
C H A P T E R  10
Developing 

Object-Oriented 

C# Programs

In this chapter you will:

Study object-oriented programming concepts �
Defi ne custom classes �
Declare class fi elds �
Work with class methods �

1423903242_ch10_REV2.indd   5251423903242_ch10_REV2.indd   525 6/3/09   5:33:44 PM6/3/09   5:33:44 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



The C# programs you have written so far have mostly been self-
contained. Th at is, most of the code—including variables, statements, 
and functions—exists within a script section. For example, you might 
create a Web page for an online retailer that uses C# to calculate the 
total for a sales order that includes state sales tax and shipping. However, 
suppose the retailer sells diff erent types of products on diff erent Web 
pages, with one page selling baseball uniforms, another page selling jelly 
beans, and so on. If you want to reuse the C# sales total code on multiple 
Web pages, you must copy all of the statements or re-create them from 
scratch for each Web page. Object-oriented programming takes a diff er-
ent approach. Essentially, object-oriented programming allows you to use 
and create self-contained sections of code—known as objects—that can 
be reused in your programs. In other words, object-oriented program-
ming allows you to reuse code without having to copy or re-create it.

Introduction to Object-Oriented 
Programming
As you learned in Chapter 2, object-oriented programming (OOP) 
refers to the creation of reusable software objects that can be easily 
incorporated into another program. An object is programming code 
and data that can be treated as an individual unit or component. 
Objects are often also called components. In object-oriented pro-
gramming, the code that makes up an object is organized into classes. 
Objects can range from simple controls, such as a button, to entire 
programs, such as a database application. In fact, some programs 
consist entirely of other objects. You’ll often encounter objects that 
have been designed to perform a specifi c task. For example, in a retail 
sales program, you could refer to all of the code that calculates the 
sales total as a single object. You could then reuse that object over 
and over again in the same program just by typing the object name.

Popular object-oriented programming languages include C++, Java, and 
Visual Basic. Using any of these or other object-oriented languages, pro-
grammers can create objects themselves or use objects created by other 
programmers or supplied by the manufacturer. For example, if you are 
creating an accounting program in Visual Basic, you can use an object 
named Payroll that was created in C++. Th e Payroll object might 
contain one method that calculates the amount of federal and state tax 
to deduct, another function that calculates the FICA amount to deduct, 
and so on. Properties of the Payroll object might include an employee’s 
number of tax withholding allowances, federal and state tax percentages, 
and the cost of insurance premiums. You do not need to know how the 
Payroll object was created in C++, nor do you need to re-create it in 
Visual Basic. You only need to know how to access the methods and 
properties of the Payroll object from the Visual Basic program.

526

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5261423903242_ch10_REV2.indd   526 6/3/09   5:33:45 PM6/3/09   5:33:45 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Understanding Encapsulation
Objects are encapsulated, which means that all code and required 
data are contained within the object itself. In most cases, an encapsu-
lated object consists of a single computer fi le that contains all code and 
required data. Encapsulation places code inside what programmers 
like to call a “black box.” When an object is encapsulated, you cannot 
see “inside” it—all internal workings are hidden. Th e code (methods 
and statements) and data (variables and constants) contained in an 
encapsulated object are accessed through an interface. The term 
interface refers to the methods and properties that are required for 
a source program to communicate with an object. For example, inter-
face elements required to access a Payroll object might be a method 
named calcNetPay(), which calculates an employee’s net pay, and 
properties containing the employee’s name and pay rate.
When you include encapsulated objects in your programs, users can 
see only the methods and properties of the object that you allow them 
to see. By removing the ability to see inside the black box, encapsula-
tion reduces the complexity of the code, allowing programmers who 
use the code to concentrate on the task of integrating the code into 
their programs. Encapsulation also prevents other programmers from 
accidentally introducing a bug into a program, or from possibly even 
stealing the code and claiming it as their own.
You can compare a programming object and its interface to a handheld 
calculator. Th e calculator represents an object, and you represent a pro-
gram that wants to use the object. You establish an interface with the 
calculator object by entering numbers (the data required by the object) 
and then pressing calculation keys (which represent the methods of 
the object). You do not need to know, nor can you see, the inner work-
ings of the calculator object. As a programmer, you are concerned only 
with an object’s methods and properties. To continue the analogy, you 
are only concerned with the result you expect the calculator object to 
return. Figure 10-1 illustrates the idea of the calculator interface.

Figure 10-1 Calculator interface

Program
(You)

Interface methods and properties
(calculation and number buttons)

Object
(Calculator)

527

Introduction to Object-Oriented Programming

1423903242_ch10_REV2.indd   5271423903242_ch10_REV2.indd   527 6/3/09   5:33:45 PM6/3/09   5:33:45 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Another example of an object and its interface is Microsoft Word. Word 
itself is actually an object made up of numerous other objects. Th e pro-
gram window (or user interface) is one object. Th e items you see in the 
interface, such as the menu and toolbars, are used to execute methods. 
For example, the Bold button on the toolbar executes a bold method. Th e 
text of your document is the data you provide to the program. Word is a 
helpful tool that you can use without knowing how the various methods 
work. You only need to know what each method does. To get full satis-
faction out of Word, you only need to provide the data (text) and execute 
the appropriate methods (such as the bold method), when necessary. 
In the same way, when using objects in your code, you only need to pro-
vide the necessary data (such as an employee’s gross pay) and execute 
the appropriate method (such as the calcNetPay() method).

Using Objects in C# Programs
Up to this point, all of the C# programs you have written have contained 
procedural statements that did not rely on objects. Th is does not mean 
that the skills you have learned so far are useless in constructing object-
oriented programs. However, object-oriented techniques will help you 
build more extensible code that is easier to reuse, modify, and enhance.
In object-oriented programming, the code, methods, attributes, and 
other information that make up an object are organized into classes. 
Essentially, a class is a template, or blueprint, that serves as the basis 
for new objects. When you use an object in your program, you actually 
create an instance of the class of the object. In other words, an instance 
is an object that has been created from a class. When you create an 
object from a class, you are said to be instantiating the object.
Later in this chapter, you will learn how to create, or instantiate, 
an object from custom classes that you write yourself. However, 
as a conceptual example, consider an object named BankAccount 
that contains methods and properties that you might use to record 
transactions associated with a checking or savings account. Th e 
BankAccount object is created from a BankAccount class. To use the 
BankAccount class, you create an instance of the class. A particular 
instance of an object inherits its methods and properties from a 
class—that is, it takes on the characteristics of the class on which it is 
based. Th e BankAccount object, for instance, would inherit all of the 
methods and properties of the BankAccount class. To give another 
example, when you create a new word-processing document, which 
is a type of object, it usually inherits the properties of a template 
on which it is based. Th e template is a type of class. Th e document 
inherits characteristics of the template, which might include font size, 
line spacing, and boilerplate text. In the same manner, programs that 
include instances of objects inherit the object’s functionality.

528

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5281423903242_ch10_REV2.indd   528 6/3/09   5:33:45 PM6/3/09   5:33:45 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



You use the following constructor syntax to instantiate an object 
from a class:
ClassName objectName = new ClassName();

Th e identifi ers you use for an object name must follow the same 
rules as identifi ers for variables: Th ey must begin with an upper-
case or lowercase ASCII letter, can include numbers (but not as the 
fi rst character), cannot include spaces, cannot be keywords, and are 
case sensitive. Th e following statement instantiates an object named 
checking from the BankAccount class:
BankAccount checking = new BankAccount();

Class constructors are primarily used to initialize properties when an 
object is fi rst instantiated. For this reason, you can pass arguments 
to many constructor methods. For example, the BankAccount class 
might require you to pass three arguments: the checking account 
number, a check number, and a check amount, as follows:
BankAccount checking = new BankAccount(01234587, 1021, 97.58);

After you instantiate an object, you use a period to access the methods and 
properties contained in the object. With methods, you must also include a 
set of parentheses at the end of the method name, just as you would with 
functions. Like functions, methods can also accept arguments. Th e fol-
lowing statements demonstrate how to call two methods, getBalance() 
and getCheckAmount(), from the checking object. Th e getBalance() 
method does not require any arguments, whereas the getCheckAmount() 
method requires an argument containing the check number.
double balance = checking.getBalance();

checkNumber = 1022;

double amount = checking.getCheckAmount(checkNumber);

To access property values in an object, you do not include parenthe-
ses at the end of the property name, as you do with functions and 
methods. Th e following statements update and display the value in 
a property named balance in the checking object:
checkAmount = 124.75;

checking.balance = checking.balance + checkAmount;

Response.Write("<p>Your updated checking account balance is "

    + String.Format("{0:C}", checking.balance) + "</p>");

In this chapter, you will work on a Web site for an online bakery 
named Central Valley Bakery. Th e store includes four shopping cate-
gories: cakes, cookies, pies, and breads. Th e purpose of the Web site is 
to demonstrate code reuse with classes. As you progress through this 
chapter, you will develop a class named ShoppingCart that handles the 
functionality of building and updating a shopping cart as a user selects 
items to purchase. Shopping cart classes are very popular with Web 
developers because of the many Web sites that off er online shopping. 

529

Introduction to Object-Oriented Programming

1423903242_ch10_REV2.indd   5291423903242_ch10_REV2.indd   529 6/3/09   5:33:45 PM6/3/09   5:33:45 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Rather than re-creating shopping cart functionality for each online Web 
site you develop, you can much more easily develop the Web site by 
reusing an existing shopping cart class. As you create the ShoppingCart 
class, notice that its functionality has nothing to do with the products 
sold by Central Valley Bakery. Instead the code is generic enough that 
it can be used with any Web site that sells products, provided the 
pages in the site and the associated database conform to the require-
ments of the class. Your Chapter folder for Chapter 10 contains a 
folder named Bakery where you can fi nd the fi les that you will need for 
this project. Th e Web site and a database named Bakery have already 
been created; you only need to focus on the class development tech-
niques. Figure 10-2 shows the Central Valley Bakery home page.

Figure 10-2 Central Valley Bakery home page

First, you will add to each of the product pages a Literal control that 
displays messages from the ShoppingCart class and a GridView control 
that displays product information. Th e ShoppingCart class requires 
that product information is stored in tables containing four fields: 
productID, name, description, and price. Th e productID fi eld is the 
primary key and consists of a unique text fi eld. For example, the primary 

530

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5301423903242_ch10_REV2.indd   530 6/3/09   5:33:46 PM6/3/09   5:33:46 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



key for the fi rst cake product is CAKE001. To keep things simple, the 
ShoppingCart class does not store customer or payment information.
You’ll start by adding the Literal control to the cakes.aspx page.
To add controls to the cakes.aspx page:

1. Start Visual Web Developer, select the File menu and then 
select Open Web Site. Th e Open Web Site dialog box opens. 
Locate and select the Bakery folder, located in your Chapter 
folder for Chapter 10, and then click Open. Th e Bakery Web 
site opens in the Visual Studio IDE.

2. Open the cakes.aspx fi le in Design view.
3. Replace [Add code here] with a Literal control and change its 

ID to ProductPage.
4. Expand the App_Data folder in Solution Explorer and then 

double-click the Bakery.mdf fi le to open the database in 
Database Explorer.

5. Add a GridView control with an ID of ProductGrid immedi-
ately after the Literal control. After you add the control, select 
Choose Data Source from the GridView Tasks menu, and 
then select <New data source ...>. Th e Choose a Data Source 
Type page of the Data Source Confi guration Wizard opens.

6. On the Choose a Data Source Type page, select Database, 
and enter an ID of BakeryDataSource. Click OK. Th e 
Choose Your Data Connection page opens.

7. On the Choose Your Data Connection page, click the data con-
nection box and then select Bakery.mdf. Click Next. Th e Save the 
Connection String to the Application Confi guration File opens.

8. On the Save the Connection String to the Application Con-
fi guration File page, change the name of the connection string 
to BakeryConnectionString, and then click Next. Th e Con-
fi gure the Select Statement page opens.

9. On the Confi gure the Select Statement page, select Cakes from 
the Name box and * from the Columns list, and then click Next. 
Th e Test Query page opens.

10. On the Test Query page, click the Test Query button. You should 
see a list of cake and their product IDs, descriptions, and prices. 
Click Finish to close the Data Source Confi guration Wizard.

Next, you will format the GridView control on the cakes.aspx page.
To format the GridView control on the cakes.aspx page:

1. With the GridView control selected in Design view, expand 
the Font property in the Properties window and select Smaller 
in the Size box.

531

Introduction to Object-Oriented Programming

1423903242_ch10_REV2.indd   5311423903242_ch10_REV2.indd   531 6/3/09   5:33:46 PM6/3/09   5:33:46 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



2. If necessary, change the value assigned to the DataKeyNames 
property to productID.

3. Select the GridView control in Design view and then click 
the arrow to the right of the control to display the GridView 
Tasks menu.

4. Select the Auto Format command from the GridView Tasks 
menu. Th e AutoFormat dialog box displays. Select the Brown 
Sugar scheme and then click OK.

5. From the GridView Tasks menu, select Enable Selection and 
then select Edit Columns. Th e Fields dialog box opens.

6. In the Fields dialog box, click the Select fi eld in the Selected 
fi elds list, and then click the down arrow until the Select fi eld 
is the last control in the list.

7. In the CommandField properties section, change the Button-
Type property to Button and the SelectImageUrl property to 
~/images/ordernow.gif. Th e ordernow.gif fi le is located in 
the images folder within the project folder.

8. Click the productID fi eld in the Selected fi elds list and click 
the X button to remove it from the list.

9. Click the name fi eld in the Selected fi elds list and change its 
HeaderText property to Name.

10. Click the description fi eld in the Selected fi elds list and 
change its HeaderText property to Description.

11. Click the price fi eld in the Selected fi elds list and change its 
HeaderText property to Price. Also, change its DataFormatString 
property to {0:c}, which displays price fi elds as currency.

12. Click OK to close the Fields dialog box.

Next, you will copy the controls from the cakes.aspx fi le to the breads.
aspx, cookies.aspx, and pies.aspx fi les.

To copy the GridView control from the cakes.aspx fi le to the breads.
aspx, cookies.aspx, and pies.aspx fi les:

1. Click the Source button at the bottom of the IDE window to 
view the cakes.aspx page in the Code Editor window.

2. Locate and copy the <asp:Literal>, <asp:GridView>, and 
<asp:SqlDataSource> controls.

3. Open the breads.aspx fi le in the Code Editor window.

4. Locate the text [Add code here] and replace it with the con-
trols you copied from the cakes.aspx fi le. Th en, locate the 

532

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5321423903242_ch10_REV2.indd   532 6/3/09   5:33:46 PM6/3/09   5:33:46 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



ConnectionString property in the <asp:SqlDataSource> 
control and replace [Cakes] with [Breads].

5. Open the cookies.aspx fi le in the Code Editor window.
6. Locate the text [Add code here] and replace it with the con-

trols you copied from the cakes.aspx fi le. Th en, locate the 
ConnectionString property in the <asp:SqlDataSource> 
control and replace [Cakes] with [Cookies].

7. Open the pies.aspx fi le in the Code Editor window.
8. Locate the text [Add code here] and replace it with the con-

trols you copied from the cakes.aspx fi le. Th en, locate the 
ConnectionString property in the <asp:SqlDataSource> 
control and replace [Cakes] with [Pies].

9. Start the Web site and test the product pages. Figure 10-3 
shows the Cakes product page. Be sure not to click any of the 
Order Now buttons because you still need to add code to give 
them their functionality.

10. Close your Web browser window.

Figure 10-3 Cakes product page after adding Web server controls

533

Introduction to Object-Oriented Programming

1423903242_ch10_REV2.indd   5331423903242_ch10_REV2.indd   533 6/3/09   5:33:46 PM6/3/09   5:33:46 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Short Quiz 1

1. Why do programmers refer to encapsulation as a black 
box?

2. What is instantiation as it relates to classes, objects, and 
object-oriented programming?

3. Explain how to instantiate an object from a class.

4. What are class constructor statements primarily used for?

5. How do you access an object’s methods and properties?

Defi ning Custom C# Classes
Classes were defi ned earlier in this chapter as the code, methods, 
attributes, and other information that make up an object. In C#, 
classes more specifi cally refer to data structures that contain fi elds 
along with methods for manipulating the fi elds. Th e term data 
structure refers to a system for organizing data, whereas the term 
fi eld refers to variables that are defi ned within a class. Some of the 
data structures you have already used include arrays and lists. Th e 
methods and fi elds defi ned in a class are called class members or 
simply members. Class variables are referred to as data members 
or member variables, whereas methods are referred to as function 
members or member functions. To use the fi elds and methods in 
a class, you instantiate an object from that class. After you instanti-
ate a class object, class data members (or fi elds) are referred to as 
properties of the object and class function members (or methods) are 
referred to as methods of the object.

Classes themselves are also referred to as user-defi ned data types or 
programmer-defi ned data types. Th ese terms can be somewhat mis-
leading, however, because they do not accurately refl ect the fact that 
classes can contain function members. In addition, classes usually 
contain multiple fi elds of diff erent data types, so calling a class a data 
type becomes even more confusing. One reason classes are referred 
to as user-defi ned data types or programmer-defi ned data types is 
that you can work with a class as a single unit, or object, in the same 

534

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5341423903242_ch10_REV2.indd   534 6/3/09   5:33:47 PM6/3/09   5:33:47 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



way you work with a variable. In fact, the terms variable and object 
are often used interchangeably in object-oriented programming. Th e 
term object-oriented programming comes from the fact that you can 
bundle variables and functions together and use the result as a single 
unit (a variable or object).

What this means will become clearer to you as you progress through 
this chapter. For now, think of the handheld calculator example. A 
calculator could be considered an object of a Calculation class. You 
access all of the Calculation methods (such as addition and sub-
traction) and its fi elds (operands that represent the numbers you are 
calculating) through your calculator object. You never actually work 
with the Calculation class yourself, only with an object of the class 
(your calculator).

But why do you need to work with a collection of related fields 
and methods as a single object? Why not simply call each indi-
vidual field and method as necessary, without bothering with all 
this class business? The truth is: You are not required to work with 
classes; you can create much of the same functionality without 
classes as you can by using classes. In fact, many of the scripts that 
you create—and that you find in use today—do not require object-
oriented techniques to be effective. Classes help make complex 
programs easier to manage, however, by logically grouping related 
methods and fields and by allowing you to refer to that grouping 
as a single object. Another reason for using classes is to hide infor-
mation that users of a class do not need to access or know about. 
Information hiding, which is explained in more detail later in this 
chapter, helps minimize the amount of information that needs to 
pass in and out of an object, which helps increase program speed 
and efficiency. Classes also make it much easier to reuse code or 
distribute your code to others for use in their programs. Without 
a way to package fields and methods in classes and include those 
classes in a new program, you would need to copy and paste each 
segment of code you wanted to reuse (methods, fields, and so on) 
into any new program.

Working with Access Modifi ers
The first thing you need to understand about classes is access 
modifi ers, which control a client’s access to classes, individual fi elds, 
and methods and their members. Table 10-1 lists the access modifi ers 
you can use with C# classes:

 You will learn how 
to create your 
own classes and 
include them 
in your scripts 
shortly.

An additional 
reason to use 
classes is that 
instances of 
objects inherit 

their characteristics, 
such as class members, 
from the class upon 
which they are based. 
This inheritance allows 
you to build new classes 
based on existing classes 
without having to rewrite 
the code contained in the 
existing classes.

535

Defi ning Custom C# Classes

1423903242_ch10_REV2.indd   5351423903242_ch10_REV2.indd   535 6/3/09   5:33:47 PM6/3/09   5:33:47 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Next, you will learn how to use access modifi ers with classes you defi ne.

Creating a Class Defi nition
A class defi nition contains the class members that make up the class. 
To create a class defi nition in C#, you use the class keyword and pre-
cede it with an access modifi er, as follows:
accessModifi er class ClassName
{

    // Class member defi nitions

}

Th e ClassName portion of the class defi nition is the name of the new 
class. You can use any name you want for a structure, as long as you 
follow the same naming conventions that you use when declaring 
other identifi ers, such as variables and functions. Also, keep in mind 
that class names usually begin with an uppercase letter to distinguish 
them from other identifi ers. Within the class’s curly braces, you 
declare the fi elds and methods that make up the class.
You have already seen examples of class defi nitions with the event 
handlers that you have worked with since Chapter 4. For example, 
the following code shows the default code-behind page for an ASP.NET 
Web site. As you can see, the _Default class uses a public access 
modifi er, whereas the Page_Load() event handler method uses a pro-
tected access modifi er.
public partial class _Default : System.Web.UI.Page 

{

    protected void Page_Load(object sender, EventArgs e)

    {

         // Class member defi nitions

    }

}

Access modifi er Descriptions

public Allows anyone to access a class or class member.

private Prevents clients from accessing a class or class member and is one of 
the key elements in information hiding. Private access does not restrict 
a class’s internal access to its own members; a class method can modify 
any private class member.

protected Allows only the class or a derived class to access the class or class member.

internal Allows a class or class member to be accessed from anywhere in the 
application, but not from external applications.

protected internal Allows only code in the same structure, or from a derived class, to access 
the class or class member.

Table 10-1 C# access modifi ers

If you do not 
specify an 
access modifi er, 
C# automati-
cally assigns the 

internal access modi-
fi er to the class or class 
member.

Derived classes 
are used with a 
more advanced 
object-oriented 
programming 

technique called 
inheritance.

536

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5361423903242_ch10_REV2.indd   536 6/3/09   5:33:48 PM6/3/09   5:33:48 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Th e partial keyword in the preceding defi nition indicates that the 
class can be split across multiple fi les, which allows multiple pro-
grammers to work on the same code simultaneously. Th e colon and 
System.Web.UI.Page at the end of the class defi nition header indi-
cates that the _Default class derives from the System.Web.UI.Page 
class, which means that the _Default class inherits the members of 
the System.Web.UI.Page class.
Th e following code demonstrates how to declare a public class named 
BankAccount that inherits the members of the System.Web.UI.Page 
class. Th e statements following the class defi nition instantiate an 
object of the class named checking and print the object’s type 
(BankAccount):
public class BankAccount : System.Web.UI.Page

{

    // Class member defi nitions

}

BankAccount checking = new BankAccount();

Response.Write(checking.GetType());

Next, you will start creating the ShoppingCart class.
To start creating the ShoppingCart class:

1. Select the Website menu and then select Add New Item. 
Th e Add New Item dialog box opens.

2. In the Add New Item dialog box, select Class from the 
Templates list and then change the name of the class fi le to 
ShoppingCart.cs. Click Add and then click Yes when prompted 
to save the fi le in the App_Code folder. Th e ShoppingCart 
class fi le opens in the Code Editor window and contains the 
following statements:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

/// <summary>

/// Summary description for ShoppingCart

/// </summary>

public class ShoppingCart

{

     public ShoppingCart()

     {

          //

          // TODO: Add constructor logic here

          //

     }

}

3. Replace the “Summary description for ShoppingCart” comment 
with Generic shopping cart class.

Class names 
in a class defi -
nition are not 
followed by 
parentheses, 

as are function names in 
a function defi nition. 537

Defi ning Custom C# Classes

1423903242_ch10_REV2.indd   5371423903242_ch10_REV2.indd   537 6/3/09   5:33:49 PM6/3/09   5:33:49 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



4. Open the shopping_cart.aspx fi le in the Code Editor window. 
Locate the text [Add code here] and replace it with a Literal 
control. Change the ID of the Literal control to CartBody.

5. Open the shopping_cart.aspx.cs fi le in the Code Editor win-
dow. Add the following statements to the Page_Load() event 
handler to instantiate a ShoppingCart object. Th e statements 
write success or failure messages to a Literal control with an 
ID of CartBody in the shopping_cart.aspx fi le.
try
{
    ShoppingCart cart = new ShoppingCart();
    CartBody.Text = "<p>Successfully instantiated an 
        object of the ShoppingCart class.</p>";
}
catch
{
    CartBody.Text = "<p>The ShoppingCart class 
      is not available!</p>";
}

6. Start the Web site and open the Shopping Cart page. You should 
see the message shown in Figure 10-4.

7. Close your Web browser window.

Figure 10-4 Shopping Cart page after instantiating a ShoppingCart object

538

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5381423903242_ch10_REV2.indd   538 6/3/09   5:33:50 PM6/3/09   5:33:50 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Collecting Garbage
If you have worked with other object-oriented programming languages, 
you might be familiar with the term garbage collection, which refers 
to cleaning up, or reclaiming, memory that is reserved by a program. 
When you declare a variable or instantiate a new object, you are actu-
ally reserving computer memory for the variable or object. With some 
programming languages, you must write code that deletes a variable or 
object after you are through with it to free the memory for use by other 
parts of your program, or by other programs running on your computer. 
With C#, you do not need to worry about reclaiming memory that is 
reserved for your variables or objects because C# knows when your 
program no longer needs a variable or object and automatically cleans 
up the memory for you. Th e one exception has to do with open database 
connections. As you learned in Chapter 8, because database connec-
tions can take up a lot of memory, you should explicitly close a data-
base connection when you are through with it by calling the Close() 
method. Th is ensures that the connection doesn’t keep taking up space 
in your computer’s memory while the script fi nishes processing.

Short Quiz 2

1. What is a data structure and what are some of the types of 
data structures you have worked with in this book?

2. Why are classes referred to as user-defi ned data types or 
programmer-defi ned data types, and why are these terms 
somewhat misleading?

3. What are some of the benefi ts to working with classes 
and objects?

4. Explain the level of protection provided by each of the C# 
access modifi ers.

5. How do you specify in a class defi nition a class from which 
another class should inherit its class members?

Declaring Class Fields
In this section, you will learn how to declare fields within a class. 
Declaring and initializing fi elds is a little more involved than declaring 
and instantiating standard C# variables. Before you can declare fi elds, 
you must fi rst understand the principle of information hiding, which 
you will study fi rst.

539

Declaring Class Fields

1423903242_ch10_REV2.indd   5391423903242_ch10_REV2.indd   539 6/3/09   5:33:50 PM6/3/09   5:33:50 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



What Is Information Hiding?
One of the fundamental principles in object-oriented programming 
is the concept of information hiding. Information hiding gives an 
encapsulated object its black box capabilities so that users of a class 
can see only the members of the class that you allow them to see. 
Essentially, the principle of information hiding states that any class 
members that other programs, sometimes called clients, do not need 
to access or know about, should be hidden. Information hiding helps 
minimize the amount of information that needs to pass in and out of 
an object; this in turn helps increase program speed and effi  ciency. 
Information hiding also reduces the complexity of the code that cli-
ents see, allowing them to concentrate on the task of integrating an 
object into their programs. For example, if a client wants to add to her 
accounting program a Payroll object, she does not need to know the 
underlying details of the Payroll object’s methods, nor does she need 
to modify any local fi elds that are used by those methods. Th e client 
only needs to know which of the object’s methods to call and what 
data (if any) needs to be passed to those methods.
Now consider information hiding on a larger scale. Professionally 
developed software packages are distributed in an encapsulated 
format, which means that the casual user—or even an advanced 
programmer—cannot see the underlying details of how the software 
is developed. Imagine what would happen if Microsoft distributed 
Excel without hiding the underlying programming details. Most users 
of the program would be bewildered if they accidentally opened the 
source fi les. Th ere is no need for Microsoft to allow users to see the 
underlying details of Excel because users do not need to understand 
how the underlying code performs the various types of spreadsheet 
calculations. Microsoft also has a critical interest in protecting pro-
prietary information, as do you. Th e design and sale of software 
components is big business. You certainly do not want to spend a 
signifi cant amount of time designing an outstanding software com-
ponent, only to have an unscrupulous programmer steal the code and 
claim it as his own.
Th is same principle of information hiding needs to be applied in 
object-oriented programming. Th ere are few reasons why clients 
of your classes need to know the underlying details of your code. Of 
course, you cannot hide all of the underlying code, or other program-
mers will never be able to integrate your class with their applications. 
But you need to hide most of it.
Information hiding on any scale also prevents other programmers 
from accidentally introducing a bug into a program by modifying a 
class’s internal workings. Programmers are curious creatures and will 
often attempt to “improve” your code, no matter how well it is written. 

540

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5401423903242_ch10_REV2.indd   540 6/3/09   5:33:50 PM6/3/09   5:33:50 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Before you distribute your classes to other programmers, your classes 
should be thoroughly tested and bug-free. With tested and bug-free 
classes, other programmers can focus on the more important task 
of integrating your code into their programs using the fi elds and 
methods you designate.

Th e opposite of software that adheres to the principles of informa-
tion hiding is open source software, for which the source code can 
be freely used and modifi ed. Instead of intentionally hiding the inter-
nal workings of a software application for proprietary purposes, 
open source software encourages programmers to use, change, and 
improve the software. Open source software can be freely distributed 
or sold, provided it adheres to the software’s copyright license.

To enable information hiding in your classes, you must designate 
access modifi ers for each of your class members, similar to the way 
you must designate an access modifi er for a class defi nition.

Using Access Modifi ers with Fields
You declare a fi eld in the same way that you declare a standard vari-
able, except that you must include an access modifi er at the beginning 
of a fi eld declaration statement. For example, the following statement 
declares a public fi eld named balance in the BankAccount class and 
initializes it with a value of 0:
public class BankAccount : System.Web.UI.Page

{

    public double balance = 0;
}

As with standard C# variables, it is considered good programming 
practice to assign an initial value to a fi eld when you fi rst declare it. 
Th e best way to initialize a fi eld is with a constructor method (dis-
cussed later in this chapter), although you can also assign values to 
fi elds when you fi rst declare them.

Recall that to access a fi eld as an object property, you append the 
property name to the object with a period. Th e following statements 
assign a new value to the balance fi eld and then print its value:
BankAccount checking = new BankAccount();

checking.balance = 743.26;

Response.Write("<p>Your updated checking account balance is "

    + String.Format("{0:C}", checking.balance) + "</p>");

Next, you will declare four data members, dbConnection, sqlString, 
tableName, and orders[], in the ShoppingCart class. Th e dbConnection, 
sqlString, and tableName fields store the database connection 
details. The orders[] array is an array list that keeps track of the 

It is common 
practice to list 
public class 
members fi rst to 
clearly identify 

the parts of the class 
that can be accessed 
by clients.

Refer to Appen-
dix A for infor-
mation on how 
to use array 
lists.

541

Declaring Class Fields

1423903242_ch10_REV2.indd   5411423903242_ch10_REV2.indd   541 6/3/09   5:33:51 PM6/3/09   5:33:51 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



products in a customer’s shopping cart. Th e array will consist of three 
elements, each of which contains another array list. Th e fi rst dimen-
sion stores product IDs, the second dimension stores the quantity of 
each product purchased, and the third dimension stores the table in 
the Bakery database that contains the product information. To adhere 
to the principles of information hiding, you must declare all of the 
data members as private. Later in this chapter, you will write member 
functions that access and manipulate the values in each array.

To declare four data members in the ShoppingCart class:

1. Return to the ShoppingCart.cs fi le in the Code Editor 
window.

2. Add the following using directives to the end of the using 
directives list.
using System.Collections;
using System.Data.SqlClient;

3. Add the following declaration statements to the class. Be sure 
to replace the value assigned to the Data Source property with 
the name of the SQL Server instance to which you want to 
connect. Note that you must include the entire path to the 
Bakery.mdf fi le.
public class ShoppingCart

{

    private SqlConnection dbConnection 
       = new SqlConnection("Data Source=
       .\\SQLEXPRESS;AttachDbFilename
       ='path\\Bakery.mdf'; Integrated Security=True;
        User Instance=True");
    private ArrayList productID = new ArrayList();
    private ArrayList productQuantity = new ArrayList();
    private ArrayList productTable = new ArrayList();
    public ShoppingCart()

    {

        //

        // TODO: Add constructor logic here

        //

    }

}

Serializing Objects
In Chapter 9, you learned about C#’s various state preservation tech-
niques, including how to use sessions. In addition to keeping track 
of current Web site visitors, session variables can store information 
that can be shared among multiple scripts that are called as part of 
the same session. But how do you share objects within the same ses-
sion or across multiple sessions and applications? You could assign 

542

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5421423903242_ch10_REV2.indd   542 6/3/09   5:33:51 PM6/3/09   5:33:51 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



the value of an object’s fi elds to session variables, but you would 
need to instantiate a new object and reassign the session variable 
values to the fi elds each time you execute a program. However, this 
approach would be diffi  cult if you have an object with dozens of 
fi elds. A better choice is to serialize the object.

Serialization refers to the process of converting an object’s fi elds into 
a string that you can store for reuse. Th e .NET Framework supports 
two types of serialization technologies: binary serialization and XML 
serialization. Binary serialization converts object properties to a 
binary format, whereas XML serialization converts object proper-
ties to XML. Binary serialization is more effi  cient in terms of speed 
and memory usage, and it converts all of an object’s fi elds to binary 
format while maintaining their data types. XML serialization con-
verts only an object’s public fi elds and properties to XML and does 
not maintain their data types. Because only the .NET Framework can 
read binary serialized objects created with C#, you would use XML 
serialization if you need to share the serialized data with another 
application. Th is chapter discusses binary serialization.

Before you can serialize a class object, you must mark the class as 
serializable by adding the Serializable attribute immediately above 
the class defi nition, surrounded by brackets ([]), as follows:
[Serializable]

public class BankAccount : System.Web.UI.Page

{

    // Class member defi nitions

}

Binary serialized objects are most commonly stored in binary fi les 
on a local computer. For this reason, you need to understand how to 
create a fi le stream, which is used for accessing a resource, such as a 
fi le, that you can read from and write to. An input stream reads data 
from a resource (such as a fi le), whereas an output stream writes 
data to a resource (again, such as a fi le). You have already used an 
output stream frequently with Response.Write() statements, which 
send data to an output stream (the Web browser window). Using a 
fi le stream involves the following steps:

1. Create an object of the FileStream class, passing to the class 
constructor the name and path of the fi le and a parameter 
that specifi es what to do with the fi le. To create a fi le, you pass 
FileMode.Create as the second parameter of the class con-
structor. To open a fi le, you pass FileMode.Open as the second 
parameter of the class constructor.

2. Write data to or read data from the fi le stream.

3. Close the fi le stream with the Close() method.

543

Declaring Class Fields

1423903242_ch10_REV2.indd   5431423903242_ch10_REV2.indd   543 6/3/09   5:33:51 PM6/3/09   5:33:51 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Th e following statements demonstrate how to create, work with, and 
then close a FileStream object named accountFile. Th e class con-
structor creates a new fi le named accountInfo.dat in a folder named 
accountData on the C drive.
FileStream accountFile =

   new FileStream(

   @"C:\\accountData\\accountInfo.dat",

   FileMode.Create);

// Statements that write data to or read data from 

   the fi le stream

accountFile.Close();

To serialize an object, you must first create an object of the 
BinaryFormatter class, which serializes and deserializes objects 
in binary format. Th e following statements demonstrate how to 
create the checking object and a BinaryFormatter object named 
savedAccount:
BankAccount checking = new BankAccount();

BinaryFormatter savedAccount = new BinaryFormatter();

Once you have created an object of the class you want to serialize 
along with a FileStream object and a BinaryFormatter object, you 
call the Serialize() method of the BinaryFormatter object, pass-
ing to it the FileStream object and then the class object you want to 
serialize. Th e following statements show a complete example of how 
to serialize a BankAccount object and save its data to a fi le named 
accountInfo.dat:
BankAccount checking = new BankAccount();

// Statements that modify the fi elds in the BankAccount object

BinaryFormatter savedAccount = new BinaryFormatter();

FileStream accountFile =

   new FileStream(

   @"C:\\accountData\\accountInfo.dat",

   FileMode.Create);

savedAccount.Serialize(accountFile, checking);

accountFile.Close();

To convert serialized data back into an object, you must fi rst open 
a fi le stream, passing to it a value of FileMode.Open as the second 
parameter of the FileStream class constructor. Th e remainder of 
the steps are the same as the preceding serialization steps, except 
that you call the Deserialize() method instead of the Serialize() 
method of the BinaryFormatter object. Th e following statements 
demonstrate how to serialize a binary fi le and deserialize its data back 
into a BankAccount object. Notice that the deserialization statement 
instantiates an object of the BankAccount class and then casts the 
result returned from the Deserialize() method into a BankAccount
class object.

You must 
include the 
System.IO 
namespace 
before you 

can use the FileStream 
class.

This section 
only covers 
the most basic 
methods for 
working with 

the FileStream class. 
For more information, 
refer to the “FileStream 
Class” page on MSDN at 
http://msdn.microsoft.
com/en-us/library/system.
io.fi lestream.aspx.

You must include 
the System.
Runtime.

Serialization.

Formatters.

Binary namespace 
before you can use the 
BinaryFormatter class.

544

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5441423903242_ch10_REV2.indd   544 6/3/09   5:33:51 PM6/3/09   5:33:51 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



BinaryFormatter savedAccount = new BinaryFormatter();

FileStream accountFile =

    new FileStream(@"C:\\accountData\\accountInfo.dat",

    FileMode.Open);

BankAccount checking =

    (BankAccount)savedAccount.Deserialize(accountFile);

accountFile.Close();

Recall that binary serialization converts all of an object’s fi elds to 
binary format. However, you don’t necessarily have to serialize each 
and every fi eld in a class, particularly for large objects that contain 
numerous fi elds. For fi elds that you do not need to serialize, add 
the NonSerialized attribute before the declaration statement, sur-
rounded by brackets ([]). Th e following statement demonstrates how 
to prevent a fi eld named interestRate from being serialized:
[NonSerialized]

public double interestRate;

When working with a shopping cart, you do not normally need to 
serialize and store order information in a fi le. Instead, you just use 
session state to maintain the shopping cart for the duration of the 
current session. Th e following statement demonstrates how to assign 
the checking object to a session variable named myAccount:
Session["myAccount"] = checking;

To restore a serialized object from a session variable, you must cast 
the session variable to the BankAccount class, and then assign the ses-
sion variable to a BankAccount object, as follows:
curAccount = (BankAccount)Session["myAccount"];

Event handlers that are called when a user clicks a product’s Order 
Now button will handle the creation and storage of ShoppingCart 
objects. When a user clicks an Order Now button, the button’s event 
handler will check if a ShoppingCart object exists in a session vari-
able named savedCart. If the object does exist, the event handler 
calls a method that adds the selected product to the ShoppingCart 
object. If the object does not exist, the event handler creates it before 
attempting to add the selected product. Th e Shopping Cart page will 
use the Page_Load() event handler to check if the savedCart ses-
sion variable exists. If so, the selected products are printed to a table. 
If not, a message prints to a Literal control named CartBody that 
informs the user that the shopping cart is empty.
Next, you will add code to the Shopping Cart page’s Page_Load() 
event handler that checks if the savedCart session variable exists.
To add code to the Shopping Cart page’s Page_Load() event handler 
that checks if the savedCart session variable exists:

1. Return to the shopping_cart.aspx.cs fi le in the Code Editor 
window.

545

Declaring Class Fields

1423903242_ch10_REV2.indd   5451423903242_ch10_REV2.indd   545 6/3/09   5:33:52 PM6/3/09   5:33:52 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



2. Add the following statement to the beginning of the Page_Load() 
event handler to instantiate a ShoppingCart object:
ShoppingCart curCart;

3. Replace the try...catch block with the following if statement 
that checks if the savedCart session variable exists. Later in the 
chapter, you will learn how to create methods that access the 
fi elds stored in the ShoppingCart object.
if (Session["savedCart"] != null)
{
    curCart = 
      (ShoppingCart)Session["savedCart"];
}

4. Add the following else statement to the end of the Page_Load() 
event handler.
else
{
    CartBody.Text = "<p>Your shopping cart is empty.</p>";
}

5. Start the Web site and open the Shopping Cart page. You should 
see the message indicating that the shopping cart is empty.

6. Close your Web browser window.

Short Quiz 3

1. Why should you hide any class members that other program-
mers do not need to access or know about?

2. How do the principles of information hiding compare with 
open source software?

3. What are the two ways in which you can assign an initial 
value to a fi eld?

4. What are the diff erences between binary and XML seri-
alization? When would you use each type of serialization 
method?

5. What class do you use to serialize and deserialize objects 
in binary format, and what class do you use to create a fi le 
stream object? How do these two classes work together in 
the serialization/deserialization processes?

546

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5461423903242_ch10_REV2.indd   546 6/3/09   5:33:53 PM6/3/09   5:33:53 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Working with Class Methods
Because methods perform most of the work in a class, you now learn 
about the various techniques associated with them. Methods are 
usually declared as public or private, but they can also be declared 
with any of the other types of access modifi ers. Public methods can 
be called by anyone, whereas private methods can be called only by 
other methods in the same class.

You might wonder about the usefulness of a private method, which 
cannot be accessed by a client of the program. Suppose your program 
needs some sort of utility method that clients have no need to access. 
For example, the BankAccount class might need to calculate interest by 
calling a method named calcInterest(). Because the calcInterest() 
method can be called automatically from within the BankAccount 
class, the client does not need to access the calcInterest() method 
directly. By making the calcInterest() method private, you protect 
your program and add another level of information hiding. A general 
rule of thumb is to create as public any methods that clients need to 
access and to create as private any methods that clients do not need to 
access. Th e protected and protected internal access modifiers are 
more fl exible than the private access modifi er because they also allow 
derived classes to access a method. Th e internal access modifi er allows 
a method to be accessed from anywhere in the application, but not 
from external applications.

You declare a method within the body of a class defi nition and include 
an access modifi er before the method’s return type. Other than includ-
ing an access modifi er, there is little diff erence between standard func-
tions and methods. You are not required to defi ne a method with an 
access modifi er. If you do exclude the access modifi er, the method’s 
default access is internal. However, it’s good programming practice 
to include an access modifi er with any method defi nition to clearly 
identify the scope of the method. Th e following statement demonstrates 
how to declare a method named withdrawal() in the BankAccount 
class:
public class BankAccount : System.Web.UI.Page

{

      public double balance = 958.20;

      public void withdrawal(double amount) {

            balance -= amount;

      }

}

BankAccount checking = new BankAccount();

checking.withdrawal(200);

Response.Write("<p>Your updated checking account balance is "

    + String.Format("{0:C}", checking.balance) + "</p>");

547

Working with Class Methods

1423903242_ch10_REV2.indd   5471423903242_ch10_REV2.indd   547 6/3/09   5:33:53 PM6/3/09   5:33:53 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Initializing with Constructor Methods
When you fi rst instantiate an object from a class, you will often want 
to assign initial values to fi elds or perform other types of initialization 
tasks, such as calling a method that might calculate and assign values 
to fi elds. Although you can assign simple values to fi elds when you 
declare them, a better choice is to use a constructor method. A 
constructor method is a special method that is called automatically 
when an object from a class is instantiated. You defi ne and declare con-
structor methods the same way you defi ne other methods, although 
you do not include a return type because constructor methods do not 
return values. Each class defi nition can contain one or more con-
structor methods whose names are the same as the class. You must 
specify the public access modifi er with a constructor method. Th e fol-
lowing code demonstrates how to use the BankAccount() constructor 
method to initialize the fi elds in the BankAccount class:
public class BankAccount : System.Web.UI.Page

{

      private string accountNumber;

      private string customerName;

      private double balance;

      public BankAccount() {

            accountNumber = "012345678";

            balance = 0;

            customerName = "";

      }

}

Constructor methods are commonly used to handle database con-
nection tasks. Next, you will add to the ShoppingCart class’s con-
structor method that contains statements that instantiate a new 
database object.

To add to the ShoppingCart class’s constructor method statements 
that instantiate a new database object:

1. Return to the ShoppingCart.cs fi le in the Code Editor window.

2. Replace the comments in the constructor method with the 
following statement, which opens the database connection:

dbConnection.Open();

Cleaning Up with Destructor Methods
Just as a default constructor method is called when a class object is 
fi rst instantiated, a destructor method is called when the object is 
destroyed. A destructor method cleans up any resources allocated 
to an object after the object is destroyed. You cannot explicitly call 
a destructor method. Instead, it is called automatically by the C# 

548

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5481423903242_ch10_REV2.indd   548 6/3/09   5:33:53 PM6/3/09   5:33:53 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



garbage collection. You generally do not need to use a destructor 
method, although many programmers use one to close fi le data-
base connections. To add a destructor method to a C# class, create 
a method with the same name as the class, but preceded by a tilde 
symbol (~). Note that you do not specify an access modifi er or data 
type for a destructor method. Th e following code contains a destruc-
tor method that closes an open database connection:
public class BankAccount : System.Web.UI.Page

{

    private SqlConnection dbConnection;

    public BankAccount()

    {

        dbConnection = new SqlConnection(

            "Data Source=DBSERVER\\SQLEXPRESS;

            Integrated Security=true");

        dbConnection.Open();

        dbConnection.ChangeDatabase("accountDB");

    }

    ~BankAccount()

    {

        dbConnection.Close();

    }

}

Next, you will add to the ShoppingCart class a destructor method 
that closes the database object that you instantiated with the con-
structor method.

To add a destructor method:

1. Return to the ShoppingCart.cs fi le in the Code Editor 
window.

2. Add the following destructor method defi nition to the end 
of the class:
~ShoppingCart()
{
}

3. Add to the destructor method the following statement that 
closes the database object:
dbConnection.Close();

Writing Accessors
Even if you make all fi elds in a class private, you can still allow your 
program’s clients to retrieve or modify the value of fi elds via accessor 
methods. Accessor methods are public methods that a client can call 
to retrieve or modify the value of a fi eld. Because accessor methods 
often begin with the words “set” or “get,” they are also referred to as 

549

Working with Class Methods

1423903242_ch10_REV2.indd   5491423903242_ch10_REV2.indd   549 6/3/09   5:33:53 PM6/3/09   5:33:53 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



set or get methods. Set methods modify fi eld values; get methods 
retrieve fi eld values. To allow a client to pass a value to your program 
that will be assigned to a private fi eld, you include parameters in a set 
method’s defi nition. You can then write code in the body of the set 
method that validates the data passed from the client, prior to assign-
ing values to private fi elds. For example, if you write a class named 
Payroll that includes a private fi eld containing the current state 
income-tax rate, you could write a public accessor method named 
getStateTaxRate() that allows clients to retrieve the variable’s value. 
Similarly, you could write a setStateTaxRate() method that per-
forms various types of validation on the data passed from the client 
(such as making sure the value is not null, is not greater than 100%, 
and so on) prior to assigning a value to the private state tax rate fi eld.

Th e following code demonstrates how to use set and get methods with 
the balance fi eld in the BankAccount class. Th e setBalance() method is 
declared with an access modifi er of public and accepts a single parame-
ter containing the value to assign to the balance fi eld. Th e getBalance() 
method is also declared as public and contains a single statement that 
returns the value assigned to the balance fi eld. Statements at the end 
of the example call the methods to set and get the balance fi eld.
public class BankAccount : System.Web.UI.Page

{

    private double balance = 0;

    public void setBalance(double newBalance)

    {

        balance = newBalance;

    }

    public double getBalance()

    {

        return balance;

    }

}

BankAccount checking = new BankAccount();

checking.setBalance(457.63);

Response.Write("<p>Your updated checking account balance is "

    + String.Format("{0:C}", checking.getBalance()) + "</p>");

Next, you will add two accessor methods to the Bakery class: 
addItem() and showCart(). When the user clicks one of the Order 
Now buttons from a product page, the addItem() method will add 
new elements to the productID, productQuantity, and productTable 
fi elds for the selected item. Th e showCart() method displays the 
shopping cart when the user selects a new item or opens the Shopping 
Cart page.

To add addItem() and showCart() accessor methods to the Bakery 
class:

550

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5501423903242_ch10_REV2.indd   550 6/3/09   5:33:54 PM6/3/09   5:33:54 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



1. Return to the ShoppingCart.cs fi le in the Code Editor window.

2. Add the following addItem() method defi nition above the 
class constructor method. Th is method returns a Boolean 
value of true if the item was added successfully or false if it 
already exists in the shopping cart.
public bool addItem(string prodID, string table)
{
}

3. Add to the addItem() method the following foreach state-
ment, which loops through the elements in the productID[] 
array list. If the product ID is found, the method returns a 
value of false and ends because the item already exists in the 
shopping cart.
foreach (string item in productID)
{
    if (item == prodID)
        return false;
}

4. Add to the end of the addItem() method the following state-
ments, which assign values to the productID, productQuantity, 
and productTable fi elds for the selected item. Th e last state-
ment returns a value of false, indicating that the item was suc-
cessfully added to the shopping cart.
productID.Add(prodID);
productQuantity.Add(1);
productTable.Add(table);
return true;

5. Add the following showCart() method defi nition above the 
class constructor method. Th is method works by building a 
table containing the products in the shopping cart. Th e table 
is then returned to the calling function.
public string showCart()
{
}

6. Add the following statements to the showCart() method to 
begin building the table string. Th e total variable will store 
a running total of the items in the shopping cart.
string retValue = "<table width='100%' 
   cellspacing='2' cellpadding='3' rules='all' 
   border='1' id='ProductGrid'
   style='background-color:#DEBA84;
   border-color:#DEBA84;border-width:1px;
   border-style:None;font-size:Smaller;'>";

551

Working with Class Methods

1423903242_ch10_REV2.indd   5511423903242_ch10_REV2.indd   551 6/3/09   5:33:54 PM6/3/09   5:33:54 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



retValue += "<tr style='color:White;
   background-color:#A55129;
   font-weight:bold;'><th align='center'>
   Product</th><th align='center'>
   Quantity</th><th align='center'>
   Price Each</th></tr>";
double total = 0;

7. Add the following for loop to the end of the showCart() 
method. Th ese statements run an ExecuteReader() method to 
open a recordset for each item in the shopping cart. Th e code 
reads the price for each item and builds the body of the table.
for (int i = 0; i < productID.Count; ++i)
{
    string sqlString = "SELECT * FROM " 
       + productTable[i] + " WHERE productID='" 
       + productID[i] + "'";
    SqlCommand prodCommand = new 
       SqlCommand(sqlString, dbConnection);
    SqlDataReader prodRecords = 
       prodCommand.ExecuteReader();
    if (prodRecords.Read())
    {
        retValue += "<tr style='color:#8C4510;
            background-color:#FFF7E7;'>"
            + "<td>" + prodRecords["name"] + "</td>"
            + "<td align='center'>" 
            + productQuantity[i] + "</td>"
            + "<td align='center'>" 
            + String.Format("{0:C}", 
            prodRecords["price"])
            + "</td></tr>";
        double price = Convert.ToDouble(
           prodRecords["price"]);
        int quantity = Convert.ToInt16(
           productQuantity[i]);
        total += price * quantity;
    }
    prodRecords.Close();
}

8. Add to the end of the showCart() method the following 
statements, which complete the table and return the string 
to the calling function:
retValue += "<td align='center' colspan='2'>
   <strong>Your shopping cart contains " 
   + productQuantity.Count 
   + " product(s).</strong></td>";
retValue += "<td align='center'><strong>Total: " 
   + String.Format("{0:C}", total) 
   + "</strong></td></tr>";
retValue += "<asp:Button runat='server' 
   Text='Button' /></table>";
return retValue;

552

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5521423903242_ch10_REV2.indd   552 6/3/09   5:33:54 PM6/3/09   5:33:54 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



9. Return to the shopping_cart.aspx.cs fi le in the Code Editor 
window.

10. Add the following statements to the end of the if statement. 
Th ese statements call the showCart() function and assign the 
returned results to the CartBody literal.
string retString = curCart.showCart();

CartBody.Text = retString;

Next, you will add code to the product pages and Shopping Cart page 
that calls the new ShoppingCart class methods.

To add code to the product pages and Shopping Cart page that calls 
the new ShoppingCart class methods:

1. Open breads.aspx in the Code Editor window and add 
the following definition for an event handler named 
ProductGrid_SelectedIndexChanged().
protected void ProductGrid_SelectedIndexChanged(
  object sender, EventArgs e)
{
}

2. Add to the ProductGrid_SelectedIndexChanged() event han-
dler the following statements. Th ese statements create a new 
ShoppingCart object or open the existing ShoppingCart object 
from the session variable, then execute the addItem() method. 
Depending on the result returned from the addItem() method, 
the remaining statements either print “You already selected that 
item” in the Literal control or redirect the browser to the Shop-
ping Cart page.

ShoppingCart curCart;
if (Session["savedCart"] == null)
    curCart = new ShoppingCart();
else
{
    curCart = (ShoppingCart)Session["savedCart"];
}
bool addResult = curCart.addItem(
ProductGrid.SelectedValue.ToString(), "Breads");
if (addResult == false)
    ProductPage.Text = "<p>You already selected 
    that item!</p>";
else
{
    Session["savedCart"] = curCart;
    Response.Redirect("shopping_cart.aspx");
}

553

Working with Class Methods

1423903242_ch10_REV2.indd   5531423903242_ch10_REV2.indd   553 6/3/09   5:33:54 PM6/3/09   5:33:54 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



3. Return to breads.aspx in the Code Editor window and add 
the following event handler just before the closing bracket (>) 
for the <asp:GridView> control:
onselectedindexchanged="ProductGrid_
SelectedIndexChanged"

4. Repeat Steps 1 and 3 for the cakes.aspx, cookies.aspx, and the 
pies.aspx fi les. Replace the second argument that is passed to 
the addItem() function with the appropriate product type. For 
example, you should change the argument in the cakes.aspx 
fi le from “Breads” to “Cakes”.

5. Return to the shopping_cart.aspx.cs fi le in the Code Editor 
window.

6. Start the Web site and test the product pages and Shopping 
Cart page. Figure 10-5 shows the Shopping Cart page after 
adding several items.

7. Close your Web browser window.

Figure 10-5 Shopping Cart page after adding several items

554

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5541423903242_ch10_REV2.indd   554 6/3/09   5:33:55 PM6/3/09   5:33:55 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Th e preceding techniques are the traditional ways of creating acces-
sors in object-oriented programming languages. C# allows you to 
create accessors using properties, which are special methods that 
you can use as public data members to set and get field values. 
To create a property, you create a constructor that is similar to a 
method definition and includes an accessor level and data type, 
but does not include parentheses at the end of the method name. 
To create a property’s set and get methods, you include the set and 
get keywords within the property defi nition. Following the set and 
get keywords, you place the necessary statements for each method 
within a set of braces. For the get method, you can perform any type 
of computation and then return the value using a return statement. 
Th e set method includes an implicit parameter named value that 
represents the value being assigned to the fi eld. Th e following exam-
ple demonstrates how to set and get the balance in the BankAccount 
program as a property:

public class BankAccount : System.Web.UI.Page

{

    private double balance = 0;

    public double Balance {

        get { return balance; }

        set { balance = value; }

    }

}

BankAccount checking = new BankAccount();

checking.Balance = 457.63;

Response.Write("<p>Your updated checking account balance is "

    + String.Format("{0:C}", checking.Balance) + "</p>");

Short Quiz 4

1. Why would you use a private class method?

2. If you exclude an access modifi er when declaring a class 
method, what access level does C# use by default?

3. What is the required syntax for declaring constructor and 
destructor methods?

4. Why would you use accessor methods? Why do they often 
begin with the words “set” or “get”?

5. How are accessor methods related to C# properties? How do 
you create C# properties and access them through an instanti-
ated class object?

555

Working with Class Methods

1423903242_ch10_REV2.indd   5551423903242_ch10_REV2.indd   555 6/3/09   5:33:55 PM6/3/09   5:33:55 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Summing Up
An object is programming code and data that can be treated as an  •
individual unit or component.

Objects are encapsulated, which means that all code and required  •
data are contained within the object itself. Encapsulation places 
code inside what programmers like to call a “black box.” When 
an object is encapsulated, you cannot see “inside” it—all internal 
workings are hidden.

Th e term  • interface refers to the methods and properties that are 
required for a source program to communicate with an object.

In object-oriented programming, the code, methods, attributes,  •
and other information that make up an object are organized into 
classes, which is essentially a template, or blueprint, that serves as 
the basis for new objects.

When you create an object from an existing class, you are said  •
to be instantiating the object. A particular instance of an object 
inherits its methods and properties from a class—that is, it takes 
on the characteristics of the class on which it is based.

In C#, the term  • class more specifi cally refers to data structures 
that contain fi elds along with methods for manipulating the 
fi elds. Th e term data structure refers to a system for organizing 
data, whereas the term fi eld refers to variables that are defi ned 
within a class.

Th e methods and fi elds defi ned in a class are called class members  •
or simply members. Class variables are referred to as data mem-
bers or member variables, whereas class methods are referred to 
as function members or member functions.

Classes help make complex programs easier to manage by logically  •
grouping related methods and fi elds and by allowing you to refer to 
that grouping as a single object.

Access modifi ers control a client’s access to classes, individual data  •
members, and function members.

To create a class in C#, you use the  • class keyword and an access 
modifi er to write a class defi nition, which contains the class mem-
bers that make up the class.

The term  • garbage collection refers to cleaning up, or reclaim-
ing, memory that is reserved by a program. With C#, you do 

556

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5561423903242_ch10_REV2.indd   556 6/3/09   5:33:55 PM6/3/09   5:33:55 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



not need to worry about reclaiming memory that is reserved 
for your variables or objects because C# knows when your pro-
gram no longer needs a variable or object and automatically 
cleans up the memory for you. The one exception has to do 
with open database connections, which you do need to close 
manually.

Th e principle of information hiding states that any class members  •
that other programmers, sometimes called clients, do not need to 
access or know about should be hidden.

You declare a fi eld in the same way that you declare a standard  •
variable, except that you must include an access modifi er at the 
beginning of a fi eld declaration statement.

Serialization is the process of converting an object’s fi elds into a  •
string that you can store for reuse. Binary serialization converts 
object properties to a binary format, whereas XML serialization 
converts object properties to XML.

A fi le stream is used for accessing a resource, such as a fi le, that  •
you can read from and write to. An input stream reads data from a 
resource (such as a fi le), whereas an output stream writes data to 
a resource (again, such as a fi le).

Methods are usually declared as public or private, but they can also  •
be declared with any of the other types of access modifi ers. Public 
methods can be called by anyone, whereas private methods can be 
called only by other methods in the same class.

A general rule of thumb is to create as public any methods that cli- •
ents need to access and to create as private any methods that clients 
do not need to access.

A constructor method is a special method that is called automati- •
cally when an object from a class is instantiated.

A destructor method cleans up any resources allocated to an object  •
after the object is destroyed.

Accessor methods are public methods that a client can call to  •
retrieve or modify the value of a fi eld. Because accessor methods 
often begin with the words “set” or “get,” they are also referred to 
as set or get methods.

C# allows you to create accessors using properties, which are spe- •
cial methods that you can use as public data members to set and 
get fi eld values.

557

Summing Up 

1423903242_ch10_REV2.indd   5571423903242_ch10_REV2.indd   557 6/3/09   5:33:55 PM6/3/09   5:33:55 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Comprehension Check
1. Reusable software objects are often referred to as __________.

methodsa. 

componentsb. 

widgetsc. 

functionsd. 

2. Explain the benefi ts of object-oriented programming.

3. Th e term black box refers to __________.

a propertya. 

debuggingb. 

encapsulationc. 

an interfaced. 

4. Users can see all of the methods and properties within an 
encapsulated object. True or False?

5. A(n) __________ is an object that has been created from an 
existing class.

patterna. 

structureb. 

replicac. 

instanced. 

6. What is inheritance? How is it used with classes?

7. Th e functions associated with an object are called __________. 
(Choose all that apply.)

propertiesa. 

function membersb. 

methodsc. 

attributesd. 

8. Th e terms variable and object are often used interchangeably 
in object-oriented programming. True or False?

558

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5581423903242_ch10_REV2.indd   558 6/3/09   5:33:56 PM6/3/09   5:33:56 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



9. Class names usually begin with a(n) __________ to distinguish 
them from other identifi ers.

numbera. 

exclamation mark (!)b. 

ampersand (&)c. 

uppercase letterd. 

10. Which of the following access specifi ers prevents clients from 
calling methods or accessing fi elds? (Choose all that apply.)

publica. 

privateb. 

protectedc. 

internald. 

11. Which access modifi er does C# use by default if you do not 
include one in a class or class member defi nition?

publica. 

privateb. 

protectedc. 

internald. 

12. Explain how to create a class defi nition.

13. Class names in a class defi nition are followed by parentheses, 
the same as with a function defi nition. True or False?

14. For which of the following programmatic constructs do you 
need to perform garbage collection?

variablesa. 

objectsb. 

database connectionsc. 

fi le streamsd. 

15. Explain the principle of information hiding.

559

Comprehension Check

1423903242_ch10_REV2.indd   5591423903242_ch10_REV2.indd   559 6/3/09   5:33:56 PM6/3/09   5:33:56 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



16. What types of serialization does the .NET Framework support? 
(Choose all that apply.)

binarya. 

unaryb. 

XMLc. 

databased. 

17. Explain how to serialize a class object to a fi le.

18. When is a destructor called? 

when the object is destroyeda. 

when the constructor method endsb. 

when you delete a class object with the c. unset() method

when you call the d. serialize() method

19. Explain the use of accessor functions. How are they often 
named?

20. What is a property in the context of a C# class? How do you 
create a property?

Reinforcement Exercises

Exercise 10-1

In this exercise, you will add two member functions, removeItem() 
and emptyCart(), to the ShoppingCart class. Th ese functions allow 
you to remove individual items or empty all items from the shop-
ping cart.

To add the removeItem() and emptyCart() member functions to the 
ShoppingCart class:

1. Return to the ShoppingCart.cs file in the Code Editor 
window.

2. Add the following removeItem() method defi nition above the 
class constructor:
public void removeItem(string prodID)
{
}

560

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5601423903242_ch10_REV2.indd   560 6/3/09   5:33:56 PM6/3/09   5:33:56 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



3. Add to the removeItem() method the following statements, 
which loop through the productID[] array list until the ele-
ment that matches the prodID parameter is found. Th en, the if 
statement deletes the associated elements in the productID[], 
productQuantity[], and productTable[] methods.
for (int i = 0; i < productID.Count; ++i)
{
    if (productID[i].ToString() == prodID)
    {
      productID.RemoveAt(i);
      productQuantity.RemoveAt(i);
      productTable.RemoveAt(i);
      break;
    }
}

4. Add the following emptyCart() method defi nition above the 
class constructor:
public void emptyCart(string prodID)
{
}

5. Add the following statements to the emptyCart() method def-
inition. Th e statements empty the cart by calling the Clear() 
method for the productID[], productQuantity[], and 
productTable[] methods.
productID.Clear();
productQuantity.Clear();
productTable.Clear();

6. Next, you need to modify the showCart() method so it dis-
plays links that call the removeItem() and emptyCart() func-
tions. First, modify the second statement that creates the table 
header (<th>) elements so it includes another column for the 
remove item links, as follows:
retValue += "<tr style='color:White;

   background-color:#A55129;

   font-weight:bold;'><th align='center'>
   Remove</th><th align='center'>
   Product</th><th align='center'>

   Quantity</th><th align='center'>

   Price Each</th></tr>";

7. Modify the value assigned to the retValue variable in the if 
statement in the showCart() function as follows. Th ese state-
ments create new table cells containing Remove Item links. 
Notice that a query string named operation is appended to 

561

Reinforcement Exercises

1423903242_ch10_REV2.indd   5611423903242_ch10_REV2.indd   561 6/3/09   5:33:56 PM6/3/09   5:33:56 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



the shopping_cart.aspx URL. This query string notifies the 
class which method to call. In this case, the removeItem() 
method is being called.
retValue += "<tr style='color:#8C4510;

   background-color:#FFF7E7;'>" 

   + "<td align='center'>
   <a href='shopping_cart.aspx?operation
   =removeItem&productID=" + productID[i] 
   + "'>Remove</a></td>" + "<td>"
   + prodRecords["name"] + "</td>"
   + "<td align='center'>" + productQuantity[i] 

   + "</td>" + "<td align='center'>" 

   + String.Format("{0:C}", prodRecords["price"]) 

   + "</td></tr>";

8. Add the following statement after the for loop’s closing brace. 
Th is statement adds an Empty Cart link to the end of the 
shopping cart table.
retValue += "<td align='center'>
<a href='shopping_cart.aspx?operation=emptyCart'>
Empty Cart</a></td>";

9. Return to the shopping_cart.aspx.cs script in the Code 
Editor window and modify the if statement that checks if 
the savedCart session variable exists so it includes nested 
if statements that call the removeItem() and emptyCart() 
methods, as follows. Also, enclose within an else construct 
the statements that call the showCart() method and assign 
the return value to the Literal control. Your statements should 
appear as follows:
if (Session["savedCart"] != null)

{

    curCart = (ShoppingCart)

      Session["savedCart"];

    if (Request.QueryString["operation"] 

      == "removeItem")

    {

        curCart.removeItem(

          Request.QueryString["productID"]);

        Response.Redirect("shopping_cart.aspx");

    }

    else if (Request.QueryString["operation"] 

       == "emptyCart")

    {

        curCart.emptyCart(Request.QueryString

          ["productID"])

        Response.Redirect("shopping_cart.aspx");

562

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5621423903242_ch10_REV2.indd   562 6/3/09   5:33:57 PM6/3/09   5:33:57 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



    }

    else

    {

        string retString = curCart.showCart();

        CartBody.Text = retString;

    }

}

else

{

    CartBody.Text = "<p>Your shopping cart 

      is empty.</p>";

}

10. Start the Web site and test the Remove and Empty Cart links 
on the Shopping Cart page. Figure 10-6 shows the Shop-
ping Cart page after adding the remove item and empty cart 
functionality.

11. Close your Web browser window.

Figure 10-6 Shopping Cart Web page after adding the remove item and empty cart functionality

563

Reinforcement Exercises

1423903242_ch10_REV2.indd   5631423903242_ch10_REV2.indd   563 6/3/09   5:33:57 PM6/3/09   5:33:57 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Exercise 10-2

In this project, you will add two member functions, addOne() and 
removeOne(), to the ShoppingCart class. Th ese functions allow you 
to change the quantities of products in the shopping cart.

To add the addOne() and removeOne() member functions to the 
ShoppingCart class:

1. Return to the ShoppingCart.cs fi le in the Code Editor 
window.

2. Add the following addOne() method defi nition above the class 
constructor:
public void addOne(string prodID)
{
}

3. Add to the addOne() method the following statements, which 
increment a product’s quantity:
for (int i = 0; i < productID.Count; ++i)
{
    if (productID[i].ToString() == prodID)
    {
      productQuantity[i] = Convert.ToInt16(
        productQuantity[i]) + 1;
      break;
    }
}

4. Add the following removeOne() method defi nition above the 
class constructor:
public void removeOne(string prodID)
{
}

5. Add to the removeOne() method the following statements, 
which decrement a product’s quantity:
for (int i = 0; i < productID.Count; ++i)
{
    if (productID[i].ToString() == prodID)
    {
    productQuantity[i] = Convert.ToInt16(
      productQuantity[i]) - 1;
    if (Convert.ToInt16(productQuantity[i]) == 0)
    {

564

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5641423903242_ch10_REV2.indd   564 6/3/09   5:33:57 PM6/3/09   5:33:57 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



        productID.RemoveAt(i);
        productQuantity.RemoveAt(i);
        productTable.RemoveAt(i);
    }
    break;
    }
}

6. Modify the value assigned to the retValue variable in the 
if statement in the showCart() function, as follows. Th ese 
statements create Add and Remove links within the cell con-
taining the product quantity.
retValue += "<tr style='color:#8C4510;

   background-color:#FFF7E7;'>"

   + "<td align='center'>

   <a href='shopping_cart.aspx?operation

   =removeItem&productID=" + productID[i]

   + "'>Remove</a></td>" + "<td>" 

   + prodRecords["name"] + "</td>" 

   + "<td align='center'>" + productQuantity[i] 

   + "<br /><a href='shopping_cart.aspx?
   operation=addOne&productID=" 
   + productID[i] + "'>Add</a>&nbsp;
   <a href='shopping_cart.aspx?
   operation=removeOne&productID=" 
   + productID[i] + "'>Remove</a>"
   + "<td align='center'>" + String.Format("{0:C}",

   prodRecords["price"]) + "</td></tr>";

7. Return to the shopping_cart.aspx.cs script in the Code 
Editor window and modify the Page_Load() event handler so 
it includes nested if statements that call the addOne() and 
removeOne() methods, as follows:
if (Request.QueryString["operation"] == "removeItem")

{

    curCart.removeItem(

    Request.QueryString["productID"]);

    Response.Redirect("shopping_cart.aspx");

}

else if (Request.QueryString["operation"] == "emptyCart")

{

    curCart.emptyCart(Request.QueryString["productID"]);

    Response.Redirect("shopping_cart.aspx");

}

else if (Request.QueryString["operation"] == "addOne")
{
    curCart.addOne(Request.QueryString["productID"]);
    Response.Redirect("shopping_cart.aspx");
}

565

Reinforcement Exercises

1423903242_ch10_REV2.indd   5651423903242_ch10_REV2.indd   565 6/3/09   5:33:57 PM6/3/09   5:33:57 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



else if (Request.QueryString["operation"] == "removeOne")
{
    curCart.removeOne(Request.QueryString["productID"]);
    Response.Redirect("shopping_cart.aspx");
}
else

{

    string retString = curCart.showCart();

    CartBody.Text = retString;

}

8. Start the Web site and test the Add and Remove links on the 
Shopping Cart page. Figure 10-7 shows the Shopping Cart 
page after adding functionality to change the product quantity.

9. Close your Web browser window.

Figure 10-7 Shopping Cart Web page after adding functionality to change the product quantity

566

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5661423903242_ch10_REV2.indd   566 6/3/09   5:33:58 PM6/3/09   5:33:58 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Discovery Projects
Save the Web sites you create for the following projects in your Proj-
ects folder for Chapter 10.

Project 10-1

Create a HitCounter class that counts the number of hits to a Web 
page and stores the results in a database. Use a private data member to 
store the number of hits and include public set and get member func-
tions to access the private counter member variable. Save the project 
in a folder named HitCounter in your Projects folder for Chapter 10.

Project 10-2

Create a GuestBook class that stores Web site visitor names in a data-
base. Use a private data member to store visitor names and include 
public set and get member functions to access the private visitor name 
member variable. Save the project in a folder named GuestBook in 
your Projects folder for Chapter 10.

Project 10-3

Create a Movies class that determines the cost of a ticket to a cinema, 
based on the moviegoer’s age. Assume that the cost of a full-price 
ticket is $10. Assign the age to a private data member. Use a public 
member function to determine the ticket price, based on the follow-
ing schedule:

Age Price

Under 5 Free

5 to 17 Half price

18 to 55 Full price

Over 55 $2 off

Save the project in a folder named Movies in your Projects folder for 
Chapter 10.

Project 10-4

Create a program that calculates how long it takes to travel a speci-
fi ed number of miles, based on speed, number of stops, and weather 
conditions for a passenger train that averages a speed of 50 mph. 
Each stop of the train adds an additional fi ve minutes to the train’s 
schedule. In addition, during bad weather the train can only average 
a speed of 40 mph. Write a class-based version of this script with a 

567

Discovery Projects

1423903242_ch10_REV2.indd   5671423903242_ch10_REV2.indd   567 6/3/09   5:33:58 PM6/3/09   5:33:58 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



class named Train. Save each piece of information you gather from 
the user in a private data member, and write the appropriate get and 
set functions for setting and retrieving each data member. Save the 
project in a folder named Train in your Projects folder for Chapter 10.

Project 10-5

In Chapter 5, you wrote a script that calculates the correct amount 
of change to return when performing a cash transaction. Write a 
class-based version of this script with a class named Change. Allow 
the user (a cashier) to enter the cost of a transaction and the exact 
amount of money that the customer hands over to pay for the trans-
action. Use set and get functions to store and retrieve both amounts 
to and from private data members. Th en use member functions to 
determine the largest amount of each denomination to return to 
the customer. Assume that the largest denomination a customer will 
use is a $100 bill. Th erefore, you will need to calculate the correct 
amount of change to return for $50, $20, $10, $5, and $1 bills, along 
with quarters, dimes, nickels, and pennies. For example, if the price 
of a transaction is $5.65 and the customer hands the cashier $10, 
the cashier should return $4.35 to the customer. Include code that 
requires the user to enter a numeric value for the cash transaction. 
Save the project in a folder named Change in your Projects folder 
for Chapter 10.

Project 10-6

Create a BankAccount class that allows users to calculate the balance 
in a bank account. The user should be able to enter a starting bal-
ance, and then calculate how that balance changes when she makes a 
deposit, withdraws money, or enters any accumulated interest. Add the 
appropriate data members and member functions to the BankAccount 
class that will enable this functionality. Also, add code to the class that 
ensures that the user does not overdraw her account. Be sure that the 
program adheres to the information-hiding techniques presented in 
this chapter. Save the project in a folder named BankAccount in your 
Projects folder for Chapter 10.

568

C H A P T E R  1 0 Developing Object-Oriented C# Programs  

1423903242_ch10_REV2.indd   5681423903242_ch10_REV2.indd   568 6/3/09   5:33:58 PM6/3/09   5:33:58 PM

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.




