
Contents
*.process files format ... 1

Process header. .. 2

Object format description. .. 2

*.process files format
This file is used by Kernel for to create process files and run the process. *.process

the file contains a process header with start parameters, a table of exported

procedures, a table of imported procedures, and a set of objects.

Process header with a
startup parameters

+0

+128

Export procedures table
Ecnt entries

Import procedures table
Icnt entries +128+(Ecnt*64)

+128+(Ecnt*64)+(Icnt*128)

Objects
(up to 255)

Objects can be from 1 to 255. Objects are located one after another. Their length is

always a multiple of the 32-byte paragraph. Therefore, when the pointer reaches the

length of the object containing the *.process file when expanding the process in

memory, the Kernel fixes the completion of the process creation.

After creating a process and running it for execution, the object containing the

PROCESS file must still remain in RAM, since many of its data are used to dynamically

link processes by messages, to evaluate the status of the process, and to find all

objects belonging to the process.

Process header.

Offset 48h in the process file always contains four null bytes. It is filled in by the

Kernel when the process is created in memory. The Kernel sets the PSO selector of

the created process to this position and resets it to 0 when the process is deleted

using the KP /Kill Process/ command, while the object with the PROCES file remains in

memory and will make it possible to re-create the process.

Offset Length Description

0/00h 8 Header 'PROCESS',00h.

8/08h 64 Name of process. Zero-terminated string.

72/48h 4 PSO selector. Contains zero dword in PROCESS file.
This position used by Kernel to store a PSO selector.

76/4Ch 4 Initial object index, initial CSR value. CPL, flags and
TASK ID.

80/50h 4 Code offset entry point.

84/54h 4 Maximum allowable memory. In 32-byte paragraphs

88/58h 4 Maximum count of objects, what process can create.

92/5Ch 4 System stack length in bytes.

96/60h 4 Process timer /in 200ns ticks/. For example, value
4000h gives 4000h*0.2=3276.8 µs activation period.

100/64h 2 System messages queue length /messages/.

102/66h 2 Regular messages queue length /messages/.

104/68h 2 Stack size for CPL=0, in 32-byte paragraphs.

106/6Ah 2 Stack size for CPL=1, in 32-byte paragraphs.

108/6Ch 2 Stack size for CPL=2, in 32-byte paragraphs.

110/6Eh 2 Stack size for CPL=3, in 32-byte paragraphs.

112/70h 2 Export table count. /ECnt/

114/72h 2 Import table count. /ICnt/

116/74h 12 Reserved

128/80h ECnt*64 Export procedures table. 58 bytes procedure name, 1
byte of index of object, 1 byte procedure type and 4
byte procedure offset.

128+ECnt*64 ICnt*128 Import procedures table. 64 bytes process name and
64 bytes procedure name.

128+

ECnt*64+
ICnt*128

 First object of process.

128+
ECnt*64+

ICnt*128+Object

length

 Next object of process.

Object format description.

First object begins from 128+ECnt*64+ICnt*128 displacement in the process file.

Offset Length Description

0/00h 60 Object name, zero-terminated string.

60/3Ch 4 Object selector (used at runtime) Kernel use this position

at a runtime.

64/40h 4 Length, in 32-byte paragraphs. Including this 72-byte
header

68/44h 4 Code configuration dword. Bytes 0-2 will in the future
contain a config. object selector required to program a

custom extension of the base instruction set. Byte 2
encode a base instruction set. 0 – X16, 1 – X32, etc.

72/48h ~~~ Object data.

