

DP Level Measurements –

Improving Performance & Reducing Installation Costs

Pat Carroll Level Technology Manager September 15, 2020

International Society of Automation Setting the Standard for Automation[™]

Agenda

- Gage Pressure vs Differential Pressure
- Balanced vs Tuned Systems
- Electronic Remote Sensors (ERS)
- Fill Fluids
- Thermal Range Expander

DP Level is a Proven and Successful Technology

Open / Vented Tank Measurement Can Easily Be Made with a Gage Transmitter

- Level can be measured if density (specific gravity) of fluid is known
- Level = Specific Gravity

Higher level = more pressure at bottom of vessel

DP Measurements are Required for Pressurized/Vacuum Vessel Applications

- Gage pressure transmitter measurements cannot distinguish pressure from the liquid level vs vapor pressure/vacuum
- DP measurement compensates for vapor pressure/vacuum changes

Agenda

- Gage Pressure vs Differential Pressure
- Balanced vs Tuned Systems
- Electronic Remote Sensors (ERS)
- Fill Fluids
- Thermal Range Expander

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 6

DP Level is a Proven and Successful Technology

*VDC Global Process Level (2005), ARC Global Radar Study (2008), F&S Global Level Sensors (2005)

Temperature Effects on Capillary DP Systems

 <u>Seal Effect</u>: Process temperature changes: 75 degF at installation, current process temperature = 450 degF, fill fluid expands

Temperature Effects on Capillary DP Systems

 <u>Head Effect</u>: Ambient temperature changes: 77 degF at installation, 120 degF later in the day, fill fluid density changes

Older Practice for Remote Seal Systems: The "Balanced System"

- Practice was to specify identical seals on the high and low sides of the transmitter
- Equal capillary length and equal amounts of fill fluid
- Back pressure on high side equals back pressure on low side – no seal temperature effects
- Excess length of capillary typically coiled near bottom seal – response time?

Transmitter mounting?

Existing Practice: The "Tuned System"

- Use knowledge of:
 - Seal Temperature Effect
 - Head Effect
 - Fill Volumes
 - Diaphragm Properties
- Predict and document system performance with a computer model
- Easier installation, less material with only 1 capillary, faster response time with direct mounted transmitter

Understanding DP System Total Temperature Effects

With all conditions equal, what happens when temperature increases?				
Performance Considerations	Balanced		Tuned System	
Seal Temperature Effect (Effect due to Expansion of Fill Fluid)	No Error		-3.5 inH2O	
Head Temperature Effect (Effect due to Change in Fill Fluid Density)	+4.9 inH2O	=	+4.9 inH2O	
Total Temperature Effect	+4.9 inH2O	>	+1.4 inH2O	

Agenda

- Gage Pressure vs Differential Pressure
- Balanced vs Tuned Systems
- Electronic Remote Sensors (ERS)
- Fill Fluids
- Thermal Range Expander

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 13

Electronic Remote Sensors - Replace Capillaries & Wet/Dry Legs

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 14

EMERSON

Electronic Remote Sensors Provide Additional DP Level Capabilities

Simplified Installations

Improved Performance

Simplified Maintenance & Spares Inventory

Synchronized & Integrated Solution

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 15

Electronic Remote Sensors Simplify Installation Practices

1. Independently install each sensor

- Direct-mount without pipe stand, brackets, and other hardware
- Can be installed by a single instrument tech

2. Wire sensors together

- Non-proprietary electrical wire (4 conductor)
- Easy to install around catwalks, on distillation columns, etc.
- Eliminate insulation and heat tracing

3. Perform a system zero trim

- Establishes true zero-based DP measurement
- No zero elevation calculation required

Electronic Remote Sensor Digital Architecture Delivers Improved Performance

Electronic Remote Sensors Simplify Maintenance and Spares Inventory

Replace one transmitter vs entire capillary assembly Simplify spares inventory & standardize on common ERS components

Electronic Remote Sensors Provide Greater Insight Into Your Process

• Slide 19

Electronic Remote Sensors Compliments Traditional **DP Level Technology**

The Enhanced Performance Class Makes it Easier to Know Performance

A.1.2 Reference accuracy Table A-1. DP Total Accuracy for Enhanced ERS System Performance ⁽¹⁾								
Sensor type	3051SAMG2, 3051SALG2 250 inH ₂ O (622,1 mbar)	3051SAMG3, 3051SALG3 1000 inH ₂ O (2488,4 mbar)	3051SAMT1, 3051SALT1 30 psi (2,1 bar)	3051SAMT2, 3051SALT2 150 psi (10,34 bar)	3051SAMG4, 3051SALG4 300 psi (20,7 bar)	3051SAMT3, 3051SALT3 800 psi (41,4 bar)		
Rosemount 3051SAM ⁽²⁾	0.2 inH ₂ O (0,5 mbar)	0.6 inH ₂ O (1,4 mbar)	0.9 inH ₂ O (2,2 mbar)	1.5 inH ₂ O (4,0 mbar)	6.2 inH ₂ O (15 mbar)	7.8 inH ₂ O (19 mbar)		
Rosemount 3051SAL with direct mount seal types and sizes below ⁽³⁾ :								
• FF, FC, PF \geq 2-in./DN50	2.2 inH ₂ O (5,5 mbar)	2.3 inH ₂ O (6,0 mbar)	3.0 inH ₂ O (7,5 mbar)	3.2 inH ₂ O (8,0 mbar)	6.5 inH ₂ O (16 mbar)	8.3 inH ₂ O (21 mbar)		
 EF ≥ 3-in./DN80 All RT, RF, RC, SS 								
• SC≥ 2.5-in.								
Rosemount 3051SAL with other seal types and sizes	Consult Instrument Toolkit [™] for performance.							

Performan	ce class ⁽¹⁾	(2)	
1	Ultra: 0.025% span accuracy, 200:1 rangedown, 15-year stability, 15-year limited war	ranty 7	★
2	Classic: 0.035% span accuracy, 150:1 rangedown, 15-year stability	,	★
4	Enhanced ERS System performance, 15-year stability, 15-year limited warranty	7	★

Agenda

- Gage Pressure vs Differential Pressure
- Balanced vs Tuned Systems
- Electronic Remote Seals (ERS)
- Fill Fluids
- Thermal Range Expander

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 22

Complete Fill Fluid Offering for the Application

Seal fill	fluid	Specific gravity at 77 °F (25 °C)	Temperature limits ⁽¹³⁾⁽¹⁴⁾				
			No extension	2-in. (50 mm) extension	4-in. (100 mm) extension	Thermal range expander ⁽¹⁵⁾	Capillary
D	Silicone 200	0.934	-49 to 401 °F (-4	45 to 205 °C)		N/A	-49 to 401 °F (-45 to 205 °C)
F	Silicone 200 for vacuum applications	0.934	For use in vacuum applications below 14.7 psia (1 bar-a), refer to vapor pressure curves in Rosemount DP Level Fill Fluid Specification Technical Note.				vapor chnical
J ⁽¹⁶⁾	Tri-Therm 300	0.795	-40 to 401 °F (- 40 to 205 °C)	-40 to 464 °F (- 40 to 240 °C)	-40 to 572 °F (-40 to 300 °C)	N/A	-40 to 572 °F (-40 to 300 °C)
Q ⁽¹⁶⁾	Tri-Therm 300 for vacuum applications	0.795	For use in vacuu pressure curves Note.	For use in vacuum applications below 14.7 psia (1 bar-a), refer to vapor pressure curves in Rosemount DP Level Fill Fluid Specification Technical Note.			
L	Silicone 704	1.07	(32 to 401 °F (0) (to 205 °C)	(<mark>32 to 464 °F (0</mark>) (to 240 ℃)	32 to 572 °F (0 to 300 ℃)	Up to 599 °F (315 °C)	32 to 599 °F (0 to 315 °C)
C	Silicone 704 for vacuum applications	1.07	For use in vacuum applications below 14.7 psia (1 bar-a), refer to vapor pressure curves in Rosemount DP Level Fill Fluid Specification Technical Note.				vapor chnical
R	Silicone 705	1.09	<mark>(68 to 401 °F (20</mark> to 205 °C)	(<mark>68 to 464 °F (20</mark> (to 240 °C)	68 to 572 °F (20 to 300 °C)	Up to 698 °F (370 °C)	68 to 698 °F (20 to 370 °C)
V	Silicone 705 for vacuum applications	1.09	For use in vacuum applications below 14.7 psia (1 bar-a), refer to vapor pressure curves in Rosemount DP Level Fill Fluid Specification Technical Note.				vapor hnical
Y ⁽¹⁷⁾	UltraTherm 805	1.20	N/A			Up to 770 °F (410 °C) ⁽¹⁸⁾	N/A
Z ⁽¹⁷⁾	UltraTherm 805 for vacuum applications	1.20	For use in vacuum applications below 14.7 psia (1 bar-a), refer to vapor pressure curves in Rosemount DP Level Fill Fluid Specification Technical Note.				vapor chnical
A	SYLTHERM XLT	0.85	–157 to 293 °F (–105 to 145 °C)		N/A	-157 to 293 °F (-105 to 145 °C)	
н	Inert (Halocarbon)	1.85	-49 to 320 °F (-4	45 to 160 °C)		N/A	-49 to 320 °F (-45 to 160 °C)
N ⁽¹⁶⁾	Neobee M-20	0.94	5 to 401 °F (–15 to 205 °C)	5 to 437 °F (-15	to 225 °C)	N/A	5 to 437 °F (-15 to 225 °C)
) G(10)(16)	Glycerin and water	1.13	5 to 203 °F (-15	to 95 °C)		N/A	5 to 437 °F (-15 to 225 ℃)
-(10)(16)							

ISA DP Level - Emerson Confidential

Agenda

- Gage Pressure vs Differential Pressure
- Balanced vs Tuned Systems
- Electronic Remote Seals (ERS)
- Fill Fluids
- Thermal Range Expander

Thermal Range Expander

Challenge

- Hot applications (above 400° F) require highly viscous fill fluids
- Heat tracing and other complicated installations are used to keep fill fluids in operating range

Thermal Range Expander

- Maximize performance of high temperature fill fluids
 - ➢ Silicone 704
 - ➢ Silicone 705
 - UltraTherm 805
- Reduce response time

<u>Value</u>

- Eliminates the need for expensive heat tracing
- Ability to measure extreme processes

Thermal Range Expander Combines Two Fill Fluids with an Intermediate Diaphragm

Direct Mount Capabilities:

- In-line or Coplanar style
- ERS[™] system capability
- One primary and one secondary fill fluid

Secondary fill options:

- Silicone 200
- SYLTHERM XLT

Primary fill options:

- Silicone 704
- Silicone 704 for vacuum
- Silicone 705
- Silicone 705 for vacuum
- UltraTherm 805
- UltraTherm 805 for vacuum

Thermal Range Expander Will Close the Hot Process / Cold Ambient Temperature Gap

Note: temperature ratings will be de-rated in vacuum applications

- Thermal Range Expander enables use of UltraTherm 805
 - Thermal Range Expander allows direct mounting up to 770°F
 - Previous limit at 500° F with 4 in. extension and Silicone 704/755
 - Extends operating ranges in vacuum applications

Vacuum Applications – Silicone 200

Vacuum Applications – UltraTherm 805

Eliminate Added Cost Associated with Heat Trace Capillary or Steam Trace

- Up to 60% cost savings when compared with heat tracing
 - No onsite wiring or setup required with Thermal Range Expander
 - Eliminate the need for a temperature controller
- Eliminate maintenance and ongoing operating costs
 - Stable measurement, no need to control heat trace
 - No continuous electricity or steam required

Heat Traced Balanced System with Temperature Controller

Questions?

ISA DP Level - Emerson Confidential • 9/15/2020 • Slide 40