CHAPTER

INTRODUCTION TO CLASSES

In this chapter you will learn
About object-oriented programming and classes
About information hiding
How to use access specifiers
About interface and implementation files
How to use Visual C++ class tools
How to prevent multiple conclusion

How to work with member functions

Out of chaos comes order.

Friedrich Nietzsche (1844 - 1900)

PREVIEW: THE RETIREMENT PLANNER PROGRAM

In this chapter and the next few chapters, you will study classes, which is perhaps the
most important topic in C++ programming. Recall from Chapter 1, that classes are
structures that contain code, methods, attributes, and other information. In this chapter
you will create a Retirement Planner program to learn how to work with basic class

techniques.
To preview the Retirement Planner program:
1. Create a Chapter.04 folder in your Visual C++ Projects folder.

2. Copy the Chapter4 RetirementPlanner folder from the Chapter.04 folder on
your Data Disk to the Chapter.04 folder in your Visual C++ Projects folder.

Then open the RetirementPlanner project in Visual C++.

3. The Chapter4 RetirementPlanner folder in the Chapter.04 folder in your Visual
C++ Projects folder contains two C++ source files and a C++ header file. First,
open the CaleSavings.cpp file in the Code Editor window. This file is a Win32
console application with amain () function that displays and gathers
information. You should be able to recognize most of the code. The
CalcSavings.cpp file will be used for demonstrating how to work with the class
that will provide the Retirement Planner program’s functionality. Close the

CalcSavings.cpp source file.

4. Open the RetirementPlanner.h header file. This file contains variable
declarations and function prototypes, as illustrated in Figure 4-1. The file also
contains some new preprocessor directives, along with two labels—public and
private—that determine how functions and variables can be accessed outside of
the class by other classes or programs. You will also see a function that includes
the inline keyword, but that is declared outside of the class declaration. This is
known as an inline function and is used with small functions to request that
the compiler replace calls to a function with the function definition wherever the
function is called in a program. Close the RetirementPlanner.h source file.

FIGURE 4-1: RetirementPlanner.h

#1if !defined(RETIREMENT_H)
#define RETIREMENT H <— ‘
class RetirementPlanner = Preprocessor directives
{ \

~ Start of class declaration

RetirementPlanner (void) ;
\~ Constructor and destructor

~RetirementPlanner (void) ;
declarations

private®
/— Data member declarations

ouble dContribution;
L4 Function member declarations

double dInterestRate;
double dInterestEarned;
int iYearsOfSaving;
double dFutureValue;
double dPresentValue;
double dInflation;

int iCurAge;
int iRetireAge;

setCurAge (int iAgeNow) ;
void setRetireAge (int iAgeThen) ;
void setContribution (double dContribution
voilid setInterestRate (double dInterest);
void setInflation(double dInflate);
double getInterestEarned(void);

double calcFutureValue (void); End of class declaration
uble calcPresentValue-rerrcT
} 4—
inline double
RetirementPlanner::getInterestEarned(void) <« Inline function

{

return dInterestEarned;

}

#endif Preprocessor directive

5. Open the RetirementPlanner.cpp file. This file contains the actual definitions
for the functions declared in the RetirementPlanner.h header file. Figure 4-2
shows a portion of the file. Notice that the file imports the RetirementPlanner.h
file using an #include statement, but that the header file name is enclosed in
quotation marks instead of brackets. Also notice that each function definition is
preceded by RetirementPlanner and the scope resolution operator (::).
RetirementPlanner is the name of the class itself. You use the class name and the
scope resolution operator to define a function as being part of a particular class.

Figure 4-2: RetirementPlanner.cpp

#include "retirementplanner.h"

RetirementPlanner::RetirementPlan

{
dContribution = 0;
dInterestRate = 0
dInterestEarned = 0;
iYearsOfSaving = 0;
dFutureValue = 0;
dPresentValue = 0;
dInflation ;
iCurAge = 0;
iRetireAge = 0;
dinflation = 0;

Il
o
~

}
RetirementPlanner:
{
}
void RetirementPlanner::setCurAge

{

:~RetirementP

DEM\

er (void)

(int iAgeNow)

Statement including the
RetirementPlaner.h header file

Function names are preceded
by class name and the scope
resolution operator

iCurAge =

iAgeNow;

6. Build and execute the Retirement Planner program. Then enter values for each of

the variables to calculate retirement savings. Figure 4-3 shows how the program

appears in the console window after entering some values

FIGURE 4-3: Retirement Planner console window

ual c++ projects'.chapter.D.
RETIREMENT FLANNER

apter5_retirementplanneridebu

This program calculates your retirement savings based on
annual contribution. estimated yearly interest rate, years
of saving, and estimated inflation.

Annual Contribution: 5088

Annual Yield {(percent—enter as a vhole numherd>: 8§
Current Age: 4

Retirement Age: 65

Inflation ¢{percent—enter as a whole numher>: 4

Total Future Value: $374772
Total Present Ualue: 5148886
Total Interest Earned: $269772

Press any key to continue

apter5_RetirementPlanne... !E

7. Press any key to close the Retirement Planner program window.

8. Close the RetirementPlanner project by selecting Close Solution from the File

menu.

OBJECT-ORIENTED PROGRAMMING AND CLASSES

Classes form the basis of object-oriented programming. Object-oriented programming is a way
of designing and accessing code. The pieces of the programming puzzle—data types, variables,
control structures, functions, and so on—are the same as in any other type of programming.
What differs is how you assemble the puzzle. You first learned about classes in Chapter 1 in

very general terms. In this chapter, you will learn about classes in detail.

Classes

Classes were defined in Chapter 1 as structures that contain code, methods, attributes, and other
information. Now that you are familiar with the basics of a C++ program, let’s refine this
definition. In C++ programming, classes are data structures that contain variables along with
functions for manipulating the variables. The functions and variables defined in a class are
called class members. Class variables are referred to as data members or member
variables, whereas class functions are referred to as member functions or function
members. Functions that are not part of a class are referred to as global functions. To use
the variables and functions in a class, you declare an object from that class. When you declare
an object from a class, you are said to be instantiating an object. When you work with a class
object, member functions are often referred to as methods, and data members are often referred

to as properties.

Classes themselves are also referred to as user-defined data types or programmer-defined
data types. These terms can be somewhat misleading, however, because they do not
accurately reflect the fact that classes can contain member functions. Additionally, classes
usually contain multiple data members of different data types, so calling a class a data

type becomes even more confusing.

One reason classes are referred to as user-defined data types or programmer-defined data
types is that you can work with a class as a single unit, or object, in the same way you
work with a variable. In fact, C++ programmers use the terms variable and object
interchangeably. The term object-oriented programming comes from the fact that you can
bundle variables and functions together and use the result as a single unit (a variable or
object). What this means will become clearer to you as you progress through this text. For
now, think of a hand-held calculator as an example. A calculator could be considered an
object of a Calculation class. You access all of the Calculation class functions (such as
addition and subtraction) and its data members (operands that represent the numbers you
are calculating) through your Calculator object. You never actually work with the

Calculation class yourself, only with an object of the class (your calculator).

But why do you need to work with a collection of related variables and functions as a single
object? Why not simply call each individual variable and function as necessary, without using
all of this class business? The truth is you are not required to work with classes; you can create
much of the same functionality without classes as you can by using classes. Some simple types
of Visual C++ programs you write will probably not need to be created with classes. Classes
help make complex programs easier to manage, however, by logically grouping related
functions and data and by allowing you to refer to that grouping as a single object. Another
reason for using classes is to hide information that users of a class do not need to access or
know about. Information hiding helps minimize the amount of information that needs to pass
in and out of an object, which helps increase program speed and efficiency. Classes also make
it much easier to re-use code or distribute your code to others for use in their programs. (You
will learn how to create your own classes and include them in your programs shortly.) Without
a way to package variables and functions in classes and include those classes in a new
program, you would need to copy and paste each segment of code you wanted to re-use

(functions, variables, and so on) into any new program.

An additional reason to use classes is that instances of objects inherit their characteristics,
such as class members, from the class upon which they are based. This inheritance allows
you to build new classes based on existing classes without having to rewrite the code
contained in the existing classes. You will learn more about inheritance in Chapter 7. For

now, you should understand that an object has the same characteristics as its class.

There are two primary types of classes that you will work with in this text: classes
declared with the struct keyword and classes declared with the class keyword. First,

you will learn about classes declared with the st ruct keyword.

Creating Structures

So far you have worked with data types that store single values such as integers, floating-
point numbers, and characters. You have also worked with arrays, which contain sets of
data represented by a single variable name. One drawback to using arrays is that all
elements in an array must be of the same data type. Suppose you have several pieces of
related information that you want to be able to refer to as a single variable, similar to an
array. An example may be the information related to a mortgage, including the property
value (int), down payment (double), interest rate (double), terms (short), and a Boolean
value indicating that the closing has been scheduled. You cannot use an array, however,
because the individual pieces of information are of different data types. To store this type
of information as a single variable, you use something called a structure. A structure, or
struct, is an advanced, user-defined data type that uses a single variable name to store
multiple pieces of related information. Remember that a user-defined data type is another
way of referring to a class. This means that a structure is also a class. The individual
pieces of information stored in a structure are called elements, fields, or members. You

define a structure using the st ruct keyword and the following syntax:

struct structure name {
data type field name;

data type field name;

} variable name;

NOTE: You might also see structures referred to as record structures or data structures.

The structure name portion of the structure definition is the name of the new, user-
defined data type. You can use any name you like for a structure, as long as you follow
the same naming conventions that you use when declaring variables and functions.
Within the structure’s curly braces, you declare the data type and field names for each
piece of information stored in the structure, the same way you declare a variable and its
data type. The variable name portion of the structure declaration is optional and allows
you to create a variable based on the new structure when the structure is first declared. If
you omit variable name, then you can later declare a new variable in your code using the
structure name as the data type. The following code declares a structure for the mortgage
information, but does not assign a variable name at declaration because variable_name is

omitted:

struct Mortgage {
char szPropertyLocation[50];
int iPropertyValue;
double dDownPayment;
double dInterest;
short siTerms;
bool bClosingScheduled;

}i

After creating the preceding structure, you declare a new variable of type mortgage using
a statement similar to Mortgage vacationHome;. This statement instantiates a
Mortgage object named vacationHome. Recall that the terms variable and object are
used interchangeably. This means that a variable based on a structure is also an object. To
access the fields inside a structure variable, you append a period to the variable name,
followed by the field name using the syntax variable. field;. When you use a period to
access an object’s members, such as a structure’s fields, the period is referred to as the
member selection operator. You use the member selection operator to initialize or
modify the value stored in an object field. For example, to assign or modify the value
stored in a double field named dInterest in a Mortgage structure named
vacationHome, you use a statement similar to vacationHome.dInterest =

.08;.

The following code shows the same Mortgage structure definition followed by statements
that declare a new Mortgage variable named vacationHome and assign values to the

structure fields. Then the code shows statements that print the contents of each field:

#include <iostream>
#include <cstring>
struct Mortgage {
char szPropertyLocation[50];
int iPropertyValue;
double dDownPayment;
double dInterest;
short siTerms;
bool bClosingScheduled;
}i

void main () {

Instantiated —

Mortgage Mortgage vacationHome;
object

strcpy (vacationHome.szPropertyLocation, "Miami, Florida");

vacationHome.iPropertyValue = 250000;
vacationHome.dDownPayment = .2;
vacationHome.dInterest = .08;
vacationHome.siTerms = 30;
vacationHome.bClosingScheduled = true;
cout << vacationHome.szPropertyLocation << endl;
cout << vacationHome.iPropertyValue << endl;
cout << vacationHome.dDownPayment << endl;
cout << vacationHome.dInterest << endl;
cout << vacationHome.siTerms << endl;

cout << vacationHome.bClosingScheduled << endl;

You are not allowed to assign values to the fields inside the structure definition itself. For

example, the following code causes a compile error:

struct Mortgage {
char szPropertylLocation[50] = "Miami, Florida";
int iPropertyValue = 250000;
double dDownPayment = .2;
double dInterest = .08;
short siTerms = 30;
bool bClosingScheduled = true;

}i

You can, however, use an initializer list to assign values to a structure’s fields when you
declare a variable of the structure’s type. An initializer list is a series of values that are
assigned to an object at declaration. To use an initializer list, you must enclose the values you
want assigned to the structure’s fields within braces, separated by commas, and in the order in
which the fields are declared in the structure definition. For example, the following code
contains the employee structure definition, followed by the declaration of the

currentEmployee variable, which assigns initial values to the fields:

#include <iostream>
#include <cstring>
struct Mortgage {
char szPropertyLocation[50];
int iPropertyValue;
double dDownPayment;
double dInterest;

short siTerms;

bool bClosingScheduled; Initializer list

}i
void main () {
Mortgage vacationHome = {"Miami, Florida"™, 250000, .2,

.08, 30, true};

}

CAUTION: When using an initializer list to initialize a struct's members, you must list each value within
the brackets in the order that each member is declared in the struct definition. If you do not, then the

values you supply will be assigned to the wrong struct member. You will receive a compile error if you

list more initialization values than there are members in the struct. If you do not supply enough
initialization values, then the members you did not initialize will be assigned a value of zero.

NOTE: Although you can use string class variables with structures, you cannot initialize a structure's
string class variables using an initializer list. For this reason, any structure examples you see in this book
will use C-style string variables instead of string class variables.

NOTE: structures are part of the C programming language. However, they are widely used in Windows
programming; in fact, you will use structures extensively when you work with Windows programs later
in this text. In order to familiarize you with defining structures, you will now create a simple console
application that creates a structure named sportsCar, assigns values to a sportsCar variable, and
then prints the variable’s contents. The sportsCar structure will define fields of several different data

types that will contain the specifications of a particular sports car.

To create a simple console application that creates the sportsCar structure, assigns

values to a sportsCar variable, and then prints the variable’s contents:

1. Create a new Win32 Project named CarlInfo in the Chapter.04 folder in your
Visual C++ Projects folder. Be sure to clear the Create directory for Solution
checkbox in the New Project dialog box. In the Application Settings tab of the
Win32 Application Wizard dialog box, select Console application as the
application type, click the Empty project checkbox, and then click the Finish

button. Once the project is created, add a C++ source file named CarlInfo.

2. As shown in Figure 4-4, type the preprocessor directives that give the program
access to the iostream and cstring libraries along with the using directive that
designates the std namespace. Also, type the opening header for the main ()
function.

FIGURE 4-4: Opening statements added to CarInfo.cpp

Start Page CarInfo.cpp®
I (Globals) j I':':‘ rnain

finclude <iostream:>

gL

Add these I

four | #include <cstrings
statements using namespace std;
woid main() f

=
1 | 3

4. Inthe main () function body, define the following sportsCar structure, as

shown in Figure 4-5. Notice that the structure’s fields are of different data types.

FIGURE 4-5: sportsCar struct added to the main () function

Start Page CarInfo.cpp® | 4

[P
I‘aspartsc.ﬁr j I-:-;‘ j
=

#include <iostream:>
#include <cstrings
using namespace std;

Add the woid maini)
sportsCar struct sSportaCar {
structure here char szMake[Z5]:
char szModel[25] ;
< long lY¥ear:

int iDoors:
doukble dEngine:;

w
| | 3

5. Type the statements shown in Figure 4-6, which declare a new sportsCar

variable named myCar and assign values to the structure’s fields.

FIGURE 4-6: sportsCar variable declared and values assigned to the structure's fields

Start Page CarInfo.cpp® 4 x

I(Globals) j I':';‘ rnain j

char szModel[Z25]:
long l¥ear:
int iloors:

Add these double dEngine;?

statements to ri

declare the sportsCar myCar:

sportsCar SCropy(myCar.szMake, "Ford"™):
var.iable and stropyimyCar..szModel, "Mustang"):
assign values to myCar. l¥ear = 2000;

the structure's myCar.iboors = 2

myCar .dEngine = 4.5;
-
1| | 3

6. Finally, add the statements shown in Figure 4-7, which print the values assigned

to the structure’s fields. Also, type the main () function’s closing brace:.

FIGURE 4-7: Output statements and the main () function’s closing brace added to CarInfo.cpp

Skark Page EarInfu.l:pp*| 4k X

I(Gluhals} j I':'-.‘main j

wyCar.ilboors = 2;
myCar.dEngine = 4.5;

cout << "This is my car®™ << endl;
cout €< M- "< endl;
Print th I cout << "Make: " << myCar.scMake << endl:
m.l ¢ values \\ cout << "Model: " << myCar.szModel << endl:
assigned to the ~ <
5 cout << "Year: " << mycar.l¥ear << endl:;
structure’s fields
cout << "hoors: " << wyCar.ilDoors << endl:;
cout << "Engine: " << myCar.dEngine << " liters"
_ << endl << endl;
Add themain () |~
function's closing T~

brace

atl

1] |

7. Build and execute the CarInfo program. Figure 4-8 shows the output.

FIGURE 4-8: Output of the Car Info program

isual c++ projects’chapter.05% carinfo’'debug'.CarInfo.exe™

Model: Mustang
Year: 2000

Doors: 2

Engine: 4.5 liters

Prezs any key to continue_

8. Press any key to close the command window.

9. Close the CarInfo project by selecting Close Solution from the File menu.

Creating Classes with the class Keyword

The most important type of class used in C++ programming is defined using the class

keyword. For brevity, from this point forward classes defined with the class keyword

will be referred to simply as classes. You define classes the same way you define

structures, and you access a class’s data members using the member selection operator.

The following code shows an example of a class named Stocks:

class Stocks {

public:

}i

int iNumShares;
double dPurchasePricePerShare;

double dCurrentPricePerShare;

void main () {

Stocks stockValue;

stockValue.iNumShares = 500;

stockValue.dPurchasePricePerShare = 10.

785;

stockValue.dCurrentPricePerShare = 6.5;

The differences between the preceding class and the structure example you saw earlier are the
use of the class keyword and the public: label. The public: label determines default
accessibility to a class’s members. In fact, default accessibility is one of the only differences
between structures and classes. For now, you should understand that the accessibility to a
class’s members is what allows you to hide information, such as data members, from users of
your class. You will learn more about accessibility when information hiding is discussed later
in this chapter.
NOTE: Structures are left over from C programming. Classes are unique to C++ programming. In C
programming, structures do not support encapsulation because C programming is primarily a procedural
programming language, not object-oriented, as is C++. In C++ programming, however, structures do
support encapsulation, making them virtually identical to classes. This means that you can substitute the
struct keyword for any classes declared with the c1lass keyword. However, most C++ programmers

use the class keyword to clearly designate the programs they write as object-oriented C++ programs.

And because you are studying C++, you will define your classes with the c1ass keyword.

INFORMATION HIDING

One of the fundamental principals in object-oriented programming is the concept of
information hiding. Information hiding gives an encapsulated object its black box
capabilities so that users of a class can see only the members of the class that you allow
them to see. Essentially, the principal of information hiding states that any class
members that other programmers, sometimes called clients, do not need to access or
know about should be hidden. Information hiding helps minimize the amount of
information that needs to pass in and out of an object, which helps increase program
speed and efficiency. Information hiding also reduces the complexity of the code that
clients see, allowing them to concentrate on the task of integrating an object into their
programs. For example, if a client wants to add to her Accounting program a Payroll
object, she does not need to know the underlying details of the Payroll object’s member
functions, nor does she need to modify any local data members that are used by those
functions. The client only needs to know which of the object’s member functions to call

and what data (if any) needs to be passed to those member functions.

Now consider information hiding on a larger scale. Professionally developed software
packages are distributed in an encapsulated format, which means that the casual user—or even
an advanced programmer—cannot see the underlying details of how the software is developed.
Imagine what would happen if Microsoft distributed Excel without hiding the underlying
programming details. Most users of the program would be bewildered if they accidentally
opened the source files. Obviously, there is no reason why Microsoft would allow users to see
the underlying details of Excel, because users do not need to understand how the
underlying code performs the various types of spreadsheet calculations. Microsoft also
has a critical interest in protecting proprietary information, as do you. The design and sale
of software components is big business. You certainly do not want to spend a significant
amount of time designing an outstanding software component, only to have an

unscrupulous programmer steal the code and claim it as his or her own.

This same principal of information hiding needs to be applied in object-oriented programming,.
There are few reasons why clients of your classes need to know the underlying details of your
code. Of course, you cannot hide a// of the underlying code, or other programmers will never

be able to integrate your class with their applications. But you need to hide most of it.

Information hiding on any scale also prevents other programmers from accidentally
introducing a bug into a program by modifying a class’s internal workings. Programmers
are curious creatures and will often attempt to “improve” your code, no matter how well
it is written. Before you distribute your classes to other programmers, your classes should
be thoroughly tested and bug-free. With tested and bug-free classes, other programmers
can focus on the more important task of integrating your code into their programs using

the data members and member functions you designate.

To enable information hiding in your classes you must designate access specifiers for
each of your class members. You must also place your class code into separate interface

and implementation files. You will learn about these topics next.

Access Specifiers

The first step in hiding class information is to set access specifiers for class members.
Access specifiers control a client’s access to individual data members and member
functions. There are four levels of access specifiers: public, private, protected,
and friend. You will use the public, private, and friend access specifiers in this chapter.

In Chapter 7, you will learn about the protected access specifier.

The public access specifier allows anyone to call a class’s member function or to modify a data member. The
private access specifier prevents clients from calling member functions or accessing data members and is one
of the key elements in information hiding. Private access does not restrict a class’s internal access to its own
members; a class’s member function can modify any private data member or call any private member function.
Private access restricts clients from accessing class members. The private access specifier does not actually
hide class member definitions; it only protects them. To hide class member definitions, you must separate classes

into interface and implementation files, which you will learn about shortly.

NOTE: Both public and private access specifiers have what is called class scope: Class members of both
access types are accessible by any of a class’s member functions. In contrast, variables declared inside a member
function have local scope to the function only and are not available outside the function, even if the function is
declared with the pub1ic access specifier.

TIP: In Class View, the icons that represent private class members include a symbol that looks like a

padlock.

Access labels

You place access specifiers in a class definition on a single line followed by a colon,
similar to a switch statement’s case labels. An access specifier that is placed on a line by
itself followed by a colon is called an access label. The access privilege of any particular
access label is applied to any class members that follow, up to the next label. For
example, the following code contains a public and a private access label. The public label
declares two public data members, iNumShares and dPurchasePricePerShare,
and the private label declares a single private data = member,

dCurrentPricePerShare.

class Stocks {
public:
int iNumShares;

double dPurchasePricePerShare;

\\\\\ private:

double dCurrentPricePerShare;

}i

Access labels can be repeated, although most programmers prefer to organize all of their
public class members under a single public access label, and all of their private class
members under a single private access label. However, the following code organization

with its two public access labels is legal:

class Stocks {
public:
int iNumShares;
private:
double dCurrentPricePerShare;
public:

double dPurchasePricePerShare;

}i

TIP: It is common practice to list public class members first in order to clearly identify the parts of the

class that can be accessed by clients.

The default access specifier for classes is private. If you exclude access specifiers from
your class definition, then all class members in the definition are private by default. For
example, because the following class definition does not include any access labels, the

three data member definitions are private by default:

class Stocks {
int iNumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;
i
If you have some reason for making all of your class members private, you should
include a private access label to make it clear how you intend for the class members to be
used. Many programmers prefer to make all of their data members private to prevent
clients from accidentally assigning the wrong value to a variable or from viewing the
internal workings of their programs. Or, they simply want to prevent curious clients from
modifying the various parts of their program. Even if you do not need to make it clear for
yourself, you should include an access label in case other programmers need to modify
your work.

NOTE: Default class member access is one of the major differences between classes and structures in

C++. Access to classes is private by default. Access to structures is public by default.

Even if you make all data members in a class private, you can still allow clients of your
program to retrieve or modify the value of data members by using accessor functions.
Accessor functions are public member functions that a client can call to retrieve or modify the
value of a data member. Because accessor functions often begin with the words get or set, they
are also referred to as get or set functions. Get functions retrieve data member values; set
functions modify data member values. To allow a client to pass a value to your program that
will be assigned to a private data member, you include arguments in a set function’s header
definition. You can then write code in the body of the set function that validates the data passed
from the client, prior to assigning values to private data members. For example, if you write a
class named Payroll that includes a private data member containing the current state income-
tax rate, then you could write a public accessor function named getStateTaxRate () that
allows clients to retrieve the variable’s wvalue. Similarly, you could write a
setStateTaxRate () function that performs various types of validation on the data passed
from the client (such as making sure the value is not null, is not greater than 100%, and so on)

prior to assigning a value to the private state tax rate data member.

Interface and Implementation Files

Although the first step in information hiding is to assign private access specifiers to class
members, private access specifiers only designate which class members a client is not
allowed to call or change. Private access specifiers do not prevent clients from seeing class
code. To prevent clients from seeing the details of how your code is written, you place your
class’s interface code and implementation code in separate files. The separation of classes into
interface and implementation files is a fundamental C++ software development technique
because it allows you to hide the details of how your classes are written and makes it easier to

modify programs.

Interface code refers to the data member and member function declarations inside a class
definition’s braces. Interface code does not usually contain definitions for member functions,
nor does it usually assign values to the data members. Declarations are statements that only
declare data members without assigning a value to them, such as double
dCurrentPricePerShare;, or function prototypes such as double getTotalValue() ;.
You create interface code in a header file with an .h extension. The interface code should be the
only part of your class that a client can see and access. In effect, the interface is the “front door”

to your program.

Implementation code refers to a class’s function definitions and any code that assigns
values to a class’s data members. In other words, implementation code contains the actual
member functions themselves and assigns values to data members. You add
implementation code to standard C++ source files with an extension of .cpp. You give the
implementation code access to the interface code by importing the header file into the
C++ source file using an #include directive, just as you would import a header file from
the C++ run-time library. However, instead of placing the header file name within a set of
angle brackets (as you would with a header file from the C++ run-time library), you must
place the name of a custom class within a set of quotation marks and include the .h
extension. For example, you give the Stocks class implementation file access to the
Stocks class interface file using the statement "stocks.h" (assuming the Stocks class
interface code is saved in a file named stocks.h).

TIP: If you are familiar with the Java programming language, then you know that Java files must use the
same name, including letter case, as the class they contain. In C++, however, you are not required to

name your interface or implementation files with the same name and letter case as the class name.

C++ source files are distributed in compiled format, whereas header files are distributed as
plain text files. Thus, clients who use your code can see only the names of data members and
member functions. Clients can use and access public class members, but they cannot see the
details of how your code is written. Without this ability to hide implementation details, clients
could easily get around restrictions you place on class members with the private access
specifier by copying your code into a new class file, and changing private access specifiers
to public.

CAUTION: If you are using classes only to make your own code more efficient and have no intention of
distributing your classes to others, you can place both the declarations and definitions into the same file.
However, this is not considered to be good programming practice, because the separation of interface
and implementation is a fundamental C++ software development technique. Additionally, if you change
your mind and decide to distribute your class to others, you would need to go back and separate the class

into interface and implementation files.

Now you will examine the RetirementPlanner.cpp implementation file that the Generic C++
Class Wizard automatically added for you. Note that some of the examples of implementation
files you have seen in this chapter have included their own main () functions. Although you
can add executable class code by including a main () function in an implementation file, you
are not required to. For example, the RetirementPlanner.cpp implementation file will not
include a main () function. Instead, the RetirementPlanner.cpp implementation file will be

called by the CalcSavings.cpp file’smain () function.

Modifying a Class

Hiding implementation details is reason enough for separating a class’s interface from its
implementation. But, another important reason for separating a class into interface and
implementation files is to make it easier to modify a program at a later date. When you
modify a class, interface code, such as class member declarations, should change the
least. The implementation code normally changes the most when you modify a class. This
rule of thumb is not carved in stone because you may find it necessary to drastically
modify your class’s interface. But for the most part, the implementation is what will

change.

No matter what changes you make to your implementation code, the changes will be invisible
to clients if their only entry point into your code is the interface—provided the interface stays
the same. Designing your code so that modifications are made to the implementation code and
not the interface code means that if you make any drastic changes or improvements to your
class, you only need to distribute a new .cpp file to your clients, not a new interface file. Be
aware, however, that if you modify class member declarations or add new declarations to

expand the program’s functionality, you may also need to distribute a new header file.

If the public interface class members stay the same, then clients do not need to make any
changes to their code in order to work with your modified class. For instance, consider the
Payroll object discussed earlier. The Payroll object may contain a public function member
named calcFederalTaxes () that calculates a paycheck’s federal tax withholding based
on income-tax percentages published by the Internal Revenue Service. If the Internal Revenue
Service changes any of the income-tax percentages, then you will need to modify the private
data members within the calcFederalTaxes () function. Clients, however, do not need
to be concerned with these details; they will continue to call the public
calcFederalTaxes () function as usual. For these types of changes, you would not need
to distribute a new interface file to your clients. You would need to distribute only a new

implementation file containing the modified calcFederalTaxes () function.

VISUAL C++ CLASS TOOLS
You can work with class header and source files using the Solution Explorer window, in the
same manner that you work with C++ files that are not class-based. However, Visual C++

includes various tools that make it easier to work with the classes in your programs.

Although you have been working with the Code Editor window for some time now, it has
a few additional class features that are worth examining. Figure 4-9 shows an example of
the Retirement Planner project open in the Code Editor window. The Navigation bar at the
top of the Code Editor window contains two combo boxes that you can use to navigate to
a particular class or its members. The Types combo box at the left of the Navigator bar
allows you to select a class name or global, which displays global declarations that are
not associated with a particular class. The Members combo box at the right of the
Navigator bar allows you to select a class member or global declaration, depending on

what is selected in the Types combo box.

Once your projects begin to include multiple files, you will find it helpful to use tabs at the top
of the Code Editor window to navigate to an open file. Figure 4-9 points out the tabs in the
Code Editor window for each of the opened files, along with the tab for the Start Page window.

FIGURE 4-9: The Code Editor window with the contents of the Members combo box displayed

Open C++ code files

Start Page tab

/ Members combo box

Staﬁ:\:age | RetirementPlanner.h RetirementPlanner.cpp | CalcSavings.cpp | / 4 b X
Jflg‘RetirementPlanner j |'='=§RetirementPIanner / j
Types combo box / #include "RetirementPlanner.h" :
RetirementPlanner: :RetirementP lanner ':'-.:calcFuture'u'aIue 5
dContribution = 0O: =@ calcPresentvalue
TRt erestRate =igs =63 getInterestEarned
dInterestEarned = 0; ':’.:SBEEDH:’I'JUUDI‘I I
=@ setCurdge
1YERESOUTARVIHG: il -_-.‘setInFIat?on
diurunelabuey 2all: =fpsetinterestRate
dPresentWalus = 0; dpsetRetireane

dInflation = 0;
iCurlge = 02

iRetiredge = 0O;
dInflation = 0;

} -
4| | 3

HELP: By default, the Start Page window also displays as a tab next to any open files in the Code Editor

window, but you can easily close it by clicking its Close button.

TIP: Another Visual C++ tool that you may find useful is the Object Browser window, which allows
you to examine class members and other programming elements that are contained within objects that
are used by your program. To manually display the Object Browser window point to the Other Windows

submenu on the View menu and click Object Browser, or press Ctrl+Alt+].

Class View

The Class View window displays project files according to their classes and is similar to
the Solution Explorer window. However, whereas Solution Explorer displays a
hierarchical list of all projects, folders, and files in the solution, Class View displays
hierarchical lists of classes and the members they contain. You primarily use Class View
to navigate through the declarations and definitions of class members. An icon represents
each of the various items displayed in Class View. Double clicking a data member's icon
brings you to its declaration in the class header file. Double clicking a member function's

icon brings you to its definition in the class source file.

[TIP] See the Class View and Object Browser Icons topic in the MSDN Library for a complete list

of icons that display in Class View.

NOTE: You can also right-click a class member in Class View and select from the shortcut menu one of

the navigation or sorting commands listed in Figure 4-10.

FIGURE 4-10: Navigation and Sorting commands available in Class View

Command

Description

Go To Definition

Opens the C++ file containing the member definition in the Code
Editor window and places the insertion point in the definition

statement

Go To Declaration

Opens the C++ file containing the member declaration in the
Code Editor window and places the insertion point in the

declaration statement

Browse Definition

Displays the selected class member in Object Browser

Quick Find Symbol

Searches for a symbol (which is an object such as a class or its

members) according to criteria you previously entered in the Find
Symbol Dialog box; You can open the Find Symbol dialog box
by pointing to Find and Replace on the Edit menu and clicking

Find Symbol, or by pressing Ctrl+Shift+Y

Sort Alphabetically Sorts the items displayed in Class View alphabetically

Sort By Type Sorts the items displayed in Class View by data type

Sort By Access Sorts the items displayed in Class View according to their access
specifier

Group By Type Groups the items displayed in Class View by data type

TIP: The shortcut menu in Class View also includes a copy command, which allows you to copy a
member declaration, and a Properties command, which displays the Properties window for the selected
member.

HELP: The commands displayed on the shortcut menu in Class View will change, depending on the
type of icon you select. The Go To Declaration command, for instance, is unavailable if you right-click a
data member.

TIP: The Class View toolbar that displays at the top of the Class View window contains two buttons:
Class View Sort By Type and New Folder. The Class View Sort By Type button displays the same sort
commands that are listed in Figure 4-10. The New Folder button allows you to create "virtual folders"

that you can use to organize the various items listed in the Class View window.

Next, you will use the Class View window to navigate through the class members in the
Retirement Planner program you opened in the chapter preview.

To use the Class View window to navigate through the class members in the Retirement Planner

program you saw in the chapter preview:

1. Open the RetirementPlanner project from the Chapter4 RetirementPlanner

folder in the Chapter.04 folder on your Data Disk.

2 Select ClassView from the View menu or press Ctrl+Shift+C. If ClassView is
already open, you can simply click the ClassView tab next to the Solution

Explorer tab.

3. The first item in the Class View window is a project icon for the
RetirementPlanner project. Click the Plus box next to the project icon to expand
its contents. You should see three items: Global Functions and Variables,
Macros and Constants, and RetirementPlanner. The Global Functions and
Variables item lists any global functions, such as the main () function, and
global variables that you declare in a project. The Macros and Constants item
lists any macros and constants that your project uses or defines. A macro
represents C++ code, constants, and other programming elements and is defined
using the #define preprocessor directive. You will learn about macros in Chapter
9. The RetirementPlanner item in ClassView represents the RetirementPlanner
class. Click the Plus box next to the RetirementPlanner class icon. You should
see a list of the RetirementPlanner class members, as shown in Figure 4-11.

FIGURE 4-11: RetirementPlanner class members in ClassView

lass Yiew - Chapterd_RetirementPlanner

¥a - |

El--@ Chapter4_RetirementPlanner -

Elalg RetirementPlanner

= calcFutureValuedvaid)
-z calcPresentyalueyoid)
=8 getInterestEarned|void)
=8 RetirementPlanner(void)

=8 setContribution{dauble dContribute)
=8 sebCurfgelint idgehow)
=4 setInflation{double dInflate)

RetirementPlanner N
class members

=4 setinkerestRateldouble dinterest)

=@ setRetiredgelint ibgeThen)

----- 2 dCantribution

----- g dFuturevalue

----- E'I@ dInflation

----- E'I@ dinterestEarned

----- E'I@ dInkterestRate b
----- 2 dPresentyalue

----- g® iCurfige
P

@ Saolution Explorer E’ Class Yiew Fesource Yiew |

4. Double-click the first class member, calcFutureValue (void), whichis a
member function of the RetirementPlanner class. The RetirementPlanner.cpp
source file should open in the Code Editor window and the definition for
calcFutureValue (void) function should be selected. For now, do not
worry about the coding syntax for the classes, statements, and functions; just

focus on the class navigation techniques.

5. Next, right-click the calcFutureValue (void) member in Class View and
select Go To Declaration from the shortcut menu. The RetirementPlanner.h
header file should open in the Code Editor window and the declaration statement

for the calcFutureValue (void) function should be selected.

6. Close the RetirementPlanner project by selecting Close Solution from the File
menu. In the next exercise, you will start creating the Retirement Planner
program from scratch.

[NOTE] This project contains only one class named RetirementPlanner. If it contained additional

classes, they would be located in an alphabetical list beneath the project icon.

Code Wizards

As you start building more complex projects, you may find it somewhat tedious to add all
of the necessary code for a specific C++ programming element. For instance, to add a
single member function to a class, you need to declare the function prototype in the
header file and define the function in a separate source file. If your function prototype and
the header in your function definition do not match exactly, you will receive a compile
error when you attempt to build the project. In order to make it easier to add code to your
projects, Visual C++ includes code wizards, which automate the task of adding specific
types of code to your projects. You have already worked with several code wizards,
including the Add New Item command. Listed below are some additional code wizards
that are designed specifically for classes:

* Add Class Wizard
* Add Member Function Wizard

* Add Member Variable Wizard

The Add Member Variable Wizard is of most use when working with MFC programs, so
it will not be discussed until Chapter 9. The code wizards that will be examined in this

chapter are the Add Class Wizard and Add Member Function Wizard.

CAUTION: Code wizards do not remove the need for you to understand how your code operates—they
only assist you by adding the basic parts of each code element. It is still up to you to add the necessary

code to give your program its functionality.

The Add Class Wizard

You can run the Add Class Wizard from anywhere in your project by selecting Add Class from
the Project menu. Running the Add Class Wizard displays the Add Class dialog box shown in
Figure 4-12.

FIGURE 4-12: The Add Class dialog box

Add Class - RetirementPlanner

Categaries: Templakes:

-5 Wisual CH+

Lafln |

ATL OLEDE ATL
Provider Performanc. ..

¥
ATL Server ATL Simple
Weh Service Chject

i
MFC Class MFC Class MFC Class =
From Ackiv... From Typelib

Adds a generic C++ class,

5

En Zancel Help |

When you use the Add Class Wizard to add a class to a Visual C++ project, Visual C++
should be selected by default in the Categories pane. The Templates pane displays a list
of the various types of classes that can be added with the Add Class code wizard. The
Templates option you will use in the next few chapters will be the Generic C++ Class
option, which adds to a project a regular C++ class (as opposed to an MFC class or other
type of class. Once you select a class type in the Add Class Wizard dialog box and press
the Open button, the class wizard for your selected option executes. When you select the
Generic C++ Class option, for instance, the Generic C++ Class Wizard dialog box

appears.

Figure 4-13 shows an example of the Generic C++ Class Wizard dialog box. You type the
name of your new class in the Class name text box. As you type the class name, the
Generic C++ Class Wizard uses the class name you type as the suggested names for the
header and source files. Although you can change the names of the header and source
files if you want, it is usually easier to use the class name as the name of its header and
source file. You use the Base class text box to designate another class upon which to base
the new class. The Access combo box determines the accessibility (public, private, and so
on) that the new class will have to the members in its base class. The Virtual destructor
check box creates a virtual destructor in the new class, which helps ensure that the correct
destructor executes when objects of classes that are based on other classes are deleted.
The Inline check box creates the class definition code in the same file (with an extension
of .h) as the declaration code. Although creating a class's declaration and definition code
in the same file may make it easier to manage your class, it removes the ability to use
information-hiding techniques.

FIGURE 4-13: The Generic C++ Class Wizard dialog box

NOTE: You will learn about base classes and destructors when you study inheritance techniques in

Chapter 7.

Add Member Function Wizard

To run the Add Member Function Wizard, you click the Add Function command on the
Project menu if you have a class icon selected in Class View. Alternatively, you can right-click
a class icon in Class View, and select the Add Function command from the Add submenu on

the shortcut menu.

After you run the Add Function command, the Add Member Function Wizard dialog box
appears. You enter the name of the new function (without the parentheses) in the Function
name text box. As you build the function, its declaration enters automatically into the
Function signature text box at the bottom of the dialog box. You select a function's return
type from the Return type combo box. To add a parameter, you select its type from the
Parameter type combo box, type a name for the parameter in the Parameter name text
box, and then click the Add button. The new parameter will appear in the Function
signature text box at the bottom of the dialog box. You can then repeat the same steps to
add additional parameters to the function. You can continue adding additional parameters,
or remove a parameter by highlighting it in the Parameter list and clicking the Remove
button. You select the function's access specifier from the Access combo box. The Static,
Virtual, Pure, and Inline check boxes create advanced member function features that you
will study later. The .cpp file box identifies the implementation file where the Add
Member Function Wizard will create the function definition; by default, this is the .cpp

file of the class to which the function is added.

TIP: For the Return type and Parameter type combo boxes, you can select a data type from the list or
manually type an entry into the text portion of each combo box. You can also add a comment to the

function using the Comment text box.

The function being added with the Add Member Function Wizard in Figure 4-14 does not
include any parameters. However, notice that the definition in the Function signature text
box contains the void keyword between the function's parentheses. A parameter value of
void simply indicates that the function takes no parameters and is equivalent to leaving
the function's parentheses empty. The Add Member Function Wizard adds the void
keyword to make it explicitly clear that the function does not take parameters. You can
add the void keyword in the parameter list for any functions you manually create that do
not accept parameters, although it is not necessary to do so. However, keep in mind that
any functions you add to your project with the Add Member Function Wizard that do not
include functions will be created with the void keyword between the function's
parentheses. For example, after clicking the Finish button in Figure 4-14, the Add

Member Function Wizard creates the following function definition:

double Payroll::calcFederalTaxes (void)

{

return 0;

One last thing to note is that when you create a function that returns a value, the Member
Function Wizard automatically adds a default return statement for you. For example, the
preceding function is automatically created with a return statement of return 0;. You
change this statement to whatever value you need returned from your function. The
calcFederalTaxes () function, for instance, may return a double variable named
dTaxResults. Therefore, you would change the return 0; statement to return

dTaxResults;.

Next, you will begin working on the Retirement Planner program. First you will create the
project, and then you will use the Add Class Wizard to add the RetirementPlanner class to the
project. Shortly, you will use the Add Member Function Wizard to add member functions to

the RetirementPlanner class.

To begin working on the Retirement Planner program:

1. Return to Visual C++.

2. Create a new Win32 Project named RetirementPlanner in the Chapter.04
folder in your Visual C++ Projects folder. Be sure to clear the Create directory
for Solution checkbox in the New Project dialog box. In the Application
Settings tab of the Win32 Application Wizard dialog box, select Console
application as the application type, click the Empty project checkbox, and then

click the Finish button.

3. Once the project is created, select Add Class from the Project menu to start the
Add Class Wizard. The Add Class dialog box appears. If necessary, select Visual
C++ in the Categories pane (it should be selected by default). The Templates
pane displays a list of the various types of classes that can be added with the Add
Class code wizard. Scroll through the list and select the Generic C++ Class

option, then click the Open button.

4. After you click the Open button, the Generic C++ Class Wizard dialog box
appears. Type RetirementPlanner in the Class name text box. Leave the Base
class text box empty and the Access combo box set to its default setting of
public. Make sure the Virtual destructor check box and Inline check boxes are
cleared and click the Finish button. Figure 4-15 shows how the Generic C++
Class Wizard dialog box should appear before selecting the Finish button.

FIGURE 4-14: The Generic C++ Class Wizard dialog box when adding the RetirementPlanner class

Generic C++ Class Wizard - RetirementPlanner

Welcome to the Generic C+ + Class Wizard

This wizard adds a C++ class that does not inherit fram ATL or MFC ko wour project,

Class name: b Eile: .cpp Files
IRetirementF‘Ianner IRetirementPIanner.h _I |RetirementF‘Ianner.n:pp _I
Base class: Access:
| [public =] I virtual destructor
I nline
Finish Zancel Help

5. After you click the Finish button, the Generic C++ Class Wizard creates the
RetirementPlanner class header file (RetirementPlanner.h) and source file
(RetirementPlanner.cpp). After the wizard finishes creating the files, the
RetirementPlanner.h header file opens in the Code Editor. The first statement
you see, #pragma once, is a preprocessor directive that prevents multiple
instances of the same header file from being included when you compile the
project. Multiple inclusion will be covered later in this chapter. The Generic C++
Class Wizard also creates the class declaration shown in Figure 4-15. The first
statement within the public section of the class declaration is a constructor,
which is a special function with the same name as its class that is called
automatically when an object from a class is instantiated. The second statement
within the public section of the class declaration is a destructor, which is another
special function with the same name as its class, but preceded by a tilde (~), that
is called automatically when an object from a class is destroyed. You will learn
about constructors later in this chapter. You will learn about destructors in
Chapter 7.

FIGURE 4-15: RetirementPlanner header file

-
b

Start Page RetirementPlanner.h RetirementPIanner.cpp| q

Preprocessor I% RetirementPlanner j I':':‘RetirementPIanner
directive that
prevents multiple
inclusion

g

~ fipracmwa once

class FetirementPlanner

H

Constructor —_— public:

T RetirementPlanner (void) :
. | — ~RetirementPlanner (void) :
b

Destructor

6. In the Code Editor window, click the RetirementPlanner.cpp tab. Your Code
Editor window should appear the same as Figure 4-16. You can see that the
Generic C++ Class Wizard automatically added the # include
"RetirementPlanner.h" statement to import the RetirementPlanner.h
header file. Also, notice that the wizard added empty definitions for the
RetirementPlanner constructor and destructor functions. For now, do not worry
about what the constructor and destructor functions do or how they are set up.
Simply familiarize yourself with the code that the Generic C++ Class Wizard
adds for you automatically. You will learn how to add member functions to a
class shortly.

FIGURE 4-16: RetirementPlanner.cpp file in the Code Editor window

click here to display the
RetirmentPlanner.cpp
implementation file

. i s i \ y ings.cpp® q4 b X
Statement that imports the Start Page | RetirementPlanner. b* RetirementPlanner.cpp | CalcSavings.cpp
RegistrationPlanner.h \I(lgRetirementPlanner j I':'-‘RetirementPIanner j
header file - -
f#iinclude "retirementplanner.h" g
FEetirementPlanner: :RetirementFlanner (wvoid)
Constructor i
function 1
definition
FetirementPlanner: :~RetirementF lanner (void)
= mt
Destructor |
. i
function
definition L
-
1| | 3

Next, you will add public and private labels to the RetirementPlanner.h file, along with

some declarations for private data members.

To add private labels to the RetirementPlanner.h file, along with some declarations for

private data members:

1. Return to the RetirementPlanner.h file in the Code editor window.

2. Add the private label and private data members to the RetirementPlanner.h file
as shown in Figure 4-17. Later you will add member function declarations to the
public section that will modify and retrieve the data members declared in the

private section.

FIGURE 4-17: RetirementPlanner.h after adding private section and private data members

Start Page RetirementPlanner.h* | RetirementPlanner .cpp | CalcSavings. cpp® | 1pb X

I&lg RetirermentPlanner j I':'-. ~RetirementPlanner j

class RetirementFPlanhner

i

pukblic:

FetirementP lanner (void) ;

\\\\ ~RetirementPlanner (wvoid):
private:

" double dContrilbution;
douhle dInterestRate;
doukhle dInterescEarned;
int i¥earsOfSaving:
doubhle dFutureValue;
douhle dPFresentValue;
doubhle dInflation;
int icCurldge:

_int iRetirehlge;

-
4] | r

Next you will start creating the CalcSavings.cpp file, which will contain the program’s

AQd this ~_
private label

Add these —_— <
data members

main () function. In the main () function, you will declare a RetirementPlanner object and

use that object to access data members and member functions in the RetirementPlanner class.
To start creating the CalcSavings.cpp file:

1. Add a new C++ source file named CaleSavings.cpp to the RetirementPlanner

project.

2. Before you can instantiate an object of a class, you must first include the class’s
header file in your .cpp file, just as you would include any other header files you
need in your program. With custom classes that you write yourself (as opposed
to the runtime classes that are part of Visual C++), you must enclose the header
file name within quotation marks instead of brackets, and include the file's .h
extension. Type the statements shown in Figure 4-18 to include the iostream
class and the RetirementPlanner class, along with the using directive that

designates the std namespace.

FIGURE 4-18: CalcSavings.cpp file after adding header files, an include statement, and a main ()

function

Statement that
includes the header file
for the
RetirementPlanner
class

Statement that declares
a RetirementPlanner
object named savings

Start Page | RetirementPlanner.h | FetirementPlanner.cpp - CalcSavings.cpp® 4 b X

I(Glu:ubals]l j I':'-.main j

#include <iostream:>

rs
using namwespace std; —

#include "RetirementFlanner.h™
wvold main() 4

FetirementPlanner savings:
H

-
1 | »

3. Also as shown in Figure 4-19, add amain () function that includes a single

statement that declares a RetirementPlanner object named savings.

PREVENTING MULTIPLE INCLUSION

Larger class-based programs are sometimes composed of multiple interface and
implementation files. With larger programs, you need to ensure that you do not include
multiple instances of the same header file when you compile the program, because
multiple inclusions will make your program unnecessarily large. Multiple inclusions of
the same header usually occur when you include one header into a second header, and

then include the second header in an implementation file.

Visual C++ generates an error if you attempt to compile a program that includes multiple
instances of the same header. To prevent multiple inclusions prior to compilation, the Generic
C++ Class Wizard adds the #pragma once statement to a class header file. A pragma is a
special preprocessing directive that can execute a number of different compiler instructions.
The once pragma instructs the compiler to include a header file only once, no matter how
many times it encounters an #include statement for that header in other C++ files in the project.
If you examine the RetirementPlanner.h header in your Code Editor window, you will see that

the #pragma once statement is the first line of code in the file.

TIP: You can view a list of pragma directives that C++ supports in the Pragma Directives topic in the

MSDN Library.

Pragmas are compiler specific; you will not find the same pragmas support in different C++
compilers. Visual C++, for instance, supports the pragma once directive. However, other C++
compilers consider the pragma once directive to be obsolete. To prevent multiple inclusion,
these other compilers use the #define preprocessor directive with #if and #endif preprocessor
directives in header files. You first learned how to use the #define preprocessor directive in
Chapter 2 to define a constant. The #if and #endif preprocessor directives determine
which portions of a file to compile depending on the result of a conditional expression. All
statements located between the #if and #endif directives are compiled if the conditional

expression evaluates to true. Each #1 £ directive must include a closing #end1i f directive.

NOTE: The #1if and #endi f preprocessor directives are similar to the CODE]1i f statements you

learned how to use in Chapter 3.

The following code shows the syntax for the #1if and #endif preprocessor directives.
Notice that unlike the conditional expression for standard if statements, the conditional

expression for #if and #endif directives is not enclosed within parentheses.

#if conditional expression
statements to compile;

#endif
To prevent multiple inclusions of header files, you use the #define directive to declare a
constant representing a specific header file. Each time the compiler is asked to include that
header file during the build process, it uses the defined constant expression with the #if
directive to check if a specific header file’s constant exists when you build a project. The
defined constant expression returns a value of true if a particular identifier is defined or a
value of false if it is not defined. The syntax for the defined constant expression is
#defined (identifier). To see if an identifier has not been defined, add the not operator

(1) before the defined expression.

TIP: Common practice when defining a header file’s constant is to use the header file’s name in

uppercase letters appended with H. For example, the constant for the stocks . h header file is usually

defined as STOCKS H.

If a header file’s constant has not been defined, statements between the #1f and #endif
directives define the constant, and any statements preceding the #endif directive are
compiled. If a header file’s constant has already been defined, however, all statements
between the #1f and #endif directives are skipped, preventing a multiple inclusion.
Figure 4-19 shows how to add code to the header file that prevents multiple inclusions of

the Stocks class.

FIGURE 4-19: Header file with preprocessor directives that prevent multiple inclusions

#if !defined(STOCKS H)

#define STOCKS H
class Stocks {

private:

int iNumShares;

double dPurchasePricePerShare;

double dCurrentPricePerShare;

}i

#endif

The once pragma is much easier to use than the #if and #endif directives. However, you
should be familiar with how to use the #if and #endif directives to prevent multiple
inclusion, especially if you ever work with a C++ compiler that does not support the once
pragma. For practice you will replace the once pragma in the RetirementPlanner header
file with #if and #endif directives to prevent multiple inclusion in the RetirementPlanner

class.

To replace the once pragma in the RetirementPlanner header file with #if and #endif

directives to prevent multiple inclusion in the RetirementPlanner class:
1. Return to the RetirementPlanner.h header file in the Code Editor window.

2. Delete the once pragma statement, as shown in Figure 4-20.

Figure 4-20: Delete the once pragma statement from the RetirementPlanner.h header file

Delete this
statement

Skart Page RetirementPlanner.h® | RetirernentPlanner, cpp | ZalcSavings.cpp | 1k X

I&I; RetirementPlanner j I':':.RetirementF‘Ianner j

fipragma once

class RetirementPlanner
{
public:
FetirementP lanner (void) ;
~RetirementPlanner (void) ;
private:
double dContribution: i

2. Add the #1 f and #endi f directives shown in Figure 4-21.

FIGURE 4-21: #1if and #endi f directives added to RetirementPlanner.h

Skart Page RetirementPlanner.b® | RetirementPlanner.cpp | CalcSavings. cpp | 4 b X
I%Retirementplanner j I':':QmRetirementF‘Ianner j
Add these two < - -
statements T \l#lf 'defined (RETIREMENT H) =
#define RETIREMENT H el
class RetirementP lanner
i
pubilic:
RetirementPlanner (woid) ;!
~RetirementP lanner (void)
private:
double dContribution;
double dInterestRate;
double dInterestEarned:;
int iVearsOfIaving:
double dFutureValue;
double dFresentWValue;
doulble dInflation:
int iCurige:
int iRetirelge;
Add this ~ [
statement T~ #enaiz =
T | of
MEMBER FUNCTIONS

Because member functions perform most of the work in a class, you will learn about the
various techniques associated with them. As you saw earlier, you declare functions in an
interface file, but define them in an implementation file. Member functions are usually
declared as public, but they can also be declared as private. Public member functions can
be called by anyone, whereas private member functions can be called only by other

member functions in the same class.

You may wonder what good a private function member would be because a client of the
program cannot access a private function. Suppose your program needs some sort of
utility function that clients have no need to access. For example, your program may need
to determine an employee’s income-tax bracket by calling a function named
calcTaxBracket (). To use your program, the client does not need to access the
calcTaxBracket () function. By making the calcTaxBracket () function

private, you protect your program and add another level of information hiding.

In order for your class to identify which functions in an implementation file belong to it
(as opposed to global function definitions), you precede the function name in the function
definition header with the class name and the scope resolution operator (::). For example,
to identify the getTotalValue () function in an implementation file as belonging to
the Stocks class, the function definition header should read double Stocks::
getTotalValue (int iShares, double dCurPrice) . Figure 4-22 shows both the
interface and implementation files for the Stocks class. The getTotalValue ()
function’s prototype is declared in an interface file named stocks.h, whereas the
getTotalValue () function definition is placed in an implementation file named

stocks.cpp.

FIGURE 4-22: Stocks class interface and implementation files

// stocks.h
class Stocks {
public:

double getTotalValue (int iShares, double dCurPrice);

. Interface file
private:

int iNumShares;

double dCurrentPricePerShare;

double dCurrentValue;
}i

// stocks.cpp

#include "stocks.h" Implementation file

#include <iostream>
using namespace std;

double Stocks::getTotalValue (int iShares, double dCurPrice) {

iNumShares = iShares;
dCurrentPricePerShare = dCurPrice;
dCurrentValue = iNumShares * dCurrentPricePerShare;

return dCurrentValue;

}

void main () {

Stocks stockPick;

Even though the member functions of a class may be defined in an implementation file
separate from the interface file, as long as the functions include the class’s name and the scope
resolution operator, they are considered to be part of the class definition. Just think of the

declarations and definitions that compose your class as being spread across multiple files.

Next, you will use the Add Member Function Wizard to add member function declarations and
definitions to the RetirementPlanner class. The RetirementPlanner class uses five functions for
setting the values of private data members: setContribution(),
setInterestRate (), setCurAge (), setRetireAge (), and setInflation().
Two other functions, calcFutureValue () and calcPresentValue (), perform the
actual calculations that give the Retirement Planner program its functionality. The
calcFuturevValue () function returns the future value of an investment based on the
amount invested each year, the yearly annual interest on the investment, and the number of
years spent saving for retirement. The number of years spent saving for retirement is calculated
by subtracting the age you started saving from the age you retire. The
calcPresentValue () function adjusts the future value of an investment for inflation. An
accessor function, getInterestEarned (), returns the total amount of interest earned on
retirement savings. The getInterestEarned () function is a typical get function that
returns to the client the value of a private data member. Note that you will not learn how the
functions perform the calculations because algebra is not the purpose of your studies. However,
if you examine the formulas closely, you will see that they are structured using typical C++

operators.

To use the Add Member Function Wizard to add member function declarations and definitions

to the RetirementPlanner class:

1. Open Class View by selecting Class View from the View menu, or by pressing

Ctrl+Shift+C.

2. First, you will add the setCurAge () function. Click the RetirementPlanner
icon once and then select Add Function from the Project menu. Alternatively,
you can right-click the RetirementPlanner icon and select Add Function from
the Add submenu on the shortcut menu. The Add Member Function Wizard

dialog box displays.

3. In the Add Member Function Wizard dialog box, select a return type of void
from the Return type combo box and enter setCurAge (without the
parentheses) in the Function name text box. Notice as you build the function that
its declaration enters automatically into the Function signature text box at the
bottom of the dialog box. The setCurAge () function includes a single
int parameter named iAgeNow. To add this parameter, select int from
the Parameter type combo box, type iAgeNow in the Parameter name text box,
and then click the Add button. After you click the Add button, the new
parameter appears in the Parameter list and in the Function signature text box.
Leave the remainder of the dialog box options as they are. Because the
iAgeNow function includes only a single parameter, you can click the Finish
button. Figure 4-23 shows the Add Member Function Wizard dialog box as it
should appear before you click the Finish button.

FIGURE 4-23: Adding the 1 AgeNow Function with the Add Member Function Wizard dialog box

Add Member Function Wizard - RetirementPlanner

Welcome to the Add Member Function Wizard

This wizard adds a member function to a class, skruck, ar union.

]|

Return bype: Function name:

I woid j IsetCur.ﬁ.ge

Parameter type: Parameter name:

Parameter lisk:

Iint j |

Remove |

W

add |
Access: | | Skatic 1 | Wirbual 1 | Pure cpp file:
Ipul:uliu: ;I mi Iretirementplanner.cpp _I
Comment {ff notation not required):
Funckion signature:
I\ﬂ:uiu:l sekCurdgeling idgehow)
Finish Cancel

4. After you click the Finish button, the Add Member Function Wizard creates the
setCurAge () function declaration in the interface file
(RetirementPlanner.h) and also creates its function definition in the
implementation file (RetirementPlanner.cpp). The Code Editor window opens to
the new empty setCurAge () function definition in the implementation file.
Add the statement show in Figure 4-24 that assigns the value of the 1AgeNow

parameter to the iCurAge data member.

FIGURE 4-24: Assignment statement added to the setCurAge () member function

Start Page | RetirementPlanner.h RetirementPlanner.cpp® | CalcSavings.cpp 9 =

IQI; RetirementPlanner j I':':' setCurage j

Add this
statement

RBetirementPlanner: :~RetirementP lanner (wvoid)
i
¥

viold RetirementPlanner::setCurlge(int ilgeNow)
\\i\\\
H

iCurhge = ilgelow;

1 I I 4

5. Use the Add Member Function Wizard to add the remainder of the set functions

and getInterestEarned () member function, as follows:

void RetirementPlanner: :setRetireAge (int iAgeThen) ({

iRetireAge = iAgeThen;

void RetirementPlanner: :setContribution(double dContribute)

{
dContribution = dContribute;

}

void RetirementPlanner: :setInterestRate (double dInterest) {
dInterestRate = dInterest;

}

void RetirementPlanner::setInflation(double dInflate) {
dInflation = dInflate;

}

double RetirementPlanner::getInterestEarned() {

return dInterestEarned;

6. Finally, use the Add Member Function Wizard to add the following

calcFutureValue () and calcPresentValue () member functions:

// calcFutureValue() function
double RetirementPlanner: :calcFutureValue() {
iYearsOfSaving = iRetireAge - iCurAge;
dFutureValue = 0;
for (int i=0; i < iYearsOfSaving; i++) {
dFutureValue += 1;

dFutureValue *= (1+(dInterestRate/100));

dFutureValue *= dContribution;
dInterestEarned = dFutureValue -
(dContribution * iYearsOfSaving) ;

return dFutureValue;

// calcPresentValue() function

double RetirementPlanner: :calcPresentValue() {
double dFutureValue = calcFutureValue() ;
for(int i = 0; i < iYearsOfSaving; i++) {
dFutureValue /= (1 + (dInflation/100)) ;
}
dPresentValue = dFutureValue;

return dPresentValue;

Once you create a member function, you execute it from your implementation file by
appending the function name to the to the object name with the member selection operator, in
the same manner that you access data members. Unlike data members, however, you must also
place a set of parentheses after the function name, containing any arguments required by the
function. For example, the first statement in the following code declares a Stocks object named
stockPick. The second statement executes the getTotalValue () function, passing to

it the number of stocks and the current price per share.

void main () {
Stocks stockPick;

stockPick.getTotalValue (100, 10.875);

Next you will add code to the CalcSavings.cpp file that accesses the RetirementPlanner class’s
functions. You will use cout statements to display instructions to users and cin statements to
gather data. You will assign the data returned from the cin statements to variables, which you
will then pass to the RetirementPlanner class’s function members. Finally, you will calculate
and display the results using the calcFuturevalue (), calcPresentValue (), and

getInterestEarned () functions.

To add code to the CalcSavings.cpp file that accesses the RetirementPlanner class’s

functions:
1. Open the CalcSavings.cpp file in the Code Editor window.

2. Add the statements shown in Figure 4-25. The statements declare variables that
you will use to hold the values retrieved from the user with the cin statements.
The variables will then be passed to the RetirementPlanner class member
functions.

FIGURE 4-25: Variable declarations added to CalcSavings.cpp

Skart Page | RetirementPlanner. b | RetirermentPlanner.cpp - Calcsavings.cpp™® 1 bk X
(Globals) j I-;-;.main j

using hamespace std; ~
f#include "RetirementPlanner.h™

void main{) |

Add these RetirementPlanner savings:

variable double dContribute = 0;

declaration double dInterest = 0;

statements int ihgeNow = 0O;

int iAgeThen = 0O;

double dInflate = 0; (]

H
-
< | _>I_I

3. Add the cout statements shown in Figure 4-26 that explain the program to the

user:

FIGURE 4-26: cout statements added to CalcSavings.cpp that explain the program to the user

Skart Page | RetirementPlanner. b | RetirementPlannet.cpp - CalcSavings.cpp™® | 41 X
| (Globals) =] [®man |
int iAgeMNow = 0; =

int iigeThen = 0O:
double dInflate = 0O;
fcout << "RETIREMENT PLAMNER™ <+« endl:

Add these cout << "———. ——————————————— " << endl:;
cout \ cout << "Th:f.s DY OCE A r.:alculates vour
statements < << "retiremwent savihgs based on << endl:
cout << "annual contribution, estimated "
<< "yearly interest rate, years " << endl;
cout << "of saving, and estimated inflatcion.™
<< endl << endl;

\ ——

-
4| | 3

4. Add the statements shown in Figure 4-27 that gather values from the user, assign the

values to variables, and then pass the variables to the member functions.

FIGURE 4-27: Input statements added to CalcSavings.cpp

Start Page | RetirementPlanner.h | RetirementPlanner.cpp Cdcsavinqs.l:pp"‘l q b X
| {Globals) +| |-@main -|
1 ad 1] p—

Add these
statements that
gather values
from the user,
assign the values
to variables, and
then pass the
variables to the

member functions

cout << "of saving, and estimated inflation.™
<< endl << endl:

[cout << "Annual Contribution: ";
¢in >» dContribute;
savings.secContribucion (dContribute) ;
cout << "Ainnual Yield (percent-enter as a whole nuwber): ";
cin >> dInterest:
gavings.setlnterestRate (dInterest):
cout << "Current Age: ":

cin >» ihgeNow:
< savings.secCur lge (iAgeNow) ;
cout << "Retirement Age: ":
cin >> ilgeThen:
savings.setRetirelge (1AgeThen) ;
cout << "Inflation (percent-snter as a vhole number): ":
cin >> dInflate;
savings.setInflation(dInflate) ;
\ cout << endl;

5. Finally, add the statements shown in Figure 4-28 that display the calculated

savings results to the user:

FIGURE 4-28: Statements added to CalcSavings.cpp that display the calculated savings results to the

user

Add these
statements that
display the
calculated
savings results
to the user

Stark Page | RetirementPlanner.b | RetirementFlanner.cpp CalcSavings.cpp™® q4p X
I(Globals) j I'r-..main j
cin »»> dInflate; o
savings.setInflation{dInflate)
cout << endl;
7 ooub € M " << endl;
cout << "Total Future WValue: §" <<
savings.caleFutureValue () << endl:
\\< cout << "Total Present Value: §" <<
savings.calcPresentValue (] << endl:
cout << "Total Interest Earned: §7 <<
savings.getInterestEarned() << endl:;
__mout << S e e " <« endl << endl:
H
-
« | i

6. Build and execute the RetirementPlanner project. Then, test the program. When you
enter percentages for either Annual Yield or Inflation, enter the numbers as whole

numbers, not with a decimal point. For example, to enter 10%, type 10, not . /0.

Inline Functions

Although member functions are usually defined in an implementation file, they can also
be defined in an interface file. Functions defined inside the class body in an interface file
are called inline functions. To conform to information hiding techniques, only the
shortest function definitions, such as accessor functions, should be added to the interface
file. The following code shows an example of a public inline function definition in the
Stocks class for a function member named getTotalValue(). The
getTotalValue () function accepts two arguments from the client: the number of
shares and the current price. The arguments are assigned to private data members, and

then the price is calculated and returned.

class Stocks {
public:

/’ double getTotalValue (int iShares, double dCurPrice) {

Inline iNumShares = iShares;
function . .
\\\\\ dCurrentPricePerShare = dCurPrice;
<< dCurrentValue = iNumShares * dCurrentPricePerShare;

return dCurrentValue;

_ }
private:
int iNumShares;
double dCurrentPricePerShare;

double dCurrentValue;

}i

For functions that are not defined inside the class body, you can place the [BEGIN
CODE]inline[END CODE] keyword at the start of a function header. An important point to
remember is that you must place the function definition for a function declared with the
inline keyword in the interface file—not the implementation file. For example, if the
getTotalValue () function is defined within the Stocks interface file, but outside of
the class body, you can mark it as an inline function using the statement inline
double getTotalValue (int iShares, double dCurPrice) ;.

CATION: If you add the in1ine keyword to a function that is not declared within a class header file,

you will receive a compile error.

When the compiler encounters either an inline function or a function declared with the
inline keyword, it performs a cost/benefit analysis to determine whether replacing a
function call with its function definition will increase the program’s speed and
performance. If the compiler’s cost/benefit analysis determines that there will be no
significant speed or performance gain by replacing a given function call with its function
definition, then the inline function is executed as a normal function.

TIP: Because they are declared in the interface file, inline functions do not take advantage of
information hiding. If you want to hide a function definition, be sure not to define it as an inline
function.

TIP: You can also use the inline keyword with global functions. As with member functions, however,

the global functions you define as inline should be relatively small.

Next you will add the inline keyword to the getInterestEarned () function,
which is small and stable enough that it can be defined as inline. You will also move the
getInterestEarned () function definition to the header, or interface, file so that the

program compiles correctly.

To define the getInterestEarned () function as inline:

1. Open the RetirementPlanner.cpp file in the Code Editor window.

2. Highlight the getInterestEarned() function definition and cut it to the Clipboard

by selecting Cut from the Edit menu.

3. Open the RetirementPlanner.h file in the Code Editor window.

4. Paste the getInterestEarned () function definition after the class’s

closing brace and semicolon but above the #endif directive by selecting Paste

from the Edit menu.

5. Modify the getInterestEarned () function definition so that it reads

inline double RetirementPlanner:: getInterestEarned(). Your

modified RetirementPlanner header file should look like Figure 4-29.

FIGURE 4-29: Inline function added to RetirementPlanner header

RetirementPlanner.h* | ReetirementPlanner. cpp* | ZalcSavings. cpp |

I%RetirementPlanner j I':':‘getInterestEarned

Inline
function

woid setInterestRate (double dInterest):

wvoid setcInflation(double dInflate);

double getInterestEarned(wvoid):

double calcFutureValue (wvoid)

double calcPresentVWalue (wvoid) !
b
J’inline double BFetirewmentPlahner::getlInterestEarned(woid)
i
1\ return dInterestEarned;

i

Hendif

6. Rebuild and execute the RetirementPlanner project. The program should
function the same as it did before you added the inline keyword to the

getInterestEarned () function.

Constructor Functions

When you first instantiate an object from a class, you will often want to assign initial
values to data members or perform other types of initialization tasks, such as calling a
function member that may calculate and assign values to data members. In a C++
program that does not use classes, you simply assign an initial value to a variable in the
main () function using a statement such as int iCount = 1;, or you call a custom

function using a statement such as [double dInterest = calcInterest();.

Although classes are “mini-programs,” they do not include a main () function in which
you can assign initial values to data members or call initialization functions. Instead, you
use a constructor function. A constructor function is a special function with the same
name as its class that is called automatically when an object from a class is instantiated.
You define and declare constructor functions the same way you define other functions,
although you do not include a return type because constructor functions do not return
values. For example, the following inline constructor function for the Stocks class
initializes the iNumShares, dCurrentPricePerShare, and dCurrentValue

data members to zero:

class Stocks {
public:

(Stocks () {

iNumShares = 0;

Constructor
function \\\< dCurrentPricePerShare = 0;

dCurrentValue = 0;

\};

private:

int iNumShares;

double dCurrentPricePerShare;

double dCurrentValue;
15
You can also include just a function prototype in the interface file for the constructor
function, and then create the function definition in the implementation file. The following
code shows an example of how you implement the Stocks constructor function in an
implementation file. It may look unusual, but when you define a constructor function in
an implementation file, be sure to include the class name and scope resolution operator in

order to identify the function as a class member.

Stocks::Stocks () {
iNumShares = 0;
dCurrentPricePerShare = 0;
dCurrentValue = 0;

}i

[NOTE] In Chapter 6 you will learn about some advanced constructor techniques, as well as how to

use the opposite of a constructor, a destructor.

As you saw earlier, the Add Class Wizard automatically added an empty constructor function
to the RetirementPlanner class for you. Next, you will modify the constructor so it initializes all
of the private data members to 0. Initializing private data members to O ensures that the
calculations within the member functions have a value to work with in the event that a client

fails to provide one of the values when executing any of the member functions.
To add a constructor to the RetirementPlanner class:

1. Return to the RetirementPlanner.cpp file in the Code Editor window.

FIGURE 4-30: Constructor function definition modified so it initializes the data members to 0

Add these
initialization
statements

2. Modify the constructor function definition so it initializes the data members to 0,

as shown in Figure 4-30:

RetirementPlanner.b* RetirementPlanner.cpp™® | Calc3avings.cpp |

I%RetirementPlanner j I':':‘setCur.C\ge

#include "retirementplanner.h™

FetirementF lanher: :RetirementPlanner (wvoid)
H
a diontribution

=|:|:_
dInterestRate = 0;

~ dInterestEarned = 0;
N ifears0fSaving = 0;

_< dFutureValue = 0;

dPresentValue = 0
dInflation = 0O;
iCurige = 0;

iRetirebdge = 0O;
_ o

1 |

v L

.

CAUTION: Be sure not to confuse the constructor function definition with the destructor function

definition, which starts with a tilde (~).

5. Rebuild and execute the RetirementPlanner project. The program should work

the same as it did before you added the constructor function.

friend Functions and Classes

When you use the public access modifier with a class member, the entire world has access to
that class member. In contrast, only members of the same class can access private class
members. What if you want to selectively allow access to class members, yet still maintain a
level of information hiding? For example, another programmer in your department may have
written a function in a separate program that needs to perform some calculations on your class's
private data members. You could make the data members public (which removes information
hiding), add the other programmer's function to your class (which may not make sense if the
function is not useful to your class), or force the other programmer to use get methods to access
the private data members (which could slow down his or her program). It would be easier to
grant access to a class's private members only to a specific function or class. In these situations,
the friend access modifier comes into play. The friend access modifier allows designated
functions or classes to access a class’s private members. Only a class itself can designate the
function and class friends that can access its private members; external functions and classes
cannot make themselves friends of a class. In other words, your class has to give friend access
to external functions and classes. You declare a friend function by including the function’s

prototype in an interface file, preceded by the keyword friend.

TIP: You can place a friend declaration anywhere inside the class, except within a function

definition. You can even place a friend declaration within the declarations for public and private class

members. It is good practice, however, to keep all definitions for a specific type of access modifier

together.

Here is a simple example that demonstrates how to declare a friend function. Assume that a
computer manufacturer has a program with a class named Inventory that contains private data
members that keep track of the company's inventory, along with accessor functions for each
data member. (In a real-life application, the Inventory program would store inventory
information in a database.) The Inventory class also contains a constructor that assigns some
arbitrary values to each of the data members. (Again, in a real-life program, the number of
units available for each item would normally be stored in and retrieved from a database.) You
may also have an external function named checkInventory () that checks the number of
units available for each item. The checkInventory () function compares the number of
items available for each unit to a corresponding parameter that represents the number of items
requested by a client. The function then returns a Boolean value indicating whether or not there
is sufficient inventory to fulfill the order. Figure 4-33 shows the Inventory interface file and its
implementation file. The class also includes a declaration for the checkInventory ()

function as a friend function. Although the checkInventory () function is defined in the
class’s implementation file, it is not part of the class because its header declaration does not
include the name of the class and the scope resolution operator. The implementation file also
declares a global Inventory variable named curOrder and amain () function, which, again,
is not part of the class itself. The main () function calls the checkInventory () member
function, passing to it arguments representing the number of items ordered by the customer. If
the checkInventory () function in Figure 4-31 were not declared as a friend function, the
statements would be illegal because they directly access the private data members of the
Inventory class. Figure 4-32 shows the program’s output.

FIGURE 4-31: Inventory class declaring and defining a friend function

// inventory.h
class Inventory {

private:

Friend
function

™~

int iDesktopComputers;
int iNotebookComputers;
int ilLaserPrinters;
friend bool checkInventory(int, int, int);
public:
Inventory () ;
void setDesktopComputers (int) ;
int getDesktopComputers () ;
void setNotebookComputers (int) ;
int getNotebookComputers() ;
void setPrinters(int);
int getPrinters();
}i
// inventory.cpp
#include "inventory.h"
#include <iostream>
using namespace std;
Inventory: :Inventory () {
iDesktopComputers = 250;
iNotebookComputers = 150;

iLaserPrinters = 125;

}

void Inventory::setDesktopComputers (int iUnits)

iDesktopComputers = 1iUnits;

int Inventory::getDesktopComputers () {

return iDesktopComputers;

{

void Inventory::setNotebookComputers (int iUnits) {
iNotebookComputers = iUnits;

}

int Inventory::getNotebookComputers () {

return iNotebookComputers;

void Inventory::setPrinters(int iUnits) {

iLaserPrinters = iUnits;

int Inventory::getPrinters() {

return iLaserPrinters;

bool checkInventory(int, int , int , int);
Inventory curOrder;
void main () {
bool bRetValue = checkInventory (50, 25, 10);
if (bRetValue == true)
cout << "We can fill the order." << endl;
else

cout << "We cannot fill the order." << endl;

bool checkInventory(int iDesktops, int iNotebooks,
int iPrinters) {
bool bFillOrder = true;
if (curOrder.iDesktopComputers < iDesktops)
bFillOrder = false;
else if (curOrder.iNotebookComputers < iNotebooks)
bFillOrder = false;

else i1f (curOrder.ilaserPrinters < iPrinters)

bFillOrder = false;
return bFillOrder;
}

FIGURE 4-32: Output of Inventory program

The checkInventory () friend function is part of the Inventory implementation file in
Figure 4-33 for simplicity. However, in reality the checkInventory () friend function
would probably be part of another class or program. To designate all functions within another
class as friends of the current class, you create a declaration in the current class using the
syntax friend class name,, replacing name with the name of the class containing the
functions you want to mark as friends. For example, assume that the checkInventory ()
function is really a member of a class named Fulfullment. To allow all the functions in a
Fulfillment class to access the private members in the Inventory class, you would add the

declaration friend class Fulfillment; to the Inventory class’s interface file as follows.

class Inventory {
private:

int iDesktopComputers;

int iNotebookComputers;

int ilLaserPrinters;

bool checkInventory(int, int, int);
public:

Inventory () ;

void setDesktopComputers (int) ;

int getDesktopComputers () ;

void setNotebookComputers (int) ;

int getNotebookComputers () ;

void setPrinters(int);

int getPrinters();

Declaring a
friend class

N

friend class Fulfullment;

}s

CHAPTER SUMMARY

In C++ programming, classes are structures that contain variables along with functions

for manipulating that data.

The functions and variables defined in a class are called class members.

Class variables are referred to as data members or member variables, whereas class

functions are referred to as member functions or function members.

Functions that are not part of a class are referred to as global functions.

When you declare an object from a class, you are said to be instantiating an object.

Classes are referred to as user-defined data types or programmer-defined data types
because you can work with a class as a single unit, or object, in the same way you

work with variables.

A structure, or struct, is an advanced, user-defined data type that uses a single variable

name to store multiple pieces of related information.

The individual pieces of information stored in a structure are referred to as elements,

fields, or members.

When you use a period to access an object’s members, such as a structure’s fields, the

period is referred to as the member selection operator.

An initializer list is a series of values that are assigned to an object at declaration.

Most C++ programmers use the class keyword to clearly designate the programs they

write as object-oriented C++ programs.

The principal of information hiding states that any class members that other

programmers, or clients, do not need to access or know about should be hidden.

Access specifiers control a client’s access to data members and member functions.
There are four levels of access specifiers: public, private, protected, and

friend.

The public access specifier allows anyone to call a class’s function member or to

modify a data member.

The private access specifier is one of the key elements in information hiding

because it prevents clients from calling member functions or accessing data members.

Both public and private access specifiers have what is called class scope in that
class members of both access types are accessible by any of a class’s member

functions.

You place access specifiers in a class definition on a single line followed by a colon,

similar to a switch statement’s case labels.

An access specifier that is placed on a line by itself followed by a colon is referred to

as an access label.

Many programmers prefer to make all of their data members private in order to prevent
clients from accidentally assigning the wrong value to a variable or from viewing the

internal workings of their programs.

Accessor functions are public member functions that a client can call to retrieve or

modify the value of a data member.

The separation of classes into separate interface and implementation files is considered
to be a fundamental software development technique because it allows you to hide the

details of how your classes are written and makes it easier to modify programs.

The interface refers to the data member and function member declarations inside a

class’s braces.

The implementation refers to a class’s function definitions and any code that assigns

values to a class’s data members.

The Navigation bar at the top of the Code Editor window contains two combo boxes,

Types and Members, that you can use to navigate to a particular class or its members.

The Class View window displays project files according to their classes.

Code wizards automate the task of adding specific types of code to your projects.

The Add Class wizard adds a new class to a project.

The Add Function wizard adds a new member function to a class

Multiple inclusions of the same header usually occur when you include one header into

a second header, and then include the second header in an implementation file.

To prevent multiple inclusions prior to compilation, the Generic C++ Class Wizard adds

the #pragma once statement to a class header file.

A pragma is a special preprocessing directive that can execute a number of different

compiler instructions.

The once pragma instructs the compiler to include a header file only once, no matter
how many times it encounters an #include statement for that header in other C++ files in the

project.

» The #1f and #endif preprocessor directives determine which portions of a file to

compile depending on the result of a conditional expression.

» The defined constant expression returns a value of true if a particular identifier is

defined or a value of false if it is not defined.

» You can create member function definitions in either the interface file or the

implementation file.

» Even though the member functions of a class may be defined in separate files from the
class declarations, as long as the function includes the class’s name and the scope

resolution operator, then it is considered to be part of the class definition.

» Member function definitions in an interface file are referred to as inline functions.

» For small functions, you can use the inline keyword to request that the compiler
replace calls to a function with the function definition wherever the function is called

in a program.

» A constructor function is a special function with the same name as its class that is

called automatically when an object from a class is instantiated.

» The friend access modifier allows designated functions or classes to access a class’s

hidden members.

REVIEW QUESTIONS

1. Which of the following terms refers to class functions?
a. member functions
b. global functions

c. user-defined data types

d. programmer-defined data types

The term object is used interchangeably with the word(s) .

a. function

b. variable

C. Statement

d. data type

You define a structure using the keyword.

a. structure

b. struct

c. record

d. data

Which statement best describes how you store data types in a structure?
a. All variables in a structure must be of the same data type.

b. You must use all numeric data types or all character data types.
¢. You can use any mix of data types.

d. Structures do not directly declare data types, only variable names that are later

assigned a specific data type.

Which of the following is the correct syntax for declaring a variable named

accountingInfo based on a structure named accounting?
a. accounting accountingInfo;
b. currentEmployee accountingInfo;

C. accountingInfo currentEmployee();

d. accountingInfo = new currentEmployee ();

When you use a period to access an object’s members, such as a structure’s fields, the

period is referred to as the

a. object selector

b. member selection operator
c. field indicator

d. structure operand

Examine the following structure declaration and determine why it will cause a
compiler error:
struct accounting {
int iPeriod = 2;
long 1lFiscalYear = 2000;
double dCurTaxRate = .15;
bi
a. The name of the structure must be followed by parentheses, the same as a function

definition.
b. You are only allowed to use a single data type within a structure definition.
¢. You are not allowed to assign values to the fields inside the structure definition itself.
d. The structure must be declared using the st ructure keyword.
What is the accessibility of the data members in the following class?

class Boat {
int iLength;
double dEngineSize;

char cClass;

a. public
b. private
¢c. friend
d. protected
9. What is the accessibility of the data members in the following structure?

struct Boat {
int iLength;
double dEngineSize;

char cClass;

a. public
b. private
¢c. friend
d. protected
10. Which of the following elements is not considered part of a class’s scope?
a. implementation files
b. interface files
c. constructor functions
d. a main() method

11. The window displays project files according to their classes and is similar to

the Solution Explorer window.

a. Solution Explorer

12.

13.

14.

b. Class View
c. Properties
d. Implementation

Which of the following code wizards is not designed specifically for working with

classes?

a. Add New Item

b. Add Class

c. Add Member Function
d. Add Member Variable

When you use a code wizard to add a class to your project, which of the following

statements is automatically added to prevent multiple header file inclusion?
a. #fpragma once

b. #pragma twice

c. #inclusion false

d. #ifincludeonce

Which of the following preprocessor directives is used for preventing multiple header

file inclusion?

a. fmultiple

b. #define...#!define

c. #include...#stop include

d. #if and #endif

15.

16.

17.

18.

Member functions that are defined within an interface file are referred to as

functions.
a. member
b. inline
c. embedded
d. compiled

Which of the following keywords forces the compiler to replace calls to a function

with the function definition wherever the function is called in a program?
a. include

b. inline

c. replace

d. insert

Which statement is the correct definition in an implementation file for the constructor

function for a class named Boat, assuming the construct function does not accept any

arguments?

a. Boat () {

b. Boat:Boat () {

Cc. function Boat::Boat () {

d. class Boat::Boat () {

The access modifier allows designated functions or classes to access a

class’s hidden members.

a. public

b. private

c. friend

d. protected

PROGRAMMING EXERCISES

1. What is the difference between a class and a structure? How do the two class types

differ between C and C++?

2. Rewrite the following structure as a class. Be sure to assign the same access to the

data members as they have in the structure.

struct CourseInfo {
double dTuition;
int iCourselD;

char cGrade;

3. Tothe main () function in the following code, add cout statements that print each of

the carInfo object’s data members.

struct Transportation {
double dCarEngineSize;
int iMotorcycleCCs;

int iSemiNumberofAxels;

void main () {

Transportation vehicleInfo;

vehicleInfo.dCarEngineSize 3.1;
vehicleInfo.iMotorcycleCCs = 750;

vehicleInfo.iSemiNumberofAxels = 6;

4. What is the difference between a class’s interface file and its implementation file?

5. Recall that accessor functions, which assign values to and retrieve values from
private data members, are often referred to as get and set functions. Write the
appropriate implementation file for the following class declaration and create get
and set functions so that they assign values to and retrieve values from the private

data members.

#if !defined (MUTUALFUND H)
#define MUTUALFUND H

class MutualFund {
public:
void setNumberOfShares (int iShares);
void setAnnualYield(int iYield);
int getNumberOfShares();
double getAnnualYield();
private:
int iNumberOfShares;
double dAnnualYield;

}

#endif

6. Replace the code in the MutualFund interface file that prevents multiple inclusion

with the correct pragma directive:

7. Writeamain () function that sets, retrieves, and prints the values of the private data

members in the MutualFund class.

8. Add a friend function to the MutualFund class. Design the friend function so that it sets,

retrieves, and prints all of the MutualFund class’s private data members.

9. Write the appropriate interface file for the following class implementation.

#include "DistanceConversion.h"
DistanceConversion:: DistanceConversion() {
dMiles = 0;
dKilometers = 0;
}
double DistanceConversion::milesToKilometers (
double dMilesArqg) {
dMiles = dMilesArg;
dKilometers = dMiles * 1.6;
return dKilometers;
}
double DistanceConversion::kilometersToMiles (
double dKiloArg) {
dKilometers = dKiloArg;
dMiles = dKilometers * .6;

return dMiles;

10. Find two ways to modify the Di stanceConversion class so that the member
function is compiled inline. Create separate versions of the class for each of your

solutions.

PROGRAMMING PROJECTS

1. Create a Movies class that determines the cost of a ticket to a cinema, based on the
moviegoer's age. Assume that the cost of a full-price ticket is $10. Gather the user's
age using a cin statement, and then assign the age to a private data member. Next,
use a public member function to determine the ticket price, based on the following

schedule:

Age Price
under 5 free

S5to 17 half price
18 to 55 full price
over 55 $2 off

After you determine the ticket price, print the cost to the screen.

Create a BaseballTeam class with appropriate data members such as team name,
games won, games lost, and so on. Write appropriate get and set functions for each
data member. Instantiate a number of BaseballTeam objects and assign
appropriate values to each private data member using the set functions. Finally, use

the get statements to retrieve and print the values in each private data member.

A painting company estimates the cost of its jobs based on materials and labor costs.
The cost of materials is .15 cents per square foot while the cost of labor is .25 cents
per square foot. Write a Painting class that determines the cost of painting a house, by
allowing a prospective customer to enter the estimated number of feet they need
painted. Store the number of feet in a private data member, along with get and set
functions for setting and retrieving the value of the private data member. Use a
separate member function for determining the cost of materials and the cost of labor.
Also, include a function that calls the member functions for the materials and labor
costs in order to calculate the total cost of the job. Store the total estimate in a private

data member and print the estimate to the screen.

4. Create an Automobile class. Include private data members such as make, model,
color, and engine, along with the appropriate get and set functions for setting
and retrieving private data members. Use cin and cout statements to gather and

display information.

5. Create a class-based temperature conversion program that converts Fahrenheit to
Celsius and Celsius to Fahrenheit. To convert Fahrenheit to Celsius subtract 32 from
the Fahrenheit temperature, then multiply the remainder by .55. To convert Celsius to
Fahrenheit, multiply the Celsius temperature by 1.8, then add 32. Use cin and cout

statements to gather and display information.

6. A passenger train averages a speed of 50 mph. However, each stop of the train adds
an additional five minutes to the trains schedule. Additionally, during bad weather the
train can only average a speed of 40 mph. Write a Train class that allows a traveler to
calculate how long it will take to reach their destination, based on speed, number of
stops, and weather conditions. Use cin and cout statements to gather and display
information. Save each piece of information you gather from the user in a private data
member, and write the appropriate get and set functions for setting and retrieving
each data member. Use a single inline function to calculate how long the traveler's
trip will take and save the result in another private data member, and print the results

to the screen.

7. Create a Companylnfo class that includes private data members such as the company
name, year incorporated, annual gross revenue, annual net revenue, and so on. Write set
and get functions to store and retrieve values in the private data members. Also, create a
friend function that calculates the company’s operating costs by subtracting net revenue

from gross revenue. Use cin and cout statements to gather and display information.

Create a Change class that calculates the correct amount of change to return when
perform a cash transaction. Allow the user (a cashier) to enter the cost of a transaction
and the exact amount of money that the customer hands over to pay for the
transaction. Use set and get functions to store and retrieve both amounts to and
from private data members. Then use member functions to determine the largest
amount of each denomination to return to the customer. Assume that the largest
denomination a customer will give you is a $100 bill. Therefore, you will need to
write member functions for $50, $20, $10, $5, and $1 bills, along with quarters,
dimes, nickels and pennies. For example, if the price of a transaction is $5.65 and the
customer hands the cashier $10, the cashier should return $4.35 to the customer. Print

your results to the screen using cout statements.

Create a BankAccount class that allows users to calculate the balance in a bank
account. The user should be able to enter a starting balance, and then calculate how
that balance changes when they make a deposit, withdraw money, or enter any
accumulated interest. Add the appropriate data members and member functions to the
BankAccount class that will enable this functionality. Also, add code to the class that
ensures that the user does not overdraw his or her account. Be sure that the program
adheres to the information hiding techniques that were discussed in this chapter. Use
cin and cout statements to gather and display information. You will need to use a
decision-making structure that continually displays a menu from which the user can

select commands to manage his or her account.

