions generated by the re-

source. It is intended to limit traffic so that the resource does not block the system

with permanent transactions. The number of idle cycles between transactions is

WSC+1. Thus, there is always free time for system transactions.

 ER Whether or not to allow in-memory access error messages. If ER=1, entry

into the error queue of object access rule violations from the application-specific re-

source is allowed. If ER=0, then erroneous transactions are only blocked, but are not

registered in the system error queue and do not cause the system error handler to

run.

 SoE Stop the resource when an error occurs, or continue working. If SoE=1,

the resource is stopped when a system error is encountered.

 Messages Timer A timer that controls how often messages are sent from an

application-specific resource. This timer counts in 0.2 µs intervals. The interval count-

down starts whenever the resource has sent a certain number of messages in a row.

 Messages Counter The counter of the number of messages in the packet is 8

bits. For a certain period of time, a resource can generate a limited number of mes-

sages. The message counter is reset when the timer expires. Then again it will be

possible to generate messages.

 Portal WDT Portal busy watchdog timer – 2 bytes (wait for portal empty flag).

The context controller stops the application-specific resource if it needs to change its

context. To do this, a resource stop signal is generated. After that, the portal starts

counting the timeout after which a resource stop signal is generated even if the re-

source itself has not issued the corresponding signal to the portal, which allows the

context controller to continue the context change operation and not be blocked in an

endless wait for the resource stop signal.

 GPR WDT GPR busy watchdog timer – 1 byte. The timer counts down the

number of 200ns intervals after which the GPR is restored as valid. This timer avoids

situations of complete blocking of the processor if the application-specific resource

does not write to the GPR. The timer will restore the GPR's validity and readiness for

other operations.

 Task ID, PL, Portal PSO. These fields are not present in the context controller

configuration ROM. But they are in the form of registers in the portal. The fields con-

tain the current application-specific resource settings. The Task ID and PL are involved

in checking whether the resource can access the object. Portal PSO - Specifies the

PSO selector that hosts the resource context if the resource's architecture allows a

context switch.

Messenger.

 Messenger is used to resolve transfer issues on a global level. Its task is to de-

termine which code of which process the processor will execute next. Decisions are

made based on the presence of message transfer requests from the currently active

process, message transfer requests from application-specific hardware, the presence

of messages from other processors in the multiprocessor network, the presence of

system errors, and the presence of hardware interrupts.

 All events in the X32Carrier system that cause the current thread of instructions

to stop and switch to another thread, another process, another code object, are

processed as messages, using almost identical information structures for their

processing. The only exception is switching to another process by timer, it is handled

by the context controller on its own. Messages can be triggered both by a software

request - the SENDMSG instruction, and by hardware ones. Hardware messages are

interrupts and violations of the protection system.

 Messenger arbitrates incoming requests and selects the highest priority ones.

Messenger makes the necessary checks to see if the message initiator can access the

message handler. Messenger processes requests, generates a set of parameters for

the context controller, and calls the context controller to perform the procedure for

switching the core to the desired process and the desired entry point to the message

handler.

FCC

P
0

P
1

P
2

P
3

Control register

M
U
X

0

1

CSR[19:18],CPSR

PortalCPL,PortalPSO

M
U
X

0

1

CSR

PortalCPL,PortalTaskID

INTCR

M
U
X

0

1

2

3

4

5

6

7

EU Message [31:0]

Portal Message [31:0]
EU Message [63:32]

Portal Message [63:32]

Interrupt index

Interrupt table selector

Network message [63:32]

Network message [95:64]

Network message [121:96]

CPU Number, DTLIMIT

M
e
m

o
ry

 i
n
te

rf
a
c
e

FPU register
Context Controller

register

To
FPU

To Context
Controller

To
TMUX

 The messenger is also controlled by a firmware controller equipped with the ap-

propriate firmware. This firmware controller is the same hardware as the context con-

troller, but the firmware is different and the environment hardware is different.

 The four input ports of the microcontroller are fed through additional multiplex-

ers with global processor parameters /Number, table limits, interrupt table selector,

etc./, message parameters from the base execution unit, application-specific resource

portal, message parameters, etc. received from other cores of the multiprocessor

network, as well as the parameters of the current process.

 Interface registers are used to pass prepared information to the context con-

troller for switching to another process and to pass a message to another core of the

multiprocessor network via the FPU.

 The control register is used to generate various control signals and to control

data multiplexers at the inputs of the microcontroller ports.

Frame Processing Unit – FPU.

 The FPU performs multiprocessor transaction framing upon requests from the

core and an application-specific resource and receives transaction frames from the

multiprocessor network addressed to its own core.

Outgoing Data
Transactions
Formatter

M
U
X Master

RAM

M
U
X

From Base Core

Tag Fifo

From Portal

Sel Tag

Incoming
Read Data & Errors

Path

Sel

Data

Error Code

Tag
To Portal

& Base EU
datapath

To system
ErrorFIFO

Incoming
Messages

Path

To
Messenger

Incoming
Data Transactions Path

Descriptor
Cache

1

2

Transactions
Cache

3

5

To
TMUX

To Stream
Controller

Outgoing
Messages

Path

4

From
Messenger

To
RTE

From
RTE

 The FPU has five information channels.

1. Channel for outgoing data transactions. Each read or write transaction is stored in

MasterRAM for subsequent determination of the multiprocessor frame generation

mode in long or short form. Also, read transaction tags are placed in a special

multi-channel queue, so that they can then be retrieved from there when data ar-

rives from another core.

2. The returned data channel. It accepts responses to read transactions, as well as

packets of system errors. The read data is tagged from the queue and sent to the

underlying execution unit or portal. Error bursts cause the corresponding codes to

be sent to the system error queue. And if an error was caused by a data read op-

eration, then empty data is returned to the BEU or Portal, accompanied by the

―not a number‖ format. This is done in order to close an open read transaction in

the BEU or ASR.

3. Channel of incoming transactions. Processes requests for reading and writing data

from other cores of the multiprocessor network. Contains 2 buffers - descriptor

cache and transaction cache. The last cache is used to support the mechanism for

processing short data frames. The channel generates read/write requests to TMUX

and write requests to the flow controller. Having received the read data from

TMUX, the channel generates a special frame to return to the processor that re-

quested it.

4. Outgoing messages channel. Packs the messages prepared in Messenger into

message frames and sends them to the multiprocessor network.

5. Incoming messages channel.

Routing Engine – RTE.

 The engine is used to route frames of multiprocessor transactions. The engine

has 5 ports: a local core port and four external ports north, east, south and west.

M
U
X

0

1

2

3

FIFO

Arbitration
& routing

circuit

East
port

FIFO

West
port

M
U
X

0

1

2

3

FIFO

M U X

0 1 2 3 F
IF

O

North
port

F
IF

O

South
port

M U X

0 1 2 3

M
U

X

0

1

2

3

C
or

e

po
rt

 On the transmitting side of each port there is a 4-input multiplexer for transmit-

ting outgoing frames from four other ports, and on the receiving side there is a queue

of incoming frames.

 The arbitration and routing circuit decides from which port queue and where the

next frame will be sent.

Application-specific resource.

The architecture of the X32Carrier processor is adapted to support a specialized data

processing resource by a system service, which can have its own specialized set of

registers and a set of specific machine instructions.

 Two types of dedicated hardware resource are allowed:

 a resource used by different processes in time-sharing mode;

 a resource used by various processes in a mode as it is ready to perform a new

task.

 The resource used by processes in time-sharing mode is characterized by the

fact that each time the processor switches to another process, it is forced to stop and

the context of a certain set of registers is stored in the PSO of the suspended process

and loaded from the PSO of the newly activated process, if necessary. A resource used

by timesharing processes can be temporarily idle if the currently active process is not

using it. At the same time, it may not even receive a new register context due to the

lack of one in the process.

 The resource used by the processes when they are ready to accept a new job

does not have a register context stored in the PSO processes. A resource of this type

can perform the intended operation even after the process that initiated the operation

is temporarily or permanently stopped.

 An application-specific X32Carrier resource can contain both of these types.

Part of the resource can be used by different processes in time-sharing mode, and

part in ready-to-use mode.

 An application-specific resource connects to the X32Carrier core through a por-

tal. The composition and purpose of the tires of the portal are presented in the table

below.

Bus Width

Direction

Description

Instruction subsection

PortalReady 1

ASRPortal

The readiness of the application-specific resource

to accept the next instruction. 0 - the resource is

not ready to execute a new instruction.

PortalActivation 1

PortalASR

Activation of a new instruction for ASR. 1 - indi-

cates the presence of a new instruction on the

PortalInstruction bus.

PortalInstruction 32

PortalASR

ASR instruction code. The instruction code is

translated from the instruction stream to the ASR

without modification.

Bus Width

Direction

Description

PortalOpA

PortalOpB

PortalOpC

128

PortalASR

Source operands retrieved from the base unit's

general purpose registers. Three 128-bit values

are always extracted from the registers ad-

dressed in the ASR instruction by the fields

[12:8] for PortalOpA, [20:16] for PortalOpB and

[28:24] for PortalOpC.

PortalGPRStrobe 1

ASRPortal

Result strobe in a general purpose register. With

PortalGPRStrobe=1, data from the PortalGPRData

bus is entered into a general-purpose register

addressed by the PortalGPRIndex bus.

PortalGPRIndex 5

ASRPortal

The index of the general purpose register that

receives the result of the operation from the

ASR. Usually this index is extracted from bits

[28:24] of the Porta-lInstruction, since these are

the bits that are commonly used to indicate the

destination of the result.

PortalGPRSize 3

ASRPortal

The width of the operand placed in the general

register.

PortalGPRFlags 7

ASRPortal

Operation result flags to be entered in the AFR

flags register corresponding to the PortalGPRIn-

dex index.

PortalGPRFlags[0]CF15

PortalGPRFlags[1]ZF

PortalGPRFlags[2]SF

PortalGPRFlags[3]OF

PortalGPRFlags[4]IF

PortalGPRFlags[5]NF

PortalGPRFlags[6]DBF

PortalGPRData 128

ASRPortal

The result of the ASR operation to be written to

the selected general register.

Context load/store subsection

PortalRST 1

PortalASR

System reset. Raised if there is a system reset

and if there is a system error caused by ASR and

if it is allowed to stop the resource in the pres-

ence of an error. Active level - 0.

PortalSTOP 1

PortalASR

ASR stop signal. Active 1. Formed by the context

controller when it is necessary to stop the execu-

tion of the current process in the ASR and

change its context to execute another process.

PortalRUN 1

PortalASR

ASR start signal after stop. Active 1. Raised by

the context controller after the process context is

loaded into the resource.

Bus Width

Direction

Description

PortalEMPTY 1

ASRPortal

Sign of the absence of operations in ASR. Active

1. On receipt of PortalSTOP=1, the ASR shall

terminate all its operations and set the Porta-

lEMPTY=1 flag, allowing the context controller to

perform a context save of the ASR registers.

PortalContextSTB 1

PortalASR

Context word strobe in ASR. With PortalCon-

textSTB=1, the ASR must write to its PortalCon-

textAddress-indexed register the 64-bit word set

on the PortalContextDI bus.

PortalContextAddress 8

PortalASR

ASR register address. When the context is un-

loaded from the ASR, the context controller sets

the address of the register in the bus, and on the

next cycle, the word from the PortalContextDO

bus is received for writing to the PSO of the

process. 1 cycle is allocated for the selection of a

word in the ASR. When the context is loaded, the

register address, data, and strobe signal are set

at the same time.

PortalContextDI 64

PortalASR

Context data to load into the ASR registers.

PortalContextDO 64

ASRPortal

Context data returned from the ASR when the

context is downloaded to the PSO.

Messages subsection

PortalSMSG 1

ASRPortal

Request to send a message. ASR generates Por-

talSMSG=1 when sending a message to mes-

senger. The signal shall be held at 1 until an ac-

knowledgment of receipt of the message is re-

ceived.

PortalMSG 64

ASRPortal

Message code. Index for the table of imported

messages in bits [31:0], message parameter in

bits [63:32]. The message code must also be

kept valid until an acknowledgment of receipt of

the message is received.

PortalSMSGNext 1

PortalASR

Message receipt confirmation. Por-

talSMSGNext=1 indicates that the message has

been received by messenger in the current clock.

Memory interface subsection

PortalNEXT 1

PortalASR

Readiness of the portal to accept a transaction

from ASR in the current cycle. PortalNEXT=1 in-

dicates that the transaction activated by ASR will

be accepted for processing by the portal.

PortalERROR 1 System error flag. Set to 1 when the portal de-

Bus Width

Direction

Description

PortalASR tects a memory access violation by ASR. The flag

is advisory in nature and can be used by the ASR

to make its own decisions regarding an errone-

ous transaction, the tag of which is indicated on

the PortalERRORTag bus.

PortalERRORTag 8

PortalASR

The tag of the transaction that caused the mem-

ory access error. Valid for PortalERROR=1.

PortalACT 1

ASRPortal

Transaction activation. PortalACT=1 The ASR is

requesting a read or write transaction.

PortalCMD 1

ASRPortal

Transaction type. PortalCMD=0 – write transac-

tion, PortalCMD=1 – read.

PortalSelector 32

ASRPortal

The selector of the object being accessed.

PortalOffset 37

ASRPortal

The offset of the data in the object.

PortalDO 64

ASRPortal

In transactions, writes are used to transfer the

data being written.

PortalTO 8

ASRPortal

Transaction tag. Used to identify the source and

destination of data within the ASR.

PortalSO 2

ASRPortal

Operand size: 8, 16, 32 or 64 bits.

PortalDRDY 1

PortalASR

read data readiness. PortalDRDY=1 indicates that

data has been read from memory.

PortalDI 64

PortalASR

Data read from memory.

PortalTI 8

PortalASR

The tag of the transaction that previously re-

quested the data to be read.

PortalSI 2

PortalASR

The size of the read operand.

8-bit data is transferred on the PortalDO and PortalDI buses on lines [7:0], 16-bit da-

ta on lines [15:0], 32-bit data on lines [31:0], and 64 bits use the full width of the

buses .

Instruction subsection diagram.

CLK

PortalReady

PortalActivation

PortalInstruction

PortalOpA, PortalOpB, PortalOpC

PortalGPRStrobe

PortalGPRIndex

PortalGPRSize

PortalGPRFlags

PortalGPRData

Instruction 0 Instruction 1 Instruction 2

Operands 0 Operands 1 Operands 2

The ASR is ready
to receive an
instruction, or
the readiness

check is
suppressed

The ASR’s
readiness check
is suppressed for

Instruction 1

ASR is not ready
to receive
instructions

ASR is ready to
receive

instructions

GPR Index 1 GPR Index 0

Result size 1 Result size 0

Result flags 1 Result flags 0

Result data 1 Result data 0

Context store diagram.

CLK

PortalSTOP

PortalEMPTY

PortalContextAddress 00h 00h 01h 02h 03h

PortalContextDO

context
controller stops

ASR

ASR ends its internal operations Saving four/for example/ words of ASR context in Process State Object

Context word 0 Context word 1 Context word 2 Context word 3

Context load diagram.

CLK

PortalEMPTY

PortalRUN

PortalContextSTB

PortalContextAddress

PortalContextDI

00h 01h 02h 03h

Context word 0 Context word 1 Context word 2 Context word 3

Loading four/for example/ words of ASR context from Process State Object The context is loaded and the context controller
performs the last operations before starting ASR

Start ASR

Messages subsection diagram.

CLK

PortalSMSG

PortalMSG

PortalSMSGNext

Message 1 Message 2

ASR sends message 1 Messenger processing message 1 Messenger is
ready to receive

the next
message

ASR sends message 2

Memory interface subsection diagram.

CLK

PortalNEXT

PortalACT

PortalCMD

PortalSelector
PortalOffset

PortalDO

PortalTO
PortalSO

PortalDRDY

PortalDI

PortalTI
PortalSI

PortalERROR

PortalERRORTag

Read 1 Write 1 Write 2

Logical addr.
Read 1

Tag, Size
Read 1

Logical addr.
Write 1

Logical addr. Write 2

No transactions Read 2 No transactions

Logical addr. Read 2

Tag, Size
Write 1

Tag, Size Write 2 Tag, Size Read 2

Data Write 1 Data Write 2

Portal performs two transactions at maximum
speed (one transaction in two cycles)

Data Read 1

Tag, Size
Read 1

read data 1 in ASR

Tag Read 2

Error report for ASR

System registers.

 System registers are mapped to memory space and assembled into a 128-byte

block starting at physical address 1FFFFFFFFF80h. These registers are accessed by the

system software through an object with selector 003h. Access to this object is possi-

ble only at the 0th privilege level. Prior to the initialization of the address translation

system, access is possible through a pair of address registers AR10,AR11 which cor-

responds to the virtual register MAR5. Descriptor register DTR5 is initialized after a

system reset to address memory starting at address 1FFFFFFFFF80h. The remaining

registers DTR[4:0] and DTR[7:6] are initialized to base address 0. For more informa-

tion about the composition of the system control registers, see the corresponding

document: "X32 and X32Carrier Registers.pdf"

