
‭Developing for Continuous Deployment‬
‭Executive Summary‬ ‭1‬
‭Understanding the CD Workflow Swim Lane‬ ‭1‬
‭Shared Technologies Across Swim Lanes‬ ‭2‬
‭Signal Aggregation and Visibility‬ ‭3‬

‭Signal Aggregator‬ ‭3‬
‭Flight Deck‬ ‭4‬

‭Key Features of Flight Deck‬ ‭4‬
‭Operational Use‬ ‭4‬
‭Integration with Meta's Ecosystem‬ ‭5‬

‭WhereIsSTU‬ ‭5‬
‭Choosing a Signal Aggregator‬ ‭5‬

‭Release Candidate Testing‬ ‭6‬
‭Developer Preview Channel‬ ‭7‬
‭Public Test Channel‬ ‭8‬

‭Release Operation and Monitoring‬ ‭8‬
‭Release Beast‬ ‭9‬

‭Release‬ ‭10‬
‭Firmware OTA‬ ‭10‬

‭Executive Summary‬
‭This document provides an overview of the Continuous Deployment (CD) workflow and its‬
‭various stages, including building, testing, and deploying code changes. It highlights the‬
‭importance of automated tests, version control systems and deployment pipelines in ensuring‬
‭that code changes are delivered to users quickly and reliably. The document also discusses‬
‭signal aggregation and visibility, which involves collecting and presenting signals from multiple‬
‭sources to provide a comprehensive view of the codebase's health and status. Additionally, it‬
‭introduces two tools used for signal aggregation at Meta: Flight Deck and WhereIsSTU. Finally,‬
‭the document touches on release candidate testing, developer preview channels, public test‬
‭channels, and release operation and monitoring, emphasizing the importance of these‬
‭processes in ensuring the quality and stability of software releases.‬

‭Understanding the CD Workflow Swim Lane‬
‭This page describes the stage you need to follow to complete the CD integration, based on the‬
‭choices you selected and installed with the Supported Workflow Tool.‬



‭When working with the Supported Workflow Tool for continuous integration, you are dealing with‬
‭the Continuous Deployment swim lane, as partially shown in the following image:‬

‭Continuous deployment (CD)‬‭is a software development‬‭practice that involves automatically‬
‭building, testing, and deploying code changes to production. This allows teams to quickly and‬
‭reliably deliver new features and bug fixes to users. To develop for continuous deployment, it's‬
‭important to write automated tests that cover your codebase. These tests help ensure that your code‬
‭changes don't break existing functionality and provide a safety net for continuous deployment.‬

‭Another key aspect of developing for CD is using version control systems like Git. Version control‬
‭allows you to track changes to your codebase over time, making it easier to identify which changes‬
‭may have caused issues in production. Implementing continuous integration (CI) is also crucial for‬
‭CD. CI involves automatically building and testing code changes as soon as they are committed.‬
‭This helps catch issues early and ensures that your code is always in a deployable state.‬

‭In addition to these practices, it's important to use a deployment pipeline. A deployment pipeline is a‬
‭series of steps that your code changes must go through before they reach production. This can‬
‭include building, testing, and deploying your code changes.‬

‭Finally, monitoring your deployments is essential for ensuring that your code changes are delivered‬
‭to users quickly and reliably. This can involve monitoring logs, metrics, and user feedback to identify‬
‭and fix any issues that arise in production.‬

‭By following these best practices, you can develop software that is ready for continuous deployment‬
‭and ensure that your code changes are delivered to users quickly and reliably.‬

‭Shared Technologies Across Swim Lanes‬
‭This section describes the stages when developing for continuous deployment. Note that the‬
‭following technologies are shared across the testing and debugging, continuous integration, and‬
‭continuous deployment swim lanes.‬

‭●‬ ‭Unit testing‬
‭●‬ ‭Integration testing‬
‭●‬ ‭Logging‬

‭For more information about each of these technologies, refer to‬‭Testing and Debugging‬‭.‬

https://docs.google.com/document/d/1UCG3vGn-76USqvm1oRBgUJ07oS3NpRDwPOyxqWQrZI0/edit?usp=sharing


‭Signal Aggregation and Visibility‬
‭In the context of software development, signals are pieces of information that provide insights into‬
‭the quality, reliability, and performance of a codebase.‬‭Signal aggregation and visibility‬‭refer to the‬
‭process of collecting, analyzing, and presenting these signals in a way that is easily understandable‬
‭and actionable for developers, managers, and other stakeholders.‬

‭The goal of signal aggregation and visibility is to provide a comprehensive view of the health and‬
‭status of a codebase, enabling teams to identify issues, track progress, and make informed‬
‭decisions about where to focus their efforts.‬

‭There are many different types of signals that can be collected and aggregated, including:‬

‭●‬ ‭Code quality metrics (e.g., code coverage, code complexity, code duplication)‬
‭●‬ ‭Test results (e.g., test failures, test duration, test flakiness)‬
‭●‬ ‭Build results (e.g., build failures, build duration, build artifacts)‬
‭●‬ ‭Deployment results (e.g., deployment failures, deployment duration, deployment status)‬
‭●‬ ‭User feedback (e.g., user reports, user satisfaction surveys)‬

‭To aggregate signals, teams can use various tools and techniques, such as:‬

‭●‬ ‭Signal hubs: Platforms that collect and display signals from multiple sources, providing‬
‭a centralized view of the codebase's health.‬

‭●‬ ‭Dashboards: Customizable interfaces that display key metrics and signals in real-time,‬
‭allowing teams to monitor progress and identify trends.‬

‭●‬ ‭Reports: Regular summaries of signal data, highlighting areas of improvement and‬
‭providing insights into the codebase's overall health.‬

‭To improve visibility, teams can take several steps, such as:‬

‭●‬ ‭Establishing clear goals and metrics for each signal, ensuring that everyone‬
‭understands what is being measured and why it is important.‬

‭●‬ ‭Providing training and support for developers, managers, and other stakeholders,‬
‭ensuring that they know how to interpret and act on signal data.‬

‭●‬ ‭Encouraging collaboration and communication across teams, fostering a culture of‬
‭transparency and accountability.‬

‭Signal aggregation and visibility are critical components of modern software development, enabling‬
‭teams to make data-driven decisions and deliver high-quality products. By collecting, analyzing, and‬
‭presenting signals in a clear and actionable way, teams can improve code quality, reduce risk, and‬
‭increase efficiency.‬

‭Signal Aggregator‬
‭A‬‭signal aggregator‬‭is a tool or platform that collects‬‭and consolidates signals from multiple‬
‭sources, providing a unified view of the health and status of a codebase. Signal aggregators can‬
‭help teams to:‬

‭●‬ ‭Monitor code quality and identify areas for improvement‬
‭●‬ ‭Track test coverage and ensure that all critical paths are tested‬



‭●‬ ‭Identify build and deployment issues and optimize the release process‬
‭●‬ ‭Collect user feedback and sentiment analysis to inform product decisions‬

‭A signal aggregator is a valuable tool for any software development team, providing a unified view of‬
‭the codebase's health and status. By collecting and consolidating signals from multiple sources,‬
‭teams can improve visibility, increase efficiency, and make better decisions. When selecting a signal‬
‭aggregator, teams should consider factors such as multi-source integration, data normalization,‬
‭visualization, alerting, and analytics capabilities.‬

‭When it comes to selecting a signal aggregator at Meta, you have two choices, FlightDeck and‬
‭WhereIsStu, both of which are described next.‬

‭Flight Deck‬
‭Flight Deck‬‭is a comprehensive platform developed‬‭by Meta for managing app releases. It‬
‭integrates various functionalities to streamline the process of starting and monitoring builds,‬
‭tests, and shipments. This tool is particularly useful for release managers and operators,‬
‭providing a centralized hub for overseeing the release process.‬

‭Key Features of Flight Deck‬
‭●‬ ‭Build and CI Management‬‭: Flight Deck supports the‬‭management of build‬

‭processes and continuous integration, ensuring that builds are executed efficiently‬
‭and consistently.‬

‭●‬ ‭Testing and Signal Tracking‬‭: It facilitates the tracking‬‭of test results and other‬
‭signals, which are crucial for assessing the health of the release.‬

‭●‬ ‭Deployment and Shipment‬‭: Flight Deck allows for the‬‭configuration and execution‬
‭of shipments to various platforms, making it easier to manage releases across‬
‭different environments.‬

‭●‬ ‭Configurability and Logging‬‭: The platform offers a‬‭high degree of configurability‬
‭and detailed logging, which helps in troubleshooting and fine-tuning the release‬
‭processes.‬

‭Operational Use‬
‭●‬ ‭Monitoring Launch Blockers‬‭: It provides tools to identify‬‭and manage‬

‭launch-blocking issues that could affect the release schedule.‬
‭●‬ ‭Version Management‬‭: Flight Deck includes mechanisms‬‭for version bumping and‬

‭managing different release versions effectively.‬
‭●‬ ‭Manual and Automated Shipping‬‭: Users can manually‬‭ship releases or configure‬

‭auto-shipments based on specific criteria, enhancing flexibility in release‬
‭management.‬

‭●‬ ‭Rollout Management‬‭: The platform supports phased rollouts,‬‭allowing for gradual‬
‭release to users which can be adjusted based on real-time feedback and metrics.‬



‭To use Flight Deck, you will need to have the appropriate permissions and access to the platform.‬
‭Once you have access, you can follow these steps:‬

‭1.‬ ‭Navigate to the Flight Deck page for your app.‬
‭2.‬ ‭Select the release version you want to manage from the list of available releases.‬
‭3.‬ ‭View the details of the selected release, including build status, test results, and‬

‭shipment information.‬
‭4.‬ ‭Use the available actions to manage the release, such as starting a new build, running‬

‭tests, or shipping the release to a specific destination.‬

‭It is important to note that the exact steps and options may vary depending on the specific‬
‭configuration and settings of your app in Flight Deck. If you have any questions or issues with using‬
‭the platform, you can reach out to the Flight Deck support team for assistance.‬

‭Integration with Meta's Ecosystem‬
‭Flight Deck is integrated with various Meta tools and platforms, ensuring seamless operation‬
‭within Meta's ecosystem. It supports a wide range of apps, making it a versatile tool for release‬
‭management across the company.‬

‭For detailed information on working with Flight Deck, refer to the‬‭Flight Deck‬‭wiki.‬

‭WhereIsSTU‬
‭WhereIsSTU‬‭is a tool used to monitor and manage the‬‭Reality Labs Safe-To-Use (STU) CI system.‬
‭It provides various pages to track the status of OS builds, APK builds, and the ingestion process that‬
‭bundles STU APK builds into new OS builds. Additionally, it includes a Test Explorer Page for‬
‭browsing all the Gauntlet E2E tests run during OS and APK CI runs. The tool can be accessed at‬
‭https://www.internalfb.com/whereisstu‬‭and its various‬‭subpages for different functionalities [‬‭source‬‭].‬

‭To use WhereIsSTU, follow these steps:‬

‭1.‬ ‭Go to the WhereIsSTU page:‬‭https://www.internalfb.com/whereisstu‬
‭2.‬ ‭Select the product you want to check from the drop-down menu at the top of the page.‬
‭3.‬ ‭You will see a list of recent STU builds, with the latest build at the top.‬
‭4.‬ ‭Click on a build number to see more details about that build, including its date, test‬

‭results, and any known issues.‬

‭By using WhereIsSTU, you can quickly find the latest STU build for your product and ensure that you‬
‭are testing on a stable and reliable build.‬

‭For detailed information on working with WhereIsStu, refer to the‬‭WhereIsSTU‬‭wiki.‬

‭Choosing a Signal Aggregator‬
‭Given the broader range of functionalities and the integration with other tools, Flight Deck would be‬
‭the recommended choice if you are looking for a comprehensive tool to manage releases, monitor‬

https://fburl.com/wiki/smefeo7p
https://www.internalfb.com/whereisstu
https://www.internalfb.com/intern/wiki/RL/Gauntlet_E2E_Testing/Running_Tests/WhereIsSTU/
https://www.internalfb.com/whereisstu
https://fburl.com/wiki/ujq09ixy


‭builds, and handle shipments. It provides a centralized platform that can cater to various needs,‬
‭making it more versatile for different tasks related to app release and management.‬

‭However, if your specific requirement is only to track and locate specific builds or versions,‬
‭WhereIsStu might be sufficient for that narrower purpose.‬

‭Release Candidate Testing‬
‭Release Candidate (RC) Testing‬‭is a crucial phase‬‭in the software development lifecycle, aimed at‬
‭ensuring that new software versions are robust and ready for production. The main goal of RC‬
‭testing is to conduct end-to-end (E2E) testing of the software to identify and fix any potential issues‬
‭before the software is released to the public.‬

‭Here are some key aspects of release candidate testing:‬

‭1.‬ ‭Selection of Release Candidates‬‭:‬
‭●‬ ‭The QA team identifies potential release candidates based on previous‬

‭testing results. For instance, specific software (SW) and operating system‬
‭(OS) builds are selected for extended testing if they show promise as good‬
‭release candidates [‬‭source‬‭].‬

‭2.‬ ‭Testing Process‬‭:‬
‭●‬ ‭RC testing involves rigorous E2E testing. This includes running the‬

‭software through all its functionalities to ensure it behaves as expected in‬
‭a production-like environment.‬

‭●‬ ‭Automated and manual testing methods are employed to cover various‬
‭aspects of the software.‬

‭●‬ ‭Continuous testing frameworks and tools like BOLT are used to ensure the‬
‭software's trunk is stable before moving to release candidate stages‬
‭[‬‭source‬‭].‬

‭3.‬ ‭Monitoring and Feedback‬‭:‬
‭●‬ ‭Tools and dashboards are used to monitor the software's performance‬

‭during the RC phase. Issues such as crashes are tracked to assess the‬
‭stability of the release candidate.‬

‭●‬ ‭Feedback mechanisms are in place to quickly address any critical issues‬
‭found during testing [‬‭source‬‭].‬

‭4.‬ ‭Deployment and Rollback‬‭:‬
‭●‬ ‭Once a release candidate passes all tests, it is scheduled for deployment.‬

‭Deployment can be staged to roll out the software gradually to monitor its‬
‭performance in the live environment.‬

‭●‬ ‭Rollback procedures are established to revert to previous versions if‬
‭significant issues arise after the release [‬‭source‬‭].‬

‭5.‬ ‭Developer and Community Involvement‬‭:‬
‭●‬ ‭Developers are involved in the RC testing phase to ensure that the‬

‭software meets all technical standards and requirements.‬
‭●‬ ‭In some cases, a broader community of users may also participate in‬

‭testing release candidates to provide additional feedback and identify‬
‭issues that may not have been caught during internal testing [‬‭source‬‭].‬

https://fb.workplace.com/groups/484789652836657/permalink/487820455866910/
https://www.internalfb.com/intern/wiki/HHVM-BOLT/BOLT_release/
https://www.internalfb.com/intern/wiki/Oculus/OculusBrowser/Releases/Runbook:_How_to_Release_the_Browser/
https://www.internalfb.com/intern/wiki/Tupperware_Internal/Images/Base_Image/
https://www.internalfb.com/intern/wiki/RL_DevInfra/Reality_Labs_Supported_Workflow/RL_AOSP_Workflow/AOSP_Developer_Environment/


‭In summary, Release Candidate Testing is a comprehensive process that involves selecting potential‬
‭release candidates, conducting thorough testing, monitoring software performance, and preparing‬
‭for deployment and potential rollback. This phase is critical to ensure that the software is stable,‬
‭functional, and ready for wider release.‬

‭Developer Preview Channel‬
‭The‬‭Developer Preview Channel (DPC)‬‭is a system designed‬‭to provide developers with early‬
‭access to over-the-air (OTA) firmware updates for Quest devices, allowing them to receive updates‬
‭earlier than the general public. This early access enables developers to test and report issues before‬
‭the updates are rolled out to the public, creating a symbiotic relationship where developers help‬
‭improve the stability and quality of the firmware, and Oculus gains valuable insights and feedback on‬
‭potential issues [‬‭source‬‭].‬

‭The DPC has been managed manually by collecting device serial numbers from developers and‬
‭changing their OTA channel using the Firmware OTA Device Admin Tool. However, due to the‬
‭increasing scale of managed developers, this manual process has become unsustainable, prompting‬
‭the need for an automated or self-service solution [‬‭source‬‭].‬

‭The release calendar for the DPC has been adjusted to provide developers with a sufficient preview‬
‭of OS updates before the public release. This adjustment aims to aid in finding regressions before‬
‭the release, with the branch cut now scheduled for the 12th of every month, adding an extra week‬
‭between the branch cut and the release [‬‭source‬‭].‬

‭Overall, the Developer Preview Channel is a critical component in ensuring the quality and stability‬
‭of firmware updates for Quest devices by involving developers in the testing process early on.‬

‭To access the Developer Preview Channel (DPC) for Oculus software, you need to follow these‬
‭steps:‬

‭1.‬ ‭Contact Developer Relations Engineering: According to the information provided, you‬
‭should talk to your Developer Relations Engineering contact to request access to the‬
‭DPC. This is mentioned as a way for developers to get early access to preview OS‬
‭releases to test their applications against new OS releases and provide feedback prior‬
‭to the public launch [‬‭source‬‭].‬

‭2.‬ ‭Provide Headset Serials: For developers to be opted into the DPC, the Content team or‬
‭developers need to provide headset serials (Quest 1 / Quest 2). This process is‬
‭managed by the team, and currently, there is a list of several thousand headsets that‬
‭are part of this program [‬‭source‬‭].‬

‭3.‬ ‭Wait for Approval and Setup: Once you have contacted the appropriate contacts and‬
‭provided the necessary information (like headset serials), you will need to wait for your‬
‭request to be processed and for your devices to be set up to receive DPC builds.‬

‭It's important to note that the process might involve specific agreements or additional steps‬
‭depending on your status as a developer and the nature of the projects you are working on. Make‬
‭sure to maintain communication with your Developer Relations Engineering contact throughout this‬
‭process.‬

https://fb.workplace.com/groups/410386045980053/permalink/1444159912602656/
https://fb.workplace.com/groups/410386045980053/permalink/1444159912602656/
https://fb.workplace.com/groups/QuestTeamDiscussion/permalink/2887391894702156/
https://fb.workplace.com/groups/211627633578676/permalink/343369657071139/
https://fb.workplace.com/groups/QuestTeamDiscussion/permalink/3843593812415288/


‭Public Test Channel‬
‭The‬‭Public Test Channel (PTC)‬‭is a platform where‬‭updates and new features are rolled out to a‬
‭subset of users who opt-in to test the latest versions before they are released to the general public.‬
‭This allows developers to gather feedback and identify any potential issues or bugs. The PTC is part‬
‭of a broader release process that includes several stages such as planning, development, feature‬
‭complete, branch cut, public test channel, gold master candidate, and release. Users who participate‬
‭in the PTC can experience the newest features and provide valuable feedback to improve the‬
‭product [‬‭source‬‭].‬

‭The PTC is used not only for testing stability and performance but also for gathering telemetry data‬
‭to ensure that new updates perform well under various conditions. This channel is crucial for‬
‭catching issues that may not have been identified during earlier testing phases. For instance, in the‬
‭context of Oculus software, opting out of the PTC has been recommended to resolve specific issues‬
‭with third-party applications like Microsoft Flight Simulator, indicating the channel's role in identifying‬
‭and addressing compatibility issues [‬‭source‬‭].‬

‭Overall, the Public Test Channel serves as an essential step in the development and release‬
‭process, providing a controlled environment to validate changes and enhance the overall quality of‬
‭the software before it reaches a broader audience.‬

‭To access the Public Test Channel (PTC) for Oculus software, follow these steps:‬

‭1.‬ ‭Make sure you have an Oculus account: If you don't have one, create an account on‬
‭the Oculus website.‬

‭2.‬ ‭Join the Oculus PTC: Go to the‬‭Oculus PTC page‬‭and‬‭click "Join PTC" in the top-right‬
‭corner. You'll need to sign in with your Oculus account if you're not already logged in.‬

‭3.‬ ‭Enable PTC on your headset: On your Oculus Quest or Quest 2 headset, go to Settings‬
‭> System > Software Update, and toggle the switch next to "Public Test Channel" to‬
‭enable it.‬

‭4.‬ ‭Restart your headset: Your headset will automatically download and install the latest‬
‭PTC build.‬

‭Note: The PTC is only available for Oculus Quest and Quest 2 headsets. If you have an Oculus Rift‬
‭or Rift S, you won't be able to access the PTC.‬

‭Once you've joined the PTC, you'll receive early access to new features and updates before they're‬
‭released to the general public. Keep in mind that PTC builds may be less stable than the public‬
‭release, so you might encounter bugs or issues. However, your feedback is crucial in helping the‬
‭Oculus team improve the software before its official release.‬

‭Release Operation and Monitoring‬
‭Release Operation and Monitoring involves various tools and processes to ensure the smooth rollout‬
‭and health of software releases. Here are some key aspects based on the provided resources:‬

‭1.‬ ‭Release Operators‬‭: These individuals are responsible‬‭for operating the release of new‬
‭production packages and ensuring their health. They use developed tools to monitor‬

https://www.internalfb.com/intern/wiki/Oculus/XR_Services/XR_Runtime/Process/Development/
https://fb.workplace.com/groups/SkylineFeedback/permalink/7794763863955277/
https://www.oculus.com/ptc/


‭the health of the release and to triage issues that occur, collaborating with AI systems‬
‭developers to apply necessary fixes [‬‭source‬‭].‬

‭2.‬ ‭Tools and Frameworks‬‭: Various tools like FlightDeck‬‭and Cockpit are used to manage‬
‭operational tasks during gradual rollouts, track regressions, monitor releases, alert on‬
‭issues, and provide recommendations for fixes. These tools help in reversing the‬
‭interaction with release engineering tooling, pushing information and fixes to release‬
‭operators [‬‭source‬‭].‬

‭3.‬ ‭Release Beast Tool Set‬‭: This is a collection of UI‬‭and automation tools that support‬
‭release operations. It includes tools for tracking the high-level status of the release‬
‭state, managing pick requests, and validating product health after each rollout stage‬
‭[‬‭source‬‭].‬

‭4.‬ ‭Monitoring and Alerting‬‭: Monitoring the health of‬‭releases is crucial. For instance, the‬
‭Messenger Desktop Release Dashboard is used to monitor key metrics of new‬
‭releases, compare them with previous releases, and set guardrails for metrics to ensure‬
‭quality [‬‭source‬‭].‬

‭5.‬ ‭Automated and Manual Release Operations‬‭: Systems like‬‭the Release Manager‬
‭(RM) manage release operations with capabilities like rollout and rollback automation,‬
‭manual operations (e.g., hotfix, package pin), and instrumentation and auditing with a‬
‭release metadata database [‬‭source‬‭].‬

‭These components collectively ensure that release operations and monitoring are conducted‬
‭efficiently, with tools and processes in place to handle various scenarios that might arise during the‬
‭lifecycle of a software release.‬

‭When it comes to release operation and monitoring, you can use Release Beast, which is described‬
‭next.‬

‭Release Beast‬
‭Release Beast‬‭is a comprehensive tool used by Reality‬‭Labs (RL) to manage the release process‬
‭and information for pushing major products to production. It provides a full picture of the release‬
‭process, broken down by major product and release version. Release Beast includes several bots‬
‭that communicate information through posts, messages, and tasks, assisting release engineers,‬
‭release captains, TPMs, stakeholders, and product teams in various aspects of the release process.‬

‭Key functionalities of Release Beast include:‬

‭●‬ ‭Checklist for Release Engineers‬‭: It helps release‬‭engineers to check list their way‬
‭through all the steps needed for a release.‬

‭●‬ ‭Assistance for Release Captains/TPMs/Stakeholders‬‭:‬‭It aids in answering questions‬
‭and automating some of their work.‬

‭●‬ ‭Overview for Product Teams‬‭: Gives a full picture of‬‭the status of the release.‬

‭Release Beast also integrates various tools and features to support release operations, such as:‬

‭●‬ ‭Release Overview‬‭: Tracks the high-level status of‬‭the release state.‬
‭●‬ ‭Release Details‬‭: Tracks the full release playbook‬‭and identifies critical roles and‬

‭various stages to ship a release.‬

https://docs.google.com/document/d/1UuX3FscENLKjdRohQzcC5kQiO1-yG1VDW98ci2PtvzA
https://docs.google.com/document/d/1KzH1vARGNo5OGo0GCuEKtgxVtoINGpMcRPWk0qJeiZE
https://www.internalfb.com/intern/wiki/RL_DevInfra/Reality_Labs_Supported_Workflow/RL_AOSP_Workflow/
https://www.internalfb.com/intern/wiki/Messenger_Desktop/Release_Oncall/Monitoring_Releases/
https://www.internalfb.com/intern/wiki/APS_(Accelerated_Pytorch_Stack)/AI_Release_Infra_Oncall/Release_Manager_User_Guide/


‭●‬ ‭Release Notes‬‭: Automatically generates release notes based on top of roadmap tasks.‬
‭●‬ ‭Telemetry Signoff Automation‬‭: Validates product health‬‭after each gradual rollout‬

‭stage.‬
‭●‬ ‭Release Assistant Bot‬‭: Manages release-related notifications‬‭and updates.‬
‭●‬ ‭Shiproom Requests Tool‬‭: Provides a centralized platform‬‭that ties launch blockers to‬

‭pick requests.‬

‭For more detailed operations, Release Beast is used to sign off on different types of releases,‬
‭including Go releases, hotfixes, security patches, and enterprise releases. It is also involved in the‬
‭process of picking diffs into release branches, where it automates the creation of shiproom posts and‬
‭assists in managing the pick requests.‬

‭To use Release Beast, you can follow these steps:‬

‭1.‬ ‭Go to the Release Beast website:‬‭https://www.internalfb.com/intern/release_beast/‬
‭2.‬ ‭Select the product you want to view or manage from the list on the left-hand side of the‬

‭page.‬
‭3.‬ ‭Click on the "Releases" tab to view information about upcoming and past releases.‬
‭4.‬ ‭Click on the "Launch Blockers" tab to view information about any issues that are‬

‭blocking the release.‬
‭5.‬ ‭Click on the "Calendar" tab to view a calendar of upcoming releases and events.‬
‭6.‬ ‭Click on the "Details" tab to view detailed information about a specific release, including‬

‭release notes, rollout plans, and more.‬

‭By using Release Beast, teams at Meta can more easily track and manage their releases, identify‬
‭and resolve launch blockers, and communicate important information to stakeholders.‬

‭Overall, Release Beast is essential for streamlining and automating the release process within‬
‭Reality Labs, ensuring efficient and coordinated product releases.‬

‭For more specific details, you can visit the Release Beast Wiki page directly through this link:‬
‭Release Beast Wiki‬‭.‬

‭Release‬
‭When it comes to releasing at Meta, your primary tool is Firmware OTA, which is described next.‬

‭Firmware OTA‬
‭Firmware OTA (Over-The-Air)‬‭is a backend system used‬‭to manage and serve remote updates for‬
‭devices, supporting updates of both OS images and application-level packages like APKs and‬
‭custom language packs. This system allows product teams to push updates directly to devices‬
‭quickly and seamlessly. Key features of Firmware OTA include:‬

‭●‬ ‭Self-Service OTA Channels‬‭: Product teams can create‬‭and manage their own OTA‬
‭channels for different use cases such as dogfooding, external users, or testing.‬

https://www.internalfb.com/intern/release_beast/
https://www.internalfb.com/intern/wiki/Oculus/RelEng/Release_Beast/


‭●‬ ‭Version Management‬‭: Different upgrade path options can be defined to support‬
‭various requirements, such as incremental releases or mandatory updates between‬
‭specific versions.‬

‭●‬ ‭Security‬‭: Updates are served only if the client provides‬‭a properly authorized device‬
‭token. If the device token is not valid, no data is returned to the client.‬

‭●‬ ‭Client Event Reporting‬‭: The system is capable of collecting‬‭OTA update events from‬
‭the client for generating metrics or debugging issues seen during the update.‬

‭●‬ ‭WebUSB Tools‬‭: Provides tools for sending ADB commands‬‭to the device through the‬
‭browser without additional drivers or programs, including utilities for users who prefer‬
‭not to use ADB directly.‬

‭Users interact with the OTA system primarily through OTA channels that hold all their OTA releases.‬
‭They can create OTA channels, OTA releases within those channels, and manage the OTA channel‬
‭of devices they own or administer [‬‭source‬‭].‬

‭For more detailed management, OTA channels can be configured with options like testing,‬
‭dogfooding, or production, each with specific settings for channel optimization and auto-cleanup‬
‭times to manage the lifecycle of releases within the channel [‬‭source‬‭].‬

‭Overall, Firmware OTA is a comprehensive system designed to facilitate the efficient and secure‬
‭distribution of firmware and software updates to devices over the air.‬

‭To use Firmware OTA, you can follow these general steps:‬

‭1.‬ ‭Create an OTA Channel‬‭: Go to the‬‭Firmware OTA page‬‭and click on "Create Channel"‬
‭in the top right corner. Fill out the required information, such as the channel name,‬
‭description, and organization.‬

‭2.‬ ‭Create an OTA Release‬‭: Once you have created a channel,‬‭you can create a new‬
‭release by clicking on the "Create Release" button within the channel. You will need to‬
‭provide information about the release, such as the build number, base version, and‬
‭target version.‬

‭3.‬ ‭Upload the Firmware‬‭: After creating the release, you‬‭will need to upload the firmware‬
‭file(s) for the update. This can be done using the "Upload File" button within the release‬
‭details page.‬

‭4.‬ ‭Configure the Release‬‭: You can configure various settings‬‭for the release, such as the‬
‭rollout percentage, release notes, and testing status.‬

‭5.‬ ‭Assign Devices to the Channel‬‭: To enable devices to‬‭receive updates from your‬
‭channel, you will need to assign them to the channel. This can be done using the‬
‭"Device Admin" tool or through the device's settings menu (if supported).‬

‭6.‬ ‭Monitor and Manage the Release‬‭: Once the release is‬‭live, you can monitor its‬
‭progress and manage it through the Firmware OTA dashboard. You can view metrics‬
‭such as update success rates, failure rates, and more.‬

‭For more detailed instructions and specific use cases, refer to the‬‭Firmware OTA wiki‬‭and its‬
‭subpages.‬

https://www.internalfb.com/intern/wiki/RL/RL_Release_and_Reliability/firmware_ota/
https://www.internalfb.com/intern/wiki/RL/RL_Release_and_Reliability/firmware_ota/OTA_Channel_Management/
https://www.internalfb.com/firmware_ota
https://www.internalfb.com/intern/wiki/RL/RL_Release_and_Reliability/firmware_ota/

