

OIM

Bryan G. Hopkins, Ph.D.
Certified Professional Soil Scientist (CPSS)
Director, SSSA-NAPT
Professor, BYU

- What is pH?
- Why do we care?
- How do we measure it?
 - Soil
 - Lime Requirement
 - Water

рН

- pH is the negative logarithm of the hydrogen(proton)/hydronium ion activity (not concentration)
 - $pH = -log(H^+)$
 - Concentration and activity are often similar in value
 - Unlike concentration, activity does not have units and, therefore, neither does pH

pH range is 0 to 14

pH is based on dissociation of water

- In any volume of water, most of it is the H2O molecule, but some of it is dissociated as follows:
 - H₂O ←→ H⁺ + OH⁻
 - However, H⁻···

Logarithm $pH = -log(H^+)$

(factor of 10)

0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 0.00000001 0.000000001 0.0000000001 0.00000000001 0.000000000001 0.00000000000001

0.000000000000001

(H⁺) activity

1.0

	•
рН	(OH ⁻) activity
14	1.0
13	0.1
12	0.01
11	0.001
10	0.0001
9	0.00001
8	0.000001
7	0.0000001
6	0.0000001
5	0.000000001
4	0.0000000001
3	0.00000000001
2	0.000000000001
1	0.0000000000001
0	0.000000000000001

At neutral pH 7, they are equal

рН	(H ⁺) activity	рН	(OH ⁻) activity
0	1.0	14	1.0
1	0.1	13	0.1
2	0.01	12	0.01
3	0.001	11	0.001
4	0.0001	10	0.0001
5	0.00001	9	0.00001
6	0.000001	8	0.000001
7	0.0000001	7	0.0000001
8	0.0000001	6	0.0000001
9	0.00000001	5	0.00000001
10	0.000000001	4	0.000000001
11	0.0000000001	3	0.0000000001
12	0.00000000001	2	0.00000000001
13	0.0000000000001	1	0.0000000000001
14	0.000000000000001	0	0.000000000000001

Calculating activity

```
    If pH = 8.0, solve for (H+)
    pH = -log (H+)
    8 = -log (H+)
    -8 = log (H+)
    10<sup>-8</sup> = 10 log (H+)
```

Since log is exponential power at base 10, 10 log cancels out to a value of 1 (H⁺) = 10^{-8} = 0.00000001

Why do we care about soil pH?

- Reactions in soil are affected by pH
 - Weathering
 - Microbial activity
 - Elemental activity
- Extremes can be caustic
 - Strong acids burn living tissues, including plant roots
 - Rarely occurs (pH has to be much lower than normal)
 - Strong bases burn living tissues, including plant roots
 - Rarely occurs (pH has to be much higher than normal)
- Toxicities of other elements
- Deficiencies of nutrients

Near neutral soils (pH 6.5-6.9) are ideal for most plants and other organisms that live in soil.

In practical terms, there is not much difference between about pH 5.8 and 7.3

Formation

- Soils in semi-arid and arid zones tend to accumulate carbonates and other salt precipitates with alkaline pH.
- The source of these salts are weathered minerals and carbonic acid deposit from the air.
- They do not leave the system readily due to a lack of precipitation.

Formation

- In high rainfall areas, these salts are moved out of the soil into groundwater and to surface waters and eventually into the ocean. As the bases (Ca, Mg, Na, & K) are moved out, they are replaced on the CEC complex with H⁺ from the water.
- Irrigation water typically does not act in the same way as it is generally high in dissolved salts that replace any that are lost with water movement through the soil.

Formation

- In addition to rainfall induced acidification,
 - Water combines with carbon dioxide to form carbonic acid.
 - $H_2O + CO_2 \leftrightarrow H_2CO_3$
 - Plants exude H⁺ from their roots and acidify soil over time.
 - Ammonium based fertilizers (and some other types too) also acidify over time.
 - Acid rain deposition can also impact soil pH.

As a result, soil pH tends to mimic rainfall trends with low rainfall areas in the western U.S. having alkaline pH and high rainfall areas in the east acidic.

Alkaline soils (pH > 7)

The main problem of alkaline soils is nutrient availability.

Strongly acidic	Medium acidic	Slightly acidic	Very slightly acidic	Very slightly alkaline		Medium alkaline	Stro	ngly alka	line
	***************************************		NUTO	OGEN		***************************************	000000		
			INITA	OGEN			411	(100)	
			PHOS	PHOR	US	******			
			Р	OTASS	IUM				
				SUL	FUR				
				CAL	_CIUM				***************************************
				MA(SNESI(JM			***********
IRO) N					\$\$\$\$\$\$\$\$\$\$\$	0000000		^^^^
	MANG	ANESE			********		6600000000 000		
	ВО	RON				************			
	OPPER	and 71	NC		*****	990000000000000000000000000000000000000			
		4110 21							
						MC	LYBD	ENUM	
	1				<u> </u>		<u> </u>		

Range common in soils is medium acidic to medium alkaline.

Strongly acidic	Medium acidic	Slightly acidic	Very slightly acidic	Very slightly alkaline		Medium alkaline	Strongly alkaline
			NITR	OGEN:			
	c~~~~10000000		PHOS	PHOR	JS		
			P	OTASS	IUM		
				SUL	FUR		
				CAI	CIUM		
				MAC	SNESI	JM	
IRO	N I						
	MANG	ANESE				************************************	000000 00000 0000 0000 0000 0000 0000 0000
	ВО	RON				***************************************	
CC	OPPER	and ZI	NC			**********	
						MC	LYBDENUM

Fig. 8.2 Influence of soil pH on plant nutrient deficiencies

Hopkins B.G., Stark J.C., and Kelling K.A. 2020. Nutrient Management. *In* Stark J., Thornton M., Nolte P. (*ed*) *Potato Production Systems*. Ch. 8:155-202. New York, New York: Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-39157-7_8 (ISBN 978-3-030-39157-7)

Soil Acidity

- Active acidity
- H⁺ ions in the soil solution
- Reserve acidity
- H⁺ ions on the soil exchange sites
- Buffering capacity
- resistance to pH change
- Limestone requirement increases with increasing CEC

Al ions

H⁺ ions

Soil Solution

Reserve acidity

Active acidity

Liming action

- $CaCO_3 + 2H^+ \longrightarrow H_2CO_3 + Ca^{2+}$
- $H_2CO_3 \longrightarrow CO_{2(g)} + H_2O$
- 1. Raises soil pH
- 2. Precipitates Al, Mn, and Fe
- 3. Supplies Ca and Mg
- 4. Makes some nutrients more available to plants
- 5. Increases microbial activity

Measuring pH

- Calibrating the pH probe
 - buffer solutions

https://www.youtube.com/watch?v=P
 BTn4gTEbkU

 https://www.youtube.com/watch?v=v wY-xWMam7o

pH Troubleshooting

One of most difficult tests to troubleshoot

www.naptprogram.org -click on "resources""

Resources

Our publication categories include documents to help participants stay abreast of current NAPT activities and provide access to documents of lasting interest.

Papers and Resources

- 2019 USDA-NRCS Soil Health Technical Note No. 450-03
- 2014 USDA-NRCS Soil Quality Indicators Potentially Mineralizable Nitrogen
- · 2006 Procedure for Silicon (Si) in Plant Tissue
- · 2005 American Society for Testing and Materials (ASTM) Standards
- · 2005 Replacing SMP Buffer with Sikora Buffer for Determining Lime Requirement of Soil
- 2005 Lime Requirement by the Measurement of the Lime Buffer Capacity
- · 2004 Salt Concentration and Measurement of Soil pH
- 2004 In-line Dilution for AAS Instruments
- · 2002 Organic Matter by Loss on Ignition
- · 2002 Bicarbonate Phosphorus P Troubleshooting
- 2001 Preparation of Soil QC Materials for Analysis Laboratories
- 2000 Carbonate Analysis by Modified Pressure Calcimeter Method
- 1000 Saturation Percentage
- 1998 Soil pH Troubleshooting
- 1998 Berthelot Reaction for Ammonium-N
- 1982 Anaerobic Incubation for Potentially Mineralizable Nitrogen

Links of Interest

QA/QC

- Known Solution
 - Buffers (4, 7, and 10)
 - Calibrate
 - Recheck
 - <0.04 pH units
 - Equilibration <10 seconds
 - Solutions of varying salt concentrations (EC)
 - 0.1
 - 0.5
 - 1.0
 - 4.0

QA/QC

- Known Solutions
- Known Checks
 - Range of:
 - pH
 - salt concentrations
 - Buffering capacity (CEC texture/OM)

Soil	рН	Texture	CEC	Salts (EC)
1	4.9	Sand	2	0.1
2	5.2	Clay Loam	32	0.1
3	6.6	Loam	25	0.3
4	7.3	Sandy Loam	8	1.4
5	8.2	Silt Loam	28	4.2

Known Check Soil Samples

QA/QC

- Known Solutions
- Known Checks
- Duplicates
 - With different electrodes/meters
- Blind Samples
 - Proficiency testing
- Double Blind

- Known Checks for pH were all out of range (high and low)
- Duplicates were >10% error
- Buffer pH was within range
- Known solution at low EC was out of range
- Cause?
 - Bad electrode

- All QC was within range, but clients calling in with complaints.
- Double Blind were off by as much as 2.2 pH units
- Cause?
 - Analyst was hurrying through customer samples and slowing down for QC samples.

- QC mostly ok, but robotic data was bad for electrode #3
- Cause?
 - Junction had salt buildup on it

- QC samples out of range at end of run, biased to neutral
- Duplicates were all >10% error (duplicates were run at end of batch)
- Cause?
 - Dispenser out of calibration at end of run

- Known Check samples out of range at end of run, biased high
- Duplicates and Known Solutions and Proficiency Samples were all within range
- Cause?
 - Samples were scooped night before and left open to the air and custodians spilled ammonia solution on floor

рΗ

- Know your equipment
- Store electrodes properly
- Minimize abrasion on electrode
- Evaluate cables
- Dispensor volume
- Correct scoop size and technique
- Meter instability
- Static electricity
- Junction location to liquid surface
- Stirrer contact/speedSlurry or supernatant
- Duplicates with different probes
- Residue buildup
- Flow rate of the liquid junction
- Rinsing?
- Stirring while measuring?
- Contamination (NH3)

Troubleshooting

- Difficult
 - Buffers vs. Soil
 - High Buffer/High Salts (EC) vs. distilled water soil in between
 - Especially problematic with high water to soil ratios . . . Rare problems with buffer pH
 - Salt pH the answer? (0.01 CaCl₂ or 1 M KCl
 - Multiple probes (need duplicates)
 - Varying time (manual techniques)
 - Need multiple check samples with varying pH and salts
 - Equilibration time
 - Stirring
 - Static electricity
 - Air, solution, and rinse water temperatures
 - Junction flow rates (quartz, asbestos, ceramic, frit, annular, sleeve) need rapid flow
 - Plugged junction
 - Poor response time (<10 seconds to go from pH 4 to 7)
 - Span error should be <0.05 pH unit
 - Reproducibility on the sample sample should be <0.03 pH unit
 - Improper storage

Questions? naptcoordinator@soils.org

Electrical Conductivity (EC)

- Electrical conductivity is the measure of a substances ability to conduct (transport) an electric current.
- lons, because of their positive and negative charges, conduct electrical currents very well
- Water conducts electricity poorly, but when ions are dissolved in solution conductivity increases
- Therefore EC is proportional to the amount of ions in solution
 - EC indicates how many salts are in the soil

Electrical Conductivity (EC)

- Conductivity Cells measure EC
- How Conductivity Cell's work
 - Measures EC with two electrodes at a specific distance apart
 - The electrodes change charges
 - The ions in the solution travel electrode to electrode as the charges change
 - The amount of charge that the ions carry to the electrodes is measured
 - The more ions in solution, the larger amount of electrical charge that is carried
- Normal soils have an EC< 4 dS/m