Is there a soil P credit? Lessons from Illinois

2023 ALTA Winter Meeting 1 March 2023 West Lafayette, IN

Andrew Margenot, Ph.D. | margenot@illinois.edu

https://margenot.cropsciences.illinois.edu/

Developing a phosphorus (P) credit to support Illinois farmers' management of P

Dr. Chongyang Li Postdoc Currently: research scientist

Dr. Jordon Wade

Postdoc Currently: assistant professor at U. Missouri

How much P mineralizes from OM in Illinois production systems?

A soil P credit can help fine-tune P fertilization recommendations to increase nutrient use efficiency.....

....and make the most of our soils' natural capital

Nutrient credits from SOM

Soil organic matter (SOM) is... 100:10:1(ish)

C:NP

Because C-N are tightly coupled (~10:1), we can make broad rules of thumb for the soil N credit **based on OM**

Conservative estimate is ~20 lb N/ac for every 1% OM

Caveats (of course!):

- How much depends on weather, in particular temperature
- Specific conversion (%OM to lb/ac of N) depends on soil type

Credit Soil Organic Matter for Nitrogen

December 9, 2008

Gary Zoubek, Extension Educator Aaron Nygren, Extension Educator

The percent organic matter of the soil is a factor used by the University of Nebraska-Lincoln to make fertilizer recommendations for nitrogen fertilization in corn. Farmers, particularly those with high organic matter in their soils, need to encourage their soil test laboratories or crop consultants to take into account the nitrogen from soil organic matter when recommending nitrogen for corn. When nitrogen rates are based on a realistic yield goal, soil nitrates, legume credits, and potential nitrogen release from organic matter, nitrogen recommendations are reduced and fertilizer nitrogen is saved.

Mineralization

One nitrogen source that is often forgotten is the mineralization of soil organic matter. In well-aerated soils, the end products of organic matter decomposition include CO₂, NH₄ H₂PO₄, and H₂O residues and many other

https://cropwatch.unl.edu/giving-proper-nitrogen-credi

Added profit: \$18.75/acre

Based on 28 pounds of nitrogen saved at \$0.67/pound per each additional percent of organic matter in the soil for a field with a yield goal of 200 bushels (see *Example 1*)

N and P are linked via C in soil organic matter (SOM)

Because C-N are more tightly coupled than C-P, we aren't sure how OM% is related to a (likely) soil P credit

Top 6" of black prairie soils can hold up to 1200 lb/ac of P in **organic form**

→ Equivalent DAP value of \$1,365

What is the range of a potential P credit for typical Illinois soils and managements?

= Humid continental

📒 = Humid subtropical

Spike ³³P into soil

Isotopic exchange kinetics (IEK) used to quantify P mineralization: rates and pool size

By measuring how much a pulse of 33-P is diluted by 31-P ('normal') generated by mineralization of soil organic P, we can infer P_{min}

30

Rates vs pool size

- How fast versus how much
- P mineralization rates at days 21-28 used as steady state (mg kg⁻¹ d⁻¹) = how fast
- Cumulative P mineralized over 28 days (mg kg⁻¹) = how much *could* mineralize

Results: Most of the total P in surface soils is in organic form

	Trial	Soil type	Treatment	Organic C (%)	C:N	рН	Total P	Organic P		Potentially min. P	
							(mg/kg)	(mg/kg)	(% of total)	(mg/kg)	(lb/ac)
	Ewing	Alfisol	No lime, - P	1.0	9.4	4.6	233	190	81	12.1	24
	Ewing	Alfisol	No lime, +P	1.1	9.3	4.7	556	488	88	53.3	107
	Ewing	Alfisol	Lime, - P	1.0	8.7	5.3	203	192	94	14.1	28
	Ewing	Alfisol	Lime, +P	1.3	9.4	5.0	568	497	87	59.2	118
28%	Dudley-Smith	Alfisol	- CC, +N	1.7	11.3	5.8	666	419	63	34.8	70
clav Morrow Plots	Dudley-Smith	Alfisol	+CC, +N	1.8	12.0	5.9	732	444	61	30.9	62
	Dudley-Smith	Alfisol	-CC, -N	1.8	11.7	5.8	762	452	59	56.9	114
22%	Dudley-Smith	Alfisol	Pasture	2.0	11.1	6.3	546	376	69	43.9	88
clay	Morrow	Mollisol	Corn-corn, -NPK	1.5	11.7	6.2	530	411	78	27.8	56
36%	Morrow	Mollisol	Corn-corn, +NPK	2.1	11.3	7.4	654	479	73	51.2	102
clav	Morrow	Mollisol	Corn-soy, -NPK	2.0	12.5	6.5	486	430	88	59.7	119
Clay	Morrow	Mollisol	Corn-soy, +NPK	2.7	12.8	7.1	796	512	64	61.3	123
	Monmouth	Mollisol	Till, +N	2.3	12.8	6.9	638	501	79	100.6	201
17%	Monmouth	Mollisol	No-till, +N	2.5	12.4	5.5	629	592	94	61.5	123
clay	Monmouth	Mollisol	corn-soy, -N	2.7	12.4	6.9	636	539	85	57.0	114
Clay	Monmouth	Mollisol	corn-soy, +N	2.3	13.5	7.2	603	446	74	36.3	73
	n/a	Mollisol	Forest	5.9	13.7	7.3	1358	1247	92	152.2	304
	n/a	Mollisol	Prairie	3.3	13.9	7.2	702	540	77	45.8	92

Major takeaways

- There is a lot of organic P in topsoil: 190-1247 mg/kg \rightarrow 59 94% of total P
- Potentially mineralizable P in agricultural soils was 95 ± 43 lb/ac, nearly the same as in prairie soils (94 lb/ac)
- Assuming half of this potentially mineralizable P is mineralized in a growing season, soil P credit would range 12 to 100 lb/ac
- How much P is *actually* mineralized will....
 - ...likely depend on weather, as for N mineralization
 - ...timing of P mineralization and synchrony of P release from organic matter with crop need will determine contributions of soil organic P to crop uptake

1. Potential mineralization of P can be agronomically significant

2. Mineralization of P is highly temperature sensitive

Dudley Smith

- P_{min} higher by 5-7x at 68°F vs 50-41°F soil temps
- Similar temp-sensitivity by management system (a good thing!)

3. Mineralization of P can be management sensitive

What could this mean for crop P uptake?

- P mineralization could be appreciable in early season
- Early season P deficiency: overly cool and/or wet weather (spring P effect, fallow syndrome)

Dr. Dan Kaiser, University of Minnesota

Can soil enzyme activities be used to explain the potential P credit?

- Extracellular enzymes in soils that "digest" organic matter to release P, as well as N and S
- Phosphatases catalyze the process of mineralization
- Phosphatases are recommended USDA NRCS soil health indicators

Phosphatases integrate biotic × abiotic

Basics of phosphatases in the P cycle

- P depolymerization-mineralization: a two-step process catalyzed by two phosphatases
 - 1. Phosphodiesterase (E.C. 3.1.3)
 - 1st step, proposed to be rate-limiting
 - Not currently considered a soil health indicator; proposed in USDA NRCS Tech. Note 450-03
 - 2. Phosphomonoesterase (E.C. 3.1.4)
 - 2nd step, responsible for mineralization
 - (oddly?) generally highest activities of all hydrolytic enzymes assayed
 - USDA NRCS soil indicator, as "acid phosphatase" or "alkaline phosphatase"

V_{max} and K_m: kinetic properties of soil enzymes

What metrices of P mineralization to use? Rate and pool size

- Phosphatase activity (V_{max}) and (K_m) measured at day 28
- P mineralization rates at days 21-28 used as steady state (mg kg⁻¹ d⁻¹)
- Cumulative P mineralized over 28 days (mg kg⁻¹)

Phosphatase kinetic parameters and P mineralization (rates)

Phosphatase kinetic parameter and mineralizable P (pool size)

Enzyme activities taken literally do not make sense

Assume a phosphomonoesterase activity of 2 μmol pNP g⁻¹ h⁻¹

Less than one day's worth of organic P to be mineralized *if* measured activities operated in situ

Additional potential explanations

- Does enzyme activity increase because there is a deficiency in the product, or because there are overall higher rates of nutrient cycling?
- Feedback inhibition and substrate inducement may operate in a tug-of-war

 Phosphatase can be produced in response to C deficiency: equally as C enzyme as much as P enzyme

Takeaways

- Is there a basis for a P credit? Yes
 - Differs by soil type beyond 'just' OM, organic P and soil test P
- Across soils and managements, potentially mineralizable P was 5- to 7-fold greater at 68°F vs 50-41°F, indicating robust temperature sensitivity
- Potentially mineralizable P related...
 - ...strongly to total soil organic P
 - ...less strongly to total soil organic C, reflecting variation in C:P ratio of OM (23-62), which is
 - ...unrelated to C:P ratio of OM
- "Phosphatases", soil enzymes that are a common soil health indicator, are somewhat related to potential P credit
 - V_{max} but not K_m
- Fundamental work is needed on how enzymes relate to nutrient supply power $(P_{min} + N_{min})$ to enable interpretation of activities

Questions?

1000