Windows
Applications
and Packaging

casep “I love using Java,” you say to Lynn Greenbrier, your mentor
at Event Handlers Incorporated. “But a few weeks ago, the
marketing department came to me with a bunch of new
programming requests from corporate clients.”

“Tell me more,” says Lynn.

“These clients don’t want to use the Internet to supply us
with event information,” you say. “They all use Windows 93,
98, or NT, and they want a stand-alone application they can
use for event planning. [wrote a Java program, but it doesn’t
look like a real Windows application. I had to re-create many
of the standard Windows features, and the program ran very
slowly. So, while I love Java, I'm feeling a bit frustrated.”

section A

Lynn Greenbrier smiles and says, “I’ve got just the thing to solve your problems.
Visual J++ has tools you can use to access Windows operating system functionality.
Those tools will let you use Java to write real Windows applications. To start, let me
tell you about Windows Foundation Classes.”

Previewing the Windows Party Planner Application

In this chapter, you will use Java to create a Windows application that is similar
to the Party Planner Applet you created in Chapter 11. You will create a
Windows-based Party Planner program so you can see the differences between
programs created with the Abstract Windows Tool Kit (AWT) and programs
created as Windows applications. Like the applet in Chapter 11, the Event
Handlers Incorporated Windows application lets a user determine the price of
an event based on several event choices. Users can select some options in any
combination (serve only cocktails, serve only dinner, serve both cocktails and
dinner, or serve nothing). For other options, such as the entrée to serve for dinner
or the entertainment selection, only one choice is allowed. You need check boxes,
lists, and radio buttons to accommodate these different types of selections. The
Chap16PartyPlanner application incorporates several such devices, which you
can use now. You will create a similar application in this chapter.

To preview the Windows Party Planner application:

1 Using Windows Explorer, go the Chapter.16 folder on your Student Disk
and run the WindowsPartyPlanner.exe file. After a few moments, you will
see the Windows Party Planner window shown in Figure 16-1.

i Event Handlers Incorporated

[~ Cocktails [Dinner

IND entertainmert - l

Hats
Streamers
Moise makers
Balloons

Event Handlers Incorporated

Event price estimate 200

Exit |

Figure 16-1: Windows Party Planner application

Windows Applications and Packaging

You can use the Windows Party Planner application to plan an imaginary
event by choosing whether to serve cocktails or dinner (or both or neither).
Use the program now and observe how the event’s price changes as you
make selections. If you choose to serve dinner, you can select one of three
main courses. You also can select from a list of entertainment choices and
party favors. The event’s price changes as you make each selection.

Close the application by clicking the Exit button.

SECTION A

In this section you will learn

B About Windows architecture .
and the Win32 API I re ct a n
B How to use J/Direct

B About native applications

|
and architecturally neutral WI n d OWS

B About Windows Foundation
Classes (WFCs) for Java

|
B How to create Windows Fo u n d atl 0 n
applications using WFCs

B About WFC forms

e (Classes for Java

applications

> tip

Windows Architecture and the Win32 API

In this chapter, you will learn how to use Visual J++ and the Java programming
language to create Windows applications. Using the Java programming language
to create Windows applications allows you to use your knowledge of Java to
harness the features of Windows operating systems such as prebuilt dialog boxes,
buttons, and other Windows elements. To create Windows applications with Java,
you first need to understand how Windows operating systems are designed.

There are two types of Windows operating systems: 16-bit and 32-bit. The
older Windows 3.1 operating system is 16-bit. Current 32-bit Windows operating
systems are Windows NT, Windows 95, Windows 98, and Windows CE. The term
bit refers to the width of a computer microprocessor’s data bus. You can think of
the data bus as the number of roads leading into a microprocessor. The wider the
data bus, the more information can be sent simultaneously to the microprocessor.

©000

Visual J++ is a 32-bit application designed for 32-bit Windows operating systems.

©000

The actual speed with which information is processed also depends on several
other factors, including the microprocessor architecture (80386, 1486, Pentium, and
so on) and the megahertz at which the microprocessor operates. The 80386 and
i486 microprocessors have 32-bits wide data buses, whereas the Pentium family of
microprocessors has 64-bits wide data buses. The ability to take advantage of data
bus width depends on the operating system or application that is accessing the
microprocessor. For example, Windows 3.1 can operate on 80386, 486, and Pentium

> tip

Windows Applications and Packaging

microprocessors, but can use only 16 bits of each data bus, even though the 80386
and 1486 microprocessors are 32-bits wide and the Pentium chip is 64-bits wide.

All 32-bit Windows operating systems share a common application programming
interface known as the Win32 API. An application programming interface (API) is a
library of methods and attributes that allows programmers to access the features and
functionality of an application or operating system. Windows operating systems are
actually complex applications written in the C and C++ programming languages. The
Win32 API allows you to access and use standard Windows GUI features such as the
Open and Save dialog boxes, and controls such as buttons, scrollbars, and list boxes
in new applications that you write. You have already worked with similar GUI
components in the AWT.

Using the common functionality available in the Win32 API helps to maintain
a consistent look for Windows-based applications. In the same manner that the
AWT saves time when writing Java applications, the Win32 API minimizes devel-
opment time for Windows applications, since you use preexisting components
without having to create them from scratch. Win32 API functions are grouped in
the following categories:

B Window Management
B Window Controls
B Shell Features
B Graphics Device Interface
B System Services
B International Features
B Network Services
APIs represent a more advanced form of object-oriented programming. Just as methods

and attributes of an individual object are exposed through inheritance or an interface,
libraries of methods and attributes are exposed through an API.

©000

Using J/Direct to Access the Win32 AP

Many programming languages, including Visual Basic and Visual C++, directly access
the functionality in the Win32 APIL The Java programming language, however, does
not directly access Win32 API functions—such as standard Windows GUI features.
Visual J++ has a special utility called J/Direct that allows you to access the Win32
APL J/Direct translates the Win32 API syntax into a format that can be used with
Java. With J/Direct, you can place calls to the Win32 API directly into your code.

To use J/Direct to call Win32 API functions, you include the following:

B A Win32 API function method declaration
B Special comments that contain a directive to locate a dynamic-link library
(DLL) for the Win32 API function

The code in Figure 16-2 calls the Win32 API MessageBox function, which dis-
plays a simple Windows dialog box. The dialog box generated by the program in
Figure 16-2 is shown in Figure 16-3.

> tip

section A

public class MessageBoxApp

{
public static void main(String args[])
{
MessageBox (0, "This is a message box.",
"Message Box Title", 0);
}
[**
* @dll.import("USER32", auto)
*/

public static native int MessageBox(int hWnd, String lpText,
String lpCaption, int uType);

Figure 16-2: MessageBoxApp using J/Direct to call the Win32 MessageBox function

Mezzage Box Title

This iz a message box.

Figure 16-3: Output of the Win32 MessageBoxApp

The last statement in the code in Figure 16-2 is the MessageBox method
declaration. The MessageBox method declaration includes the native modifier,
which informs Java that the method is implemented in another programming
language—in this case, the programming language is the Win32 API. Unlike most
methods with which you have worked, the MessageBox method declaration ends
in a semicolon, rather than being followed by curly brackets containing the
method’s statements. Since the method is implemented outside Java, you do not
need to create the method body.

By convention, you add J/Direct calls to the end of a class file.

Dynamic-link libraries contain the methods and other components in the Win32
AP, and are files with an extension of .dll. When you use a J/Direct call in a Java
program, the program locates the specific DLL containing the object you are calling
by using a directive. A directive tells the compiler in which DLL a method is located.
Immediately above the MessageBox method declaration in Figure 16-2 are comments
containing the directive for the MessageBox function. (You first learned about
comments in Chapter 2.) As you know, the compiler ignores text placed within
comments. Unlike other types of text that are placed within comments, directives are
not ignored by the compiler. You usually place directives immediately above a
J/Direct call. There are three types of directives: @dll.import for declaring functions,
@dll.struct for declaring structures, and @dll.structmap for declaring fixed-size

> tip

Windows Applications and Packaging

Strings and arrays embedded in structures. The @dll.import directive in Figure 16-2
instructs the compiler to look for the MessageBox function in USER32.DLL.

Structures are used in the C/C++ programming languages and are similar to classes.

The MessageBox function is available in two versions: ANSI or Unicode. The
auto modifier in the @dll.import directive instructs the compiler to use the optimal
version of the MessageBox function, ANSI or Unicode, depending on the version
of Windows being used.

If you know the correct syntax for J/Direct calls and directives that you want to
include in your Java application, then you can type them directly into a Java file.
However, the syntax for J/Direct calls and directives is unique for the specific API
function being called. An easier method of including J/Direct calls in your code is to use
the Visual J++ J/Direct Call Builder dialog box. The J/Direct Call Builder dialog box
inserts the appropriate syntax and directives for the J/Direct calls you want to use in
your program. Figure 16-4 displays an example of the J/Direct Call Builder dialog box.

J/Direct Call Builder x|
Saurce: ¥ Methods

IWIN32.TXT v l W structs

Tarqget:

IV Constants
IWinSZExam lefiing ... -
plet —I Find:
T T et |

E _ALPHA

E _BLANK

E _CONTROL
& _DIEIT

& _HEX

=@ _hread

Figure 16-4: J/Direct Call Builder dialog box

The J/Direct Call Builder dialog box contains several options to assist you in
locating a J/Direct call. The default option in the Source drop-down list box is
WIN32.TXT, which lists methods, structures, and constants contained in standard
Win32 API DLLs. You can click the Methods check box, Structs check box, or
Constants check box to filter the visible elements. The Target text box displays the
class to which the selected J/Direct call will be added. By default, a class named
Win32 will be added to your project to contain J/Direct calls. Using a separate
class to contain J/Direct calls is good practice, particularly if you have multiple
classes in your project, all of which may need to access J/Direct calls.

Next you will create a Java console application project and use the J/Direct
Call Builder to add J/Direct calls to the program. In the following exercise, do not
worry about the syntax for the arguments in the MessageBox and MessageBeep
Win32 API calls. Win32 API programming is a complex topic and beyond the
scope of this text. The only purpose of the exercise is to show how a Java

section A

help

application can use Win32 API calls with J/Direct. Later in this section, you
will learn an easier method for working with J/Direct calls in Visual J++.

To create a Java console application with J/Direct calls:

1 If necessary, start Visual J++, then create a new console application project
named Win32Example. Save the Win32Example project folder in the
Chapter.16 folder on your Student Disk.

2 Rename the default Classl.java file as Win32Example.java, then open the
file in the Text Editor window.

3 Replace the Class1 class name in the public class Classl line with

Win32Example.

Point to Other Windows on the View menu, then select J/Direct Call Builder.

LU

Although placing J/Direct calls in a separate class is good programming
practice, for this exercise you will add the J/Direct calls to the
Win32Example class. Click the ellipsis (...) next to the Target text box.
The Select class dialog box displays, as shown in Figure 16-5.

* Select class
= Project Yiew
GE

- [Clipboard

Og Win32Example

¥ Wina2

QoK I Cancel

Figure 16-5: Select class dialog box

6 In the Select class dialog box, click the Win32Example class, and then select
the OK button. The Select class dialog box closes, and the J/Direct Call
Builder dialog box redisplays with the Win32Example class visible in the
Target text box.

The text in the Target text box will read “Win32Example\Win32Example.” The text
to the left of the backward slash (\) represents the name of the project and the text
to the right of the backward slash represents the class. In this case, both the project
and class are named “Win32Example.”

Windows Applications and Packaging

7 Place your cursor in the Find text box and begin typing MessageBox. The list
of J/Direct calls scrolls to match the typed text. When you see MessageBox
in the list, click it, then click the Copy To Target button. The MessageBox
J/Direct call and directive are added to the bottom of the class file.

8 Repeat Step 7 to add the MessageBeep call to the Win32Example class.
9 Close the J/Direct Call Builder dialog box by clicking the Close button x].

10 In the main() method, replace the // TODO: Add initialization
code here comment with the following code, which creates two Strings
and adds the Win32API MessageBox() and MessageBeep() functions:

String messageBoxTitle = "Event Planners";

String messageBoxText = "Thank you for planning with us!";
MessageBox (0, messageBoxText, messageBoxTitle, 0);
MessageBeep(0);

11 In the Win32Example properties window, deselect the Launch as a console
application check box to run the Win32Example file using WJVIEW. You
are selecting WJVIEW since the application will not require a separate
console application window, as is created with JVIEW.

12 Build and save the project, then execute the program by selecting Start from
the Debug menu. A dialog box appears as shown in Figure 16-6.

Event Planners | x|

Thank. you for plannning with us!

Figure 16-6: Output of the Win32Example program

13 Click the OK button. You should hear an audible beep after the dialog box
closes.

Native Applications versus Architecturally Neutral Applications

The programs you have created in previous chapters have been true Java applications
or applets. Recall from Chapter 1 that Java programs are architecturally neutral. You
can use the Java programming language to write a program that will run on any plat-
form for which there is a Java Virtual Machine (VM). The Win32Example program,
however, can run only on a 32-bit Windows platform. Adding J/Direct calls to
the Win32Example program removes its architectural neutrality—it is no longer a
true Java program since it can run only on 32-bit Windows platforms. While you are
giving up architectural neutrality, you are gaining the ability to use your Java
programming skills to create Windows applications.

section A

Throughout this book, you have imported Java packages into the applications
and applets you created. As you learned in Chapter 4, packages are related groups of
classes and class members that are grouped together into a single library. Examples of
the packages you have used include the java.applet package for working with applets,
and the java.awt (Abstract Windows Toolkit) package, which contains commonly
used components such as labels, menus, and buttons. Many Java packages contain
classes that are available only if you explicitly import a package into your program.
For example, to include the java.awt package in a program, you must include the
statement import java.awt.* before the declaration of a class header.

The packages that comprise the Java programming language are considered to
be part of the Java API, very similar to the way internal Windows functions and
features are part of the Win32 APL If you create a program using only the
standard Java packages that are part of the original Java API developed by Sun
Microsystems, then the program will run on any platform for which there is a
Java VM. Packages that are part of the Java API are listed in Figure 16-7.

java.applet java.math

java.awt java.net
java.awt.datatransfer java.security
java.awt.event java.security.acl
java.awt.image java.security.interfaces
java.beans java.sql

java.io java.text

java.lang java.util
java.lang.reflect java.util.zip

Figure 16-7: Java API Packages

In contrast to Java API packages, the Java VM cannot use components that exist
within an individual operating system. You must rely on the internal capabilities
of the Java programming language and the packages listed in Figure 16-7. For exam-
ple, in a true Java application, to create a dialog box that opens files, you must use
the components in the java.awt package to build the dialog box. The final result may
resemble a Windows Open dialog box, but it will not be a true Windows dialog box.
A true Windows Open dialog box is part of the Win32 API.

True Java applications do not run as fast as applications that are native to a
specific operating system. This difference in speeds is a result of the Java VM.
While the Java VM allows Java applications to be architecturally neutral, it adds
an additional layer that an application must pass through to run. The flowchart in
Figure 16-8 shows the additional Java VM layer through which an application
must pass to work with a particular operating system. Figure 16-9 shows the
direct access to an operating system that a native application has.

> tip

Windows Applications and Packaging

Java Application > Java VM Operating System

\ 4

Figure 16-8: Java VM program execution

Native Application »| Operating System

Figure 16-9: Native program execution

J/Direct allows you to include native Win32 API calls within a Java applica-
tion. These J/Direct calls bypass the Java VM and directly access the Windows
operating system, similar to the way native programs access an operating system.
Since they can run only on 32-bit Windows platforms, programs that use J/Direct
are no longer true Java programs. The trade-off is that J/Direct programs execute
faster since they bypass the additional Java VM layer.

Windows Foundation Classes for Java

Creating Windows applications requires a thorough knowledge of Win32 API
programming. Although J/Direct helps you access the Win32 API features, using it is
complex and requires familiarity with the Win32 APIL. To make the task of creating
Windows applications with Visual J++ easier, Microsoft created Windows Foundation
Classes for Java. Windows Foundation Classes (WFCs) are packages of J/Direct calls
that are translated into the Java programming language. You still access the same
functions that you access with J/Direct calls, but the complicated J/Direct calls and
directives are unnecessary. Instead, you import a WFC package into a class and work
with the package’s components, similar to how you work with Java API packages.
WEFCs allow you to access the Win32 API directly and eliminate the need to under-
stand Win32 API programming. The WFC packages are listed in Figure 16-10.

For experienced C++ programmers, WFCs are comparable to Microsoft Foundation Classes

(MFCs), which provide a C++ language API that accesses the Windows native C-language API.

©000

Package Description

com.ms.wfc.app Contains classes for application and Thread control and
access to the Clipboard and Registry.
com.ms.wfc.core Provides core WFC functionality; this package should be

included in every WFC program.

Figure 16-10: WFC packages

section A

Package Description

com.ms.wfc.data Contains data access classes using the ActiveX Data Objects
(ADO) object model. Also contains classes that use ADO to
access databases.

com.ms.wfc.html Contains Java classes for accessing Dynamic HTML (DHTML).

com.ms.wfc.io Provides classes for working with file input and output.

com.ms.wfc.ui Contains user interface classes for controls such as buttons
and labels.

com.ms.wfc.util Contains miscellaneous utility classes.

Figure 16-10: WFC packages (continued)

Java programs using WFCs must include the following;:

B The import com.ms.wfc.core.*; statement

B Import statements for other packages you want to use in your program

B Classes that are extended from parent classes in the WFC packages

B Calls to the specific methods and functions within the imported WFC packages

Figure 16-11 shows a modified version of the MessageBoxApp program from
Figure 16-2 that uses WFCs instead of a]/Direct call to call the Win32 API
MessageBox function. The program in Figure 16-11 creates the same dialog box as the
program in Figure 16-2, but does not require the J/Direct call and directive. Instead, it
imports the required com.ms.wfc.core package, which contains the MessageBox class,
and uses the show() method of the MessageBox class to display the dialog box.

import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
class MessageBoxApp
{
public static void main(String args[])
{
MessageBox.show("This is a message box",
"Message Box Title", MessageBox.OK);
}
}

Figure 16-11: MessageBoxApp calling the Win32 MessageBox function with WFCs

The MessageBox class contains three constructors: the text to be displayed in the
MessageBox, the dialog box title, and the dialog box style. The MessageBox.OK field
determines the style of the dialog box; it displays a simple dialog box containing an
OK button. You can create a MessageBox without the title and style constructors by
typing MessageBox.show("Text String");. The title bar of a MessageBox

> tip

Windows Applications and Packaging

created without the title constructor is blank. The style of a MessageBox created
without the style constructor defaults to the MessageBox.OK field. The show()
method is the only method available in the MessageBox class.

The MessageBox Fields topic in Visual J++ on-line help lists other style fields that can be
used with the MessageBox class.

©000

Next you will modify the Win32Example program so that it uses both a WFC
package and J/Direct call.

To modify the Win32Example program so that it uses both a WFC package
and a J/Direct call:

1 Return to the Win32Example.java file in the Text Editor window and save
the file as Win32Example2.java.

2 Replace the Win32Example class name in the public class
Win32Example header with Win32Example2.

3 Replace the default comments above the class header with the following
import statements:

import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import java.awt.*;

4 Delete the comments containing the directive and J/Direct MessageBox call
located at the bottom of the class file.

5 Replace the statement that reads MessageBox (0, messageBoxText,
messageBoxTitle, 0); with MessageBox.show(messageBoxText,
messageBoxTitle, MessageBox.OK);.

6 Set the project properties to run the Win32Example2 file instead of the
Win32Example file. Rebuild and save the project, then run the program by
selecting Start from the Debug menu. The WFC package generates the
MessageBox. A J/Direct call creates the audible beep that sounds when you
click the OK button.

Programs created in Visual J++ can include any combination of Java API
packages, WFC packages, and]/Direct calls. Remember that whenever you call
the Win32 API using WFC packages and J/Direct calls, your application can run
only on 32-bit Windows platforms. If you know your application will run only in
Windows, using the Win32 API is an appropriate and useful programming
technique. However, if you plan to distribute your program widely and intend for
it to run on multiple platforms as a true Java application or applet, you should
avoid using the Win32 APL In any case, the Win32 API is not a replacement for
the core Java programming language—it is only a supplement that allows Java
programs to take advantage of Windows operating systems.

> tip

section A

Using the Visual J++ Application Wizard

You can create Windows applications by including J/Direct calls, importing a
WFC package into a class file, and adding the appropriate classes and methods
from the package to your code. Windows applications, however, usually include a
form, which is a standard element of most Windows applications. A form contains
a title bar, Minimize button, Maximize button, Close button, and control menu.
You use forms to display information and receive input from the user. You could
manually add a form to a project, then add the appropriate code to manipulate
the form, but doing so can be a time-consuming process. In addition, Windows
applications with forms require some special code to function properly. An easier
way to create a form-based Windows application is to use the Application Wizard.
The Application Wizard is a tool in Visual J++ that walks you through the process
of creating a Windows application project.

Forms were first discussed in Chapter 1. You will learn more about forms in Section B of

this chapter.

When you run the Application Wizard, you are presented with several screens
from which you select options for your Windows application project. The first
screen you see is the Introduction screen, which allows you to load a profile
containing settings from a previous Application Wizard session. Figure 16-12
displays an example of the Introduction screen.

Welcome to the Visual J++ Application Wizard

This wizard guides vou through the process of creating a Java
Application.

From what profile da vou want to load your settings?

Cancel | = Back I Mext = I st I

Figure 16-12: Introduction screen of the Application Wizard

> tip

Windows Applications and Packaging

The next screen in the Application Wizard is the Application Features screen
which contains four elements that can be added to a program: Menu, Edit, Tool
Bar, and Status Bar. The Menu option adds a predefined menu to the form. The
Edit option fills the form with an editable text box, similar to a page in a word-
processing program. The Tool Bar option adds predefined toolbar buttons to
the form. The Status Bar option adds a status bar to the bottom of the form.
Figure 16-13 displays an example of the Application Features screen.

. ¥J98 Application Wizard

Add features to your application

| which of the following Feature capabilities do you want to add
| o wour application?

[w] Tool Bar
Skatus Bar

Cancel | Finish |

Figure 16-13: Application Features screen of the Application Wizard

©000

If you are using Visual J++ Professional or Enterprise edition, the second screen in the
Application Wizard is the Application Type screen. The Application Type screen allows
you to choose Form Based Application or Form Based Application with Data. The Form
Based Application with Data option creates a Windows-based application that reads data
from an external database file.

©000

Following the Application Features screen in the Application Wizard is the
Commenting Style screen. The Commenting Style screen determines the types
of comments the Application Wizard will generate for your program. The
three available options are JavaDoc comments, TODO comments, and Sample
Functionality comments. Figure 16-14 displays an example of the Commenting
Style screen.

section A

m. Y498 Application Wizard

Choose the kind of comments you want

This wizard can add a variety of comments to your source
code. How much detail would vou like?

I JavalDoc comments

¥ TODO comments

¥ Sample Functionality comments

Figure 16-14: Commenting Style screen of the Application Wizard

The last screen in the Application Wizard is the Summary screen, which saves
the settings for the current Application Wizard session and allows you to view and
save a report of the current settings. Figure 16-15 displays an example of the
Summary screen.

m. ¥J98 Application Wizard

Application Wizard Summary

Congratulations! ‘fou have successfully completed the application
wizard.

Press Finish ko finalize your choices.
To what profile do vou want ko save your settings?

I(None) j J

To see a summary report, click Wiew Report,

View Reporkt I

< Back I [dext = |

Figure 16-15: Summary screen of the Application Wizard

> tip

Windows Applications and Packaging

©000

If you are using Visual J++ Professional or Enterprise edition, the Packaging Options
screen appears before the Summary screen. The Packaging Options screen allows
you to choose the type of package that will be created when you build your
application.

©000

Next you will use the Application Wizard to create a Windows application
project.

To create a Windows application project using the Application Wizard:

1 Select New Project from the File menu. The New Project dialog box
appears. Click the Applications folder on the New tab, then click
Application Wizard. Replace the suggested project name in the Name text
box with WindowsPartyPlanner, change the location of the project folder
to the Chapter.16 folder on your Student Disk if necessary, and then
click the Open button. The Introduction screen of the Application
Wizard displays.

2 Since this is your first time using the Application Wizard, you should not
have any stored profiles. Click the Next button to continue. The Application
Features screen of the Application Wizard displays.

3 Deselect all four options in the Application Features screen: Menu, Edit,
Tool Bar, and Status Bar. Click the Next button. The Commenting Style
screen of the Application Wizard displays.

Any of the options in the Application Wizard can be removed or added once you
create the project.

4 Deselect all three options in the Commenting Style screen: JavaDoc comments,
TODO comments, and Sample Functionality comments. Click the Next button.
The Summary screen of the Application Wizard displays.

5 Click the Finish button to create the project. The Application Wizard

builds the new project and opens the WindowsPartyPlanner form. Your
form should resemble Figure 16-16.

> tip

section A

WindowsPartyPlanner.Java [Form]

Figure 16-16: WindowsPartyPlanner form

You can quickly create a form-based Windows application by selecting Windows Application
from the Applications folder in the New Project dialog box. The skeleton of a form-based
Windows application is created containing JavaDoc comments, TODO comments, and Sample
Functionality comments.

WFC Forms

You create Java Windows applications using WFC form files. WFC form files are
very similar to standard Java files: They have an extension of .java, they contain
Java code, and you can edit them using the Text Editor window. However, you
can also work with a WFC form in the Forms Designer window. You use the
Forms Designer window to create and edit the visual aspects of a WFC form.
Although you are using a graphical interface to create the visual aspects of the
application, all of the visual elements in the Forms Designer window, including
the form itself, are represented by Java code. For example, the form displayed in
the Forms Designer window in Figure 16-17 is actually generated by the code
displayed in the Text Editor window in Figure 16-18.

Windows Applications and Packaging

Figure 16-17: WFC form in the Forms Designer window

omml _java [Code]*

import com.ims.vic.app. *;
import cow.mns.wic.core., *)
import com.ms.wic.ui. ®;
import com.ms.wic,html, *;
public clasz Forml extends Form
{

public Forml ()

{

initForm() ;

i
public woid dispose ()
{
super.dispose () ;
cowmponents.dispoze (] ;2
i

SEE

* NOTE: The following code is reguired by the Visual J++

=
% Aeadcmer Tt rman ke wodified nsine the Frrm editor _J-J
| »

Figure 16-18: WFC form in the Text Editor window

To display the code in a WFC application:
1 Activate the Forms Designer window.

2 Select Code from the View menu. The form’s code displays in the Text Editor
window.

3 Redisplay the Forms Designer window by selecting Designer from the
View menu.

> tip

> tip

> tip

section A

©000

You can also view the Code window by pressing F7 and the Designer window by pressing
Shift+F7.

©000

As you learned in Chapter 4, the package that is implicitly (or automatically)
imported into every standard Java program is named java.lang. The classes it
contains are fundamental classes of Java. The package that contains the funda-
mental classes for WFC applications is com.ms.wfc.core. This class must be
explicitly imported into every WFC application. In other words, you must use
the import com.ms.wfc.core; statement at the beginning of a WFC class file.

When you create a WFC program using the Application Wizard or the Windows
Application option in the New Project dialog box, Visual J++ automatically includes the
necessary import statements for WFC packages.

©000

Extending the Form class of the com.ms.wfc.ui package into a subclass creates
the form you see in the Forms Designer window. The Form class in WFCs is
similar to the Frame class in the AWT. Like the AWT Frame class, the WFC Form
class extends the Component class. Specific components in WFCs, such as labels,
buttons, and check boxes, are contained in the Control class. Since Forms are
usually created to hold other components, the Form class also extends the Control
class. Therefore, a Form is a Component as well as a Control.

You will learn more about the Control class later in this section.

©000

When you extend the Frame class, you inherit several useful methods. Figure 16-19
lists the method header and purpose of several WFC Form class methods.

Method Purpose

void add(Control control) Adds a control to the form.

void close() Closes the form.

Control getActiveControl() Returns the control that has the focus.

int getBorderStyle() Returns the form’s border style in the form of an
integer representing a border style constant.

void setActiveControl(Control value) Sets the focus to a specified control.

void setBorderStyle(int borderStyle) Sets the form'’s border style using an integer

representing a border style constant.

void setVisible(boolean value) Sets a form's visible property to true or false.

Figure 16-19: Useful methods of the WFC Form class

Standard Java console applications are executed using statements in a
main() method, whereas Java applets rely on the init(), start(), stop(), destroy(),

Windows Applications and Packaging

and paint() methods. WFC applications also use a main() method, but they must
be executed using the run() method of the Application class found in the
com.ms.wfc.app package. The Application.run() method is placed in the
main() method of a WFC class with a single argument containing the keyword
new and the name of the WFC class. For example, if you have a WFC class named
sampleWFCClass, then you must write the main() method as follows:

public static void main(String args[])

{

Application.run(new sampleWFCClass());

}

When a WFC application is started, the Application.run method is executed,
which runs any statements in the main class body, then calls the class constructor.
The class constructor then calls the initForm() method. The initForm() method is
used to set the properties of the form and initialize any components it contains. Any
additional constructor code is placed after the call to the initForm() method. You
cannot use the initForm() method to remove components or to reset properties; you
use the method only for setting default values.

When you close a WFC application using the Close button in the form’s
title bar, any statements in the main() method following the initForm() method are
executed, then the Application.exit method of the com.ms.wfc.app package is
called. You can also quit a WFC application by calling the Application.exit
method from anywhere in the code. The Form class contains an automatically
created method named dispose() which is called when the Application.exit method
is executed to release any of the Form’s resources. The dispose() method is similar
to the destroy() method that is called in an applet when a user closes the browser
or AppletViewer. (You learned about the destroy() method in Chapter 7.)

WEC applications usually override the dispose() method to remove any
components (such as buttons or labels) that the Form creates. For example, when
you use the Application Wizard or the Windows Application option in the New
Project dialog box to create a new WFC program, Visual J++ automatically
creates a Container named components in the class body to contain the Form’s
components. A dispose() method is also added as follows:

public void dispose()

{
super.dispose();
components.dispose();

The super.dispose(); statement is added to call the base dispose() method
to clean up the application’s system-level resources. The components.dispose();
statement then disposes of the components Container.

Any statements following the Application.run() method in the main() method
are called after the dispose() method.

Figure 16-20 shows the life cycle of a WFC application.

section A

The main() method calls the Application.run() method

'

The Application.run() method runs any statements in the main
class body, then calls the class constructor.

v

The class constructor calls the intForm() method. Any additional
constructor code is placed after the call to the intForm() method.

v

The Close button EI is clicked and
the Application.exit() method is called.

v

The Application.exit() method calls the dispose() method.

v

The dispose() method uses the super.dispose();
statement to clean up any system resources, then uses the
components.dispose(); statement to clean up the
components Container.

v

Any statements following the Application.run() method
in the main() method are executed.

!

The program ends.

Figure 16-20: Life cycle of a WFC application

Next you will change properties for the WindowsPartyPlanner program and
examine the code behind the Forms Designer window.

Windows Applications and Packaging

To change properties for the WindowsPartyPlanner program and examine
the code behind the Forms Designer window:

1 Return to the Forms Designer window in the WindowsPartyPlanner program.
If necessary, display the Properties window by selecting Properties Window
from the View menu. Locate and click the text box for the text property in the
Properties window. The text property for a form represents the text that
appears in the form’s title bar. Change the present value to Event Handlers
Incorporated. The new text appears in the form’s title bar.

]
> tlp You first learned about the Properties window in Chapter 1.

2 Locate and click the backColor property in the Properties window. The
property in the Settings list for the backColor property should be a gray box
followed by the word “Control”. The Control color property represents a
constant in the Color class. (The Color class is a member of the com.ms.wfc.ui
package.) Click the drop-down arrow next to the Settings box. The list
displays, containing a System tab and a Palette tab. The System tab contains
additional constants available in the Color class. Click the Palette tab and
select a light blue. The background of the form changes to the selected color.

3 Locate the size property in the Properties window and click the Plus box
to expand the property. Beneath the size property are the x and y properties.
Change the x property to 350 and the y property to 300.

[
> tl You can also resize a form with your mouse by dragging one of the sizing handles
located at the form’s corners and sides.

4 Locate and click the borderStyle property in the Properties window. Click
the drop-down arrow next to the Settings box and select Fixed Dialog. The
Fixed Dialog border prevents users from resizing the form when the
application is running.

5 Locate and click the startPosition property in the Properties window. The
startPosition property determines where the form is initially placed on your
screen. Change the default option of Windows Default Location to Center
Screen.

6 Build the project as you would any Java program by selecting Build from
the Build menu.

7 Select Code from the View menu to examine the form’s code. The first lines
of code in the class are the required WFC import statements. The class
header extends the Form class. The first two methods in the class are the
class constructor and the dispose() method. Following the dispose()
method is a gray box containing code that includes the initForm() method.

help

> tip

section A

The code in the gray box is automatically generated by Visual J++ for the
visual aspects of the form. Within the initForm() method, you should
recognize several methods including the setText() method, which sets the
form’s title bar to “Event Handlers Incorporated,” and the setBorderStyle()
method, which sets the form’s border style to Fixed Dialog. The last
method in the class is the main() method, which contains a single
statement, Application.run(new WindowsPartyPlanner());, to
start the application.

If you view the code for a WFC class while its associated Forms Designer window is
open, the code that is being controlled by the Forms Designer window is marked in
gray. You cannot edit this code while the WFC file’s Forms Designer window is
open. To edit code that is automatically generated by Visual J++, close the WFC
file's associated Forms Designer window. It is easier to allow Visual J++ to handle
code generation for the initForm() method.

Next you will execute the WindowsPartyPlanner class.

To execute the WindowsPartyPlanner class:

1 Select Start from the Debug menu. The form appears in the center of your
screen. The title bar should read “Event Handlers Incorporated” and the
background color of the form should appear as the color you selected in the
preceding steps.

You execute WFC applications with JVIEW or WIVIEW, just as you would execute
standard Java applications. However, since the WindowsPartyPlanner program is a
Windows application, running the program does not require a separate command line,
as does a console application. Visual J++ automatically selects WJVIEW as the default
program in the Properties dialog box for the WindowsPartyPlanner project; you don’t
need to set the program properties manually.

2 Close the form by clicking the Close button in the title bar. The Close
button automatically calls the Application.exit() method and the program ends.

So far, the WindowsPartyPlanner program consists of only a form with a title
bar. Next you will use the Toolbox to add WFC controls to the form.

WEFC Controls

You already know from Chapter 11 that Java’s creators packaged GUI components in
the Abstract Windows Toolkit so you can adapt them for your purposes. You insert
the import statement import java.awt; at the beginning of your Java program
files so you can take advantage of the GUI components and their methods, which are

> tip

> tip

> tip

Windows Applications and Packaging

stored in the AWT package. Within the AWT package, components such as buttons,
check boxes, and labels descend from the Component class. In WFC programming,
components descend from the Control class of the com.ms.wfc.ui package.

©000

You have already used a child class of the Control class—the MessageBox class descends
from Control. Every MessageBox “is a” Control.

©000

The WFC Control class descends from the WFC Component class. Like the
AWT Component class, the WFC Component class contains several methods that
you can use with any of its descendants, such as components that extend the WFC
Control class. For example, the getChildOf() method is used to determine whether
the current component is the child of a specified component. However, many of
the methods contained in the AWT Component class, such as the setSize() and
setVisible() methods, are not available in the WFC Component class. Instead, they
are located in the WFC Control class.

Components in the AWT package are usually placed in containers. A container
is a type of component that holds other components so you can treat a group of
several components as a single entity. In the AWT, the Container class descends
from the Component class. Child classes of the AWT Container class include the
Panel class, Window class, and Frame class. These classes are containers as well as
components. In standard Java programming, the Container class is a physical
component that contains other programs. For example, in the AWT, the Frame
class, which is a Container, contains other components such as Buttons and Labels.

©000

In standard Java packages, the Container and Component classes are part of the java.awt
package. The Container and Component classes in WFCs are part of the com.ms.wfc.core
package.

©000

In WEC programming, the Control class (which contains many of the same
components as the AWT Component class) does not descend from the Container
class. Instead, the Control class descends directly from the Component class.
Therefore, components in the Control class are not containers as they are in the
AWT Component class. The Container class in WFC is used to organize other com-
ponents logically, rather than physically, as is the Container class in the AWT. For
example, a Frame created with the AWT “is a” Container since it can contain other
components such as Buttons and Labels. In WFCs, a Form (which is also a Control)
is not a container, although components are placed on it. Instead, a new Container
is declared in the body of a Form’s code to contain the Form’s components using the
statement Container components = new Container();.

©000

When you use the Application Wizard or the Windows Application option in the New
Project dialog box, the statement Container components = new Container(); is
automatically created for you and should not be modified.

©000

The Toolbox in the Forms Designer window contains various WFC controls
that you can add to your form. Next you will use the Toolbox to add WFC controls

> tip

> tip

> tip

section A

to the WindowsPartyPlanner program. In Section B, you will add the code that is
necessary to make the WFC controls function.

©000

You first learned about the Toolbox in Chapter 1.

©000

To use the Toolbox to add WFC controls to the WindowsPartyPlanner

program:

1 Return to the WindowsPartyPlanner form in the Forms Designer window.

2 If necessary, select Toolbox from the View menu, and then click the WFC
Controls button.

3 First you will add a Cocktails CheckBox and a Dinner CheckBox. To add

the first CheckBox, click once on the CheckBox control in the WFC
Controls tab, and then click once on the form in the approximate location
where you want to place the check box. (Refer to Figure 16-1 to see where
to place each control for the WindowsPartyPlanner.)

To learn the function of each control on the WFC Controls tab of the Toolbox, hold
your mouse over a control to display its ToolTip.

You can move any control after you have added it to a form by selecting the control,
holding down the left mouse button, and dragging the control to the desired location.

4

After you add the CheckBox to the form, click the CheckBox to display its
properties in the Properties window. Change the CheckBox’s name property
to cocktailBox, and its Text property to Cocktails. The name property is the
name of the control, and the text property is the text that is displayed as the
control’s label or default value.

Add to the form a second CheckBox that you will name dinnerBox. Then

change the CheckBox’s name property to dinnerBox, and its text property
to Dinner.

Use the ComboBox control B to add a ComboBox to the form directly beneath
cocktailBox. Change the ComboBox’s name property to entertainmentChoice
and its text property to No Entertainment.

A WFC ComboBox is similar to the AWT Choice component, which you learned about in
Chapter 11.

7

You can add more items to the ComboBox using the items property box. The
items property box contains the items that will appear in the ComboBox at
run time. Click once in the items property box for entertainmentChoice.
Notice that the items property default setting is (Strings). Click the ellipsis (...)
button that appears to the right of the items property default setting (Strings).

> tip

> tip

Windows Applications and Packaging

The String List Editor dialog box appears. Enter the following additional four
items into the dialog box, then select the OK button:

No Entertainment
Rock Band
Pianist

Clown

Use the ListBox control to add a ListBox to the form directly beneath
the entertainmentChoice control. The selectionMode property of ListBox
determines what type of selections users can make: None, One, Multi
Simple, or Multi Extended. A selectionMode property of None sets the
properties so that users cannot make a selection. A selectionMode property
of One lets users select only one choice and allows them to select a different
item if they change their mind. Multi Simple allows users to select multiple
items. Multi Extended is similar to Multi Simple, but allows users to use
their Shift, Ctrl, and arrow keys to make selections. Change the ListBox’s
name property to partyFavorList, and change the selectionMode to One.

A WEFC ListBox is similar to the AWT List component, which you learned about in Chapter 11.

10

Use the items property to open the String List Editor dialog box for
partyFavorList, enter the following four items into the dialog box, then
select the OK button:

Hats
Streamers
Noise Makers
Balloons

Beneath the dinnerBox control, use the GroupBox control to add a
GroupBox. To add a GroupBox, click once on the GroupBox icon in the WFC
Controls tab. Then point your mouse at the approximate location where you
want the upper-left corner of the GroupBox to appear on the form, click and
hold your left mouse button, and drag until the GroupBox reaches the desired
size. You can resize a GroupBox after creating it using one of the sizing
handles located at its corners and sides. Change the GroupBox’s name
property to dinnerGrp and change its text property to Entree.

A GroupBox is the equivalent of the AWT CheckboxGroup, which you learned about in
Chapter 11.

"

Within dinnerGrp, add three RadioButtons named chickenButton, beefButton,
and fishButton. Make sure that each RadioButton and its associated text is con-
tained within the boundaries of dinnerGrp. If part of a RadioButton is outside
the boundaries of a GroupBox, then it is not considered to be part of the group.

> tip

section A

To add each RadioButton, click once on the RadioButton control in the
WEC Controls tab. Then click once on the form in the approximate location
where you want to place the RadioButton.

12 Change the name property of the first RadioButton to chickenButton and
its text property to Chicken. Change the name property of the second
RadioButton to beefButton and its text property to Beef. Change the name
property of the third RadioButton to fishButton and its text property to Fish.

13 Set chickenButton as the default RadioButton in the group by changing its
checked property to true.
Only one RadioButton within a Groupbox can have its check property set to true. All
other RadioButtons must be set to false.

14 Below the partyFavor list and the dinnerGrp GroupBox, use the Label
control to add a Label to the form. Click once on the Label control in
the WFC Controls tab. Then click once on the form in the approximate
location where you want to place the Label. Change the Label’s name prop-
erty to companylabel and its text property to Event Handlers Incorporated.
Use the font property to change the Label’s font to MS Sans Serif, its size to
14 points, and its style to bold.

15 Add another Label to the form. Change the Label’s name property to priceLabel
and its text property to Event price estimate. Use the font property to change
the Label’s font to MS Sans Serif, its size to 14 points, and its style to bold.

16 To the right of the priceLabel, add a final Label to the form. Change the
Label’s name property to totalPriceLabel and its text property to 200. Set
the Label’s font properties to MS Sans Serif, 14 points, and bold.

17 Add a Button to the bottom of the form. Click once on the Button control

in the WFC Controls tab. Then click once on the form in the approxi-

mate location where you want to place the Button. Change the Button’s
name property to buttonExit and its text property to Exit.

18 Build and save the project, then run the program by selecting Start from the
Debug menu. Your program should appear similar to Figure 16-1. You
should be able to select all the options on the form. However, you still need
to write code to generate the event price.

19 Close the form by clicking the Close button in the title bar.

Remember that although Visual J++ automatically generates the code that
builds the controls you added, you can write the code manually when the Forms
Designer window is closed. The controls you just created require a fairly long
segment of code. For example, you created a GroupBox containing three

Windows Applications and Packaging

CheckBoxes, and modified several properties for each control. The code required
to create and set properties for the GroupBox and its CheckBoxes is as follows:

GroupBox dinnerGrp = new GroupBox();
RadioButton chickenButton = new RadioButton();
RadioButton beefButton = new RadioButton();
RadioButton fishButton new RadioButton();

dinnerGrp.setLocation(new Point (184, 48));
dinnerGrp.setSize(new Point (136, 112));
dinnerGrp.setTabIndex(0);
dinnerGrp.setTabStop(false);
dinnerGrp.setText ("Entree");

chickenButton.setLocation(new Point (16, 16));
chickenButton.setSize(new Point (100, 23));
chickenButton.setTabIndex(0);
chickenButton.setText ("Chicken");
chickenButton.setChecked(true);

beefButton.setLocation(new Point(16, 40));
beefButton.setSize(new Point (100, 23));
beefButton.setTabIndex(1l);
beefButton.setText ("Beef");
beefButton.setChecked(false);

fishButton.setLocation(new Point (16, 64));
fishButton.setSize(new Point (100, 23));
fishButton.setTabIndex(2);
fishButton.setText("Fish");
fishButton.setChecked(false);

dinnerGrp.setNewControls(new Control[] {
fishButton,
beefButton,
chickenButton});

You should understand the purpose of each of these statements, even though
you can have Visual J++ generate them automatically.

In Section B, you will learn about events in WFC programs and write the code
to finish the WindowsEventPlanner application.

S UMMARY

B There are two types of Windows operating systems: 16-bit and 32-bit. The older
Windows 3.1 operating system is 16-bit. Current 32-bit Windows operating systems
are Windows NT, Windows 95, Windows 98, and Windows CE.

B Visual J++ is a 32-bit application designed for 32-bit Windows operating systems. The
term bit refers to the width of a microprocessor’s data bus.

section A

B An application programming interface (API) is a library of methods and attributes that
provide access to the features and functionality of an application or operating system.
All 32-bit Windows operating systems share a common API called the Win32 APIL

B Using the common functionality available in the Win32 APT helps to maintain a con-
sistent look for Windows-based applications.

B]J/Direct translates the Win32 API syntax into a format that can be used with Java.

B Methods and other components in the Win32 API are contained in dynamic-link
libraries (DLLs). DLLs are files with an extension of .dIl.

B A directive tells the compiler in which DLL to find a method. There are three types
of directives: @dll.import for declaring functions, @dll.struct for declaring structures,
and @dll.structmap for declaring fixed-size strings and arrays embedded in structures.

B If you know the correct syntax for J/Direct calls and directives that you want to include in
your Java application, then you can code them directly into a Java file. You can also insert
J/Direct calls and directives into your code using the Visual J++ J/Direct Call Builder.

B Adding J/Direct calls removes a Java program’s architectural neutrality—the program is
no longer a true Java program since it can run only on Windows platforms. However,
J/Direct allows you to use your Java programming skills to create Windows applications.

B Although programs you create that use only Java API packages will run on any plat-
form for which there is a Java VM, the Java VM cannot use components that exist
within an individual operating system.

B True Java applications will not run as fast as applications that are native to a specific
operating system. This difference in speeds is a result of the Java VM. Although the
Java VM allows Java applications to be architecturally neutral, it adds an extra
translation layer that an application must pass through to run.

B Windows Foundation Classes (WFCs) for Java are packages of J/Direct calls that are
translated into the Java programming language.

B The MessageBox class contains three constructors: the text to be displayed in the
MessageBox, the dialog box title, and the dialog box style.

B Programs created in Visual J++ can include any combination of Java API packages,
WEFC packages, and J/Direct calls.

B If your application will run only in Windows, there is no reason not to use the Win32
API. However, if your program will be widely distributed on multiple platforms as a
true Java application or applet, then you should avoid using the Win32 API.

B The Application Wizard is a tool in Visual J++ that walks you through the process of
creating a Windows application project.

B WFC form files are very similar to standard Java files: They have an extension of
.java, contain Java code, and can be edited using the Text Editor window.

B The package that contains the fundamental classes for WFC applications is
com.ms.wfc.core. This class must be explicitly imported into every WFC application.

B The Form class in WFCs is similar to the Frame class in the AWT.

B WEFC applications use a main() method, similar to Java applications, but must be executed
using the run() method of the Application class found in the com.ms.wfc.app package.

B The Application.run() method is placed in the main() method of a WFC class with a
single argument containing the keyword new and the name of the WFC class.

B The initForm() method is used to set the properties of the form and any components it
contains. Any additional constructor code is placed after the call to the initForm() method.

Windows Applications and Packaging

When you close a WFC application using the Close button , the Application.exit
method of the com.ms.wfc.app package is called.

You can also quit a WFC application by calling the Application.exit method from
anywhere in the code.

The dispose() method is similar to the destroy() method that is called in an applet
when using a Web browser or AppletViewer.

With WFC programming, components descend from the Control class of the
com.ms.wfc.ui package.

The WFC Control class descends from the WFC Component class. Like the AWT
Component class, the WFC Component class contains several methods that you can use
with any of its descendants, such as components that extend the WFC Control class.
Many of the methods contained in the AWT Component class, such as the setSize()
and setVisible() methods, are not available in the WFC Component class. Instead, they
are located in the WFC Control class.

In WFC programming, the Control class does not descend from the Container class.
Instead, the Control class descends directly from the Component class. Therefore,
components in the Control class are not containers as they are in the AWT
Component class.

The Container class in WFC logically organizes other components, whereas the
Container class in the AWT physically organizes components.

UESTIONS

The term bit refers to

a. the amount of memory in your computer
. the width of a computer microprocessor’s data bus
code statements in a WFC application

oo o

. the size of a computer’s hard drive

is a 16-bit Windows operating system.

Windows NT

. Windows 95

Windows 3.1

d. Windows 98

A library of methods and attributes that provide programmatic access to an
application or operating system is called
a. an application programming interface (API)

b. a Windows Foundation Class (WFC) program

¢. a dynamic link library (DLL)

d. the Abstract Windows Toolkit (AWT)

You can directly access the Win32 API in Visual J++ by using
a. standard Java statements

b. the Sun JDK

c. J/Direct calls

d. the java.awt package

oo

section A

5. A simple Win32 API dialog box that displays a message and an OK button is created
with .
a. the initform() function

b. the System.out.print() method
c. the MessageBox function
d. the Beep function

6. The declaration that informs Java that a method is implemented in another program-
ming language is called the modifier.

a. external

lon

. final
public
. native

tells the compiler in which DLL a method will be found.

parameter
. // TODO comment
constructor

~N
a0 T e »pa0

. directive
8. You can type J/Direct calls directly into a file or insert them using
a. Object Browser
b. J/Direct Call Builder
c. the Properties window
d. the Open dialog box

9. Java programs containing J/Direct calls or that import WFC packages can run

on any platform for which there is a Java VM
on Windows NT but not on Windows 95
on Windows 95 and Windows 98, but not on Windows NT
on any 32-bit Windows platform
10. Wlndows Foundation Classes (WFCs) are
a. special Java packages that make Java programs archltecturally neutral
b. part of the java.awt package
c. packages of standard Java calls that are used in true Java applications
d. packages of J/Direct calls that are translated into the Java programming language

oo o

11. The package that should be imported into every WFC application is

a. com.ms.wfc.app
b. com.ms.wfc.core
c. com.ms.wfc.data
d. com.ms.wfc.html
12. Programs created in Visual J++ can include
a. Java API packages, but not WFC packages or J/Direct calls
b. WFC packages and J/Direct calls, but not Java API packages
c. only Java API packages
d. any combination of Java API packages, WFC packages, and]J/Direct calls
13. Your program should include calls to the Win32 API when
a. you are planning on distributing your program on a wide range of platforms

b. your program will run only on 32-bit Windows platforms

14.

15.

16.

17.

18.

19.

20.

21.

Windows Applications and Packaging

c. your program will never run on 32-bit Windows platforms
d. you want your program to be architecturally neutral

The Win32 API is
a. the most recent version of Java

b. part of every Java program

c. a replacement for the Java programming language

d. intended only as a supplement to the Java programming language

The Application Wizard walks you through the process of creating
a. a console application project

b. a Windows application project

c. an Applet

d. a program’s graphical user interface (GUI)

You create and edit the visual aspects of a WFC application using the

a. Object Browser window
b. Win32 API

c. Forms Designer window
d. Class Outline window

You create a form in a WFC application by extending the Form class of the
package into a subclass.

com.ms.wfc.core
com.ms.wfc.data
com.ms.wfc.app

SR

com.ms.wfc.ui

To execute a WFC application, you must includethe _ methodina
program’s main() method.

a. Application.run()

b. Show()

c. DisplayForm()

d. MessageBox()

A form’s properties and components are initialized using the

a. Form constructor
b. initForm() method
¢. main() method

d. Application.run() method
A form is closed when

a. the program receives a close notification from the Win32 API

b. the last statement in the main() method is executed

c. the Application.exit() method is called

d. the Application.close() method is called

The method removes any of the components created by a WFC
application.

a. remove()

b. dispose()

c. kill()

d. quit()

section A

22,

23.

Specific components in WFCs, such as labels, buttons, and check boxes, are contained
in the class.

a. Form

b. Control

c. Component
d. Container

Controls in WFC applications descend from
a. both the Component class and Container class

b. the Component class but not the Container class

c. the Container class but not the Component class

d. neither the Container class nor the Component class

XERCISES

Save each of the programs that you create in the exercises in the Chapter.16 folder on your
Student Disk.

1.

Write a Java Windows application that prompts users to select which invitation they
would like displayed: Birthday, Graduation, or Anniversary. Add three Strings to the
program for each invitation type. The Birthday invitation should read “Please join us
for our son’s birthday.” The Graduation invitation should read “We are celebrating
our daughter’s graduation from college.” The Anniversary greeting should read “You
are cordially invited to attend our 25t wedding anniversary.” Add J/Direct calls to
the program that call the MessageBox and the Beep functions. Display a MessageBox
containing the selected invitation, and then call the Beep function after the user
presses the OK button. Name the project SelectAnInvitation.

Write a WFC application project that displays a form containing the words to any
well-known song. Name the project Song.

Create a WFC application project named EmploymentApplication. Include Edit boxes
for a name, address, and city. Create a ComboBox that allows users to select a single
state. Fill the state ComboBox with the abbreviations of at least five states in your
area. Create a ListBox that allows users to select a range containing their years of
experience: 0-1, 1-3, 3-5, 5-10, or 10+. Allow the user to select only one entry at a
time. Add a GroupBox for the type of employment the user is seeking. Include five
RadioButtons in the GroupBox: Management, Clerical, Industrial, Technical, and
Construction. At the bottom of the form, add three CheckBoxes: Willing to Relocate,
Available for Overtime, and Available for Travel.

Windows applications usually contain an About box that displays legal and other
information about the program. Use a WFC application to create an About box for
the WindowsPartyPlanner application you created in this section. Look in the About
boxes for other Windows applications on your computer for ideas of the type of
information to include in your About box. You can display the About box for most
Windows applications by selecting About from the Help menu. Experiment with fonts
and the different controls available in the Toolbox.

Review some of the applets and applications you have created in previous chapters.
Try to simulate the same designs in a WFC program. Do you find creating visual
interfaces easier with the AWT or in WFC programs?

SECTION B

In this section you will learn:

B About WFC Events
B How to create and use packages Ve n s

B How to use Visual J++ packaging
to distribute programs

and Packaging

WEFC Events

In standard Java programming, you tell your program to listen for an event by
implementing an event interface such as ActionListener. You have worked with
event interfaces, such as ActionListener, since Chapter 7, so you know that the
ActionListener interface listens for ActionEvents, which are the types of events
that occur when a user clicks a Button. To implement ActionListener, you

B Import java.awt.event.*

B Add implements Action Listener to the right of the class header

B Add the addActionListener() method to each item, such as a Button, that
responds to ActionEvents

B Add an actionPerformed(ActionEvent e€) method to the class

When you work with Event objects, such as ActionEvent, you create only a
single method to handle all instances of a specific event type. Whereas you may
have two or more buttons in a class that are registered as ActionListeners, a class
can contain only one actionPerformed(ActionEvent e) method.

Instead of accessing internal Java events contained in the java.awt.event
package, components in WFC applications access standard Windows events that
are available as methods in the Control class. You do not need to import a different
package or implement an event interface. A variety of different Windows events are
available for different types of controls. Figure 16-21 lists some common Windows
events that are automatically available to a Button in a WFC application.

Event Occurs When

Click The Button is clicked
Enter The Button gains focus
Leave The Button loses focus

Figure 16-21: Common Windows events available to a Button

788

> tip

> tip
> tip

section B

Event Occurs When

MouseDown The Button is clicked and the mouse is not released
MouseUp The Button is clicked and the mouse is released after being held down

Figure 16-21: Common Windows events available to a Button (continued)

Unlike the single actionPerformed(Event e) method in standard Java applications, each
control in a WFC program can have its own Click method.

©000

You register AWT components to listen for events using the add<event>Listener()
method, where <event> represents the specific type of event. For example, the
addActionListener() method registers a component to listen for ActionEvents. You
register WFC controls for events using the addOn<event>() method. The
addOn<event>() method accepts a single parameter known as a delegate. A delegate
is a wrapper class that is used for passing one method to another method.

You first encountered wrapper classes in Chapter 6, where you learned that a wrapper is
a class or object that is “wrapped” around a simpler thing.

Delegates are similar in function to pointers found in other programming languages such
as C, C++, and Pascal.

©000

WEFC delegate classes are comparable to AWT event interfaces. For example,
the generic EventHandler delegate handles roughly the same events as the AWT
ActionListener interface. Other delegates include the MouseEventHandler
delegate, which handles mouse events in the same manner as the AWT
MouseListener class, and the KeyEventHandler delegate, which processes
keypresses, similar to the AWT KeyListener class.

When you register a component in a WFC application, you essentially
“delegate” the responsibility of the event to another method, known as an
event handler. An event handler is a method created to run in response to a
particular event. The following code adds a new EventHandler to a Button
named myButton and passes the event to an event handler method called
myButton_Click():

Button myButton = new Button();
myButton.addOnClick(new EventHandler (this.myButton_Click));

An event handler receives two items from a delegate: a reference to the compo-
nent that initiated the event, and the event object itself. Any method that you

> tip

Windows Applications and Packaging

intend to use as an event handler must include arguments to access these two items.
For example, the following code shows a typical click event handler for a button:

private void myButton click(Object source, Event e)

{
// Add statements here

When you work with events in WFC applications, Visual J++ automatically
creates an event’s delegate and event handler method for you. You can also create
a new event handler method from scratch. When Visual J++ automatically creates
an event handler method for you, the name of the event handler method is associ-
ated with the name of the component for which it was created. For example, the
default name of the event handler for myButton is myButton_click. If you intend
to use a single, automatically created event handler method with multiple controls,
you may want to rename the event handler with a more logical name. When you
create a new method from scratch that will be used as an event handler, be sure to
include the Object source, Event e arguments in the method’s header.

Next you will add functionality to the WindowsPartyPlanner application. To
do so, you will add events that will calculate the price of the event based on the
items that users select. You will also enable the Exit button so that clicking it ends
the application.

To add events to the WindowsPartyPlanner application:

1 If necessary, open the WindowsPartyPlanner project from the Chapter.16
folder on your Student Disk, then open the WindowsPartyPlanner.java file
in the Forms Designer window.

2 Click the Exit button in the Forms Designer window, then click the Events
button in the Properties window. A list of events that are available for a
WEFC Button appears. Double-click anywhere on the line for the Click
event. Visual J++ switches to code view and automatically generates an
event handler skeleton for the Exit button’s Click event.

3 Locate the buttonExit_click() method and add Application.exit();
between the method’s curly brackets. This statement allows you to call the
internal Application.exit() method.

You can also create a default event handler skeleton for a control by double-clicking it
in the Forms Designer window. The default event depends on the control. For example,

a Button control’s default event is the Click event, while a GroupBox control’s default
event is the Enter event.

section B

4 In the Code window, locate the WindowsPartyPlanner class. Immediately
following the class’s opening curly brackets, add the following variables for
the event prices:

int cocktailPrice = 300, dinnerPrice = 600;
int beefPrice = 100, fishPrice = 75;

int[] actPrice = {0, 725, 325, 125};

int[] favorPrice = {8,10,25,35};

5 Locate the class’s main method, and enter the following eventOptionsChanged()
method immediately after the main() method. The eventOptionsChanged
method will update the event price whenever an option is changed in the form.
All of the form controls that can change the event’s pricing will call the
eventOptionsChanged() method as a delegate.

public void eventOptionsChanged(Object source, Event e)
{
int totalPrice = 200;
if (cocktailBox.getCheckState() == 1)
totalPrice += cocktailPrice;
if (dinnerBox.getCheckState() == 1)
{
totalPrice += dinnerPrice;
if (beefButton.getChecked())
totalPrice += beefPrice;
else if(fishButton.getChecked())
totalPrice += fishPrice;
else
chickenButton.setChecked(true);
}
int actNum = entertainmentChoice.getSelectedIndex();
if(actNum != -1)
totalPrice += actPrice[actNum];
int[] favorNums = partyFavorList.getSelectedIndices();
for(int x = 0; x < favorNums.length; ++x)
totalPrice += favorPrice[favorNums[x]];
totalPriceLabel.setText (Integer.toString(totalPrice));
}

6 Save the project so the eventOptionsChanged() method is available to the
controls in the Forms Design window.

help From working with similar code based on the AWT, you should recognize the methods
in the preceding code. However, some of the method names differ slightly from their
counterparts in the AWT.

> tip

Windows Applications and Packaging

7 Return to the Forms Designer window, click the Cocktails CheckBox, then
click the drop-down arrow to the right of the Click event’s Settings box in
the Properties window. A list displays containing the two valid event
handler methods: buttonExit_Click and eventOptionsChanged(). Click the
eventOptionsChanged() method. Visual J++ automatically places the
insertion point in the eventOptionsChanged() method in the Code window.
Scroll to the gray-screened code that is being generated by Visual J++ until
you find the statement that reads cocktailBox.addOnClick (new
EventHandler (this.eventOptionsChanged));. Notice that the
delegate calls the eventOptionsChanged() method. This statement is the
only code necessary to call the eventOptionsChanged() method as a Click
event for the Cocktails CheckBox.

8 Repeat Step 6 to add a selectedIndexChanged event that calls the
eventOptionsChanged() method for the Dinner Checkbox, the PartyFavor
ListBox, and each of the three entrée Radio Buttons.

9 Add a selectedIndexChanged event for the Entertainment Choice ComboBox
that also calls the eventOptionsChange() method.

10 Rebuild and save the project. If necessary, correct any syntax errors and
rebuild again. Execute the program by selecting Start from the Debug menu,
and test each of the components.

Creating and Using Packages

Just as Java’s creators have provided you with packages, such as java.util and
java.awt, you can create your own packages. When you create your own classes,
you can place these classes in packages so that you or other programmers can
easily import related classes into new programs.

Creating packages encourages others to reuse software because packages make it
convenient to import many related classes at once.

©000

When you create classes for others to use, most often you do not want to
provide users with your .java files, which contain your source code. You expend
significant effort in developing workable code for your programs. If you provide
your source code to people, other programmers will be able to copy your programs,
make minor changes, and market the new product themselves, profiting from your
effort. Instead of providing users with your .java files, you provide users with the
.class compiled files, which allow users to run the program you have developed.
Similarly, when other programmers use classes you have developed, they need only
the completed compiled code in the .class files to import into their programs. You
place the .class files in a package so other programmers can import them.

> tip

> tip

section B

To place the compiled code into a package, you include the package state-
ment at the beginning of your class file, outside the class definition. The statement
package com.course.animals; indicates that the compiled file should be
placed in a folder named com.course.animals. The statement includes the keyword
package followed by the path of the folder that should contain the .class file. In
this case, the package statement indicates that the compiled file will be stored in
the animals subfolder inside the course subfolder inside the com subfolder (or
com\course\animals). The path name can contain as many levels as you want.

The package statement, import statements, and comments are the only statements that
appear outside class definitions in Java program files.

©000

Building a project creates the new package. If the Animal class file in a project
named myProject contains the statement package com.course.animals;, then
the Animal.class file will be placed in the myProject\com\course\animals folder. If
any of the subfolders do not exist within the myProject project folder, Visual J++
will create them. You can then move the com folder to the root of a drive. For
example, moving the com folder to the root of the C drive creates a directory
structure of c:\com\course\animals. If you then package compiled files for Dog.java,
Cow.java, and so on, future programs only need to use the statement import
com.course.animals.* to be able to use all the related classes. Alternatively,
you can list each class separately, as in import com.course.Dog; and
import com.course.Cow;. Usually, if you want to use only one or two classes
in a package, you use separate import statements for each class. If you want to use
many classes in a package, it is easier to import the entire package, even if you do
not use some of the classes.

You cannot import more than one package in one statement; for example, import com.*
does not work.

©000

Before you import a custom package into a project, you must use the Project
Properties dialog box to specify where Visual J++ should look for the package.
You use the Classpath tab in the Project Properties dialog box to specify the loca-
tion of packages that your project will import. An example of the Classpath tab of
the Project Properties dialog box is displayed in Figure 16-22.

Windows Applications and Packaging

SampleProject Properties

Configuration: IDebug

Launch I Compile I Custor ~ Classpath |Output Farrnat | Deployment |

Project-specific

Default path: |a:'l.SampIeProject

¥ Merge all Projeck-specific Classpaths in Solution

Available Packages

com.ms.actives
com.ms.applet
com.ms,awk
com.ms.awk.image
£am,ms,awk, Deer

Figure 16-22: Classpath tab of the Project Properties dialog box

The Available Packages list at the bottom of the dialog box displays the
default Java packages that are installed on your system. If you scroll through the
list, you will recognize several of the packages, including the com.ms.wfc.ui and
the java.awt packages. The Default path text box displays the path of the current
project folder. Immediately below the Default path text box is a list of project-
specific packages that are required by the current project.

Because the Java programming language is used extensively on the Internet, it
is important to give every package a unique name. Sun Microsystems, the creator
of the Java programming language, has defined a convention for naming pack-
ages. Under this convention, you use your Internet domain name in reverse order.
For example, if your domain name is course.com, then you begin all of your pack-
age names with com.course. Then you organize your packages into subfolders
in the course directory. Using this convention ensures that your package names
will not conflict with those of any other Java code providers.

Using Visual J++ Packaging to Distribute Programs

The most common way to distribute (or deploy) a Java applet is to include it on a
Web page using the <APPLET> tag. For someone to use the program you created,
they need only use a Web browser to access the Web page containing your applet.
In contrast, you distribute standard Java applications (not WFCs) on floppy disk,
CD-ROM, or a network drive. Additionally, when someone wants to use a Java
application (as opposed to a Java applet) that you wrote, he or she must also have
a copy of JVIEW or WJVIEW. You also distribute WFC applications on floppy

> tip

> tip

section B

disk, CD-ROM, or a network drive, and people who want to use the application
must also have a copy of JVIEW or WJVIEW.

©000

The JVIEW program that comes with your version of Visual J++ is freely distributable to
your users. You can download JVIEW from http://www.microsoft.com/java/.

©000

Distributing a Java applet or application consisting of a single class file is
fairly simple, especially if the program accesses only internal Java packages.
However, distributing programs consisting of multiple classes that import pack-
ages other than the internal Java packages can be much trickier. You now know
how to create and import Java packages. To make distribution easier, Visual J++
also enables you to compile your project in several types of output formats, or
packages. The Standard edition of Visual J++ allows you to create Microsoft
Cabinet (CAB) files or Windows executable (EXE) files. A CAB file is a Microsoft
format that contains compressed files and a security feature called digital signature
that is used with ActiveX controls and Web browsers. A Windows EXE file is a
standard file that starts applications on Windows platforms. Whenever you select
a program to run using the Windows Start menu, you are usually launching a
Windows EXE file. You use the Visual J++ Properties dialog box to select a
project’s output format.

The Professional and Enterprise editions of Visual J++ also allow you to create COM DLL,
Setup, and ZIP package types.

©000

So far, you have used the Properties dialog box to select which file to load
when running your program and whether to run the program as a console applica-
tion. You have also used the Properties dialog box to add new class paths to your
project so that you can import custom packages. You can also use the Properties
dialog box to select your project’s build configuration. A build configuration
contains the options that the compiler uses when you build your project. There are
two types of build configurations: debug and release. A debug build includes full
debugging information that allows you to catch release-build errors and check for
memory errors, for example. A release build is the version of your application that
you will release to users.

Next you will create a release build of the WindowsPartyPlanner project as a
Windows EXE package.

To create a release build of the WindowsPartyPlanner project as a Windows
EXE package:

1 If necessary, open the WindowsPartyPlanner project from the Chapter.16
folder on your Student Disk.

2 After opening the project, select WindowsPartyPlanner Properties from the
Project menu. The WindowPartyPlanner Properties dialog box displays.

Windows Applications and Packaging

3 At the very top of the dialog box is the Configuration drop-down list box.
It contains three entries: Release, Debug, and All Configurations. Select
Release from the Configuration drop-down list box.

[|
> tl The All Configurations option allows you to apply properties to both release and
debug property sets simultaneously.

4 Click the Compile tab, which is used for changing compiler settings. The
default option for release configurations removes settings that create debug
information and selects the Optimize compiled code check box, which helps
Java applications run faster. Click the Output Directory text box and type
A:\Chapter.16\OutputDirectory, where A: is the drive containing your Student
Disk. The Output Directory is where Visual J++ places the necessary files to
run an application.

5 Click the Output Format tab. Make sure the Enable Packaging check box is
selected, then select Windows EXE from the Packaging type drop-down list box.
In the File name text box, change the drive, directory, and filename to
A:\Chapter.16\OutputDirectory\WindowsPartyPlanner.exe.

6 Select the Advanced button. The Advanced...Properties dialog box displays.
The EXE/DLL Options tab in the Advanced...Properties dialog box is used
for setting version information which can be viewed in Windows by users of
your application. An example of the EXE/DLL Options tab is displayed in
Figure 16-23.

Advanced... Properties

EXE/DLL Options |

Yersion number
Major: Rewision:

g

Preview: 1.00

Wersion information

Type:

Company Name
File Description
Legal Copyright
Legal Trademarks
Product Marme

QK I Cancel | pli |

Figure 16-23: EXE/DLL Options tab

help

section B

10

1
12

13

14

15

The Advanced...Properties dialog box is shared by the COM DLL output format,
which is a package type that is available only in the Professional and Enterprise edi-
tions of Visual J++.

Select the Major text box, and change the version number to 2. You set the
version number to 2 instead of 1 since your program is actually the second
version of the PartyPlanner application—you created the first version in
Chapter 10.

Select Comments in the Type list, then select the Value box and type This is
my first Windows application!

Select Company Name in the Type list, then select the Value box and type
Event Handlers Incorporated.

Select Product Name in the Type list, then select the Value box and type
Windows Party Planner.

Click the OK button to close the Advanced...Properties dialog box.

You use the Package Contents section of the Output Format to select the files
that will be packaged with your application. The default option includes class
files and other types of files your application may require, such as graphics and
sound files. The drop-down list box contains several other combinations of file
types you can select. Instead of using default file types, select the These outputs
button, which allows you to select the individual files you want to include with
your program. The two files listed are WindowsPartyPlanner.Java and
WindowsPartyPlanner.class. Since you do not want to give users access to your
source code, deselect WindowsPartyPlanner.java, then click the OK button to
close the WindowsPartyPlanner Properties dialog box.

On the Build menu, point to Build Configuration and click Release. This
command instructs Visual J++ to create a release version of the application
the next time you build the project.

Build the project. When the project is finished building, open Windows
Explorer and click the OutputDirectory folder in the Chapter.16 folder on
your Student Disk. You should see two files: WindowsPartyPlanner.exe
and WindowsPartyPlanner.class. Right click once on the WindowsParty
Planner.exe file and select Properties from the shortcut menu. The
WindowsPartyPlanner.exe Properties dialog box displays. Click the Version
tab, and then click each of the entries in the ltem name list. You should see
the information from Steps 7, 8, 9, and 10 that you entered. Some of the
entries are created automatically, such as the Language item. Click OK to
close the WindowsPartyPlanner.exe Properties dialog box.

Execute the WindowsPartyPlanner.exe file by double-clicking Windows

PartyPlanner.exe. The Windows Party Planner should run the same as
when you ran it from within Visual J++.

Windows Applications and Packaging

S UMMARY

Components in WFC applications can access standard Windows events that are
available as methods in the Control class.

Unlike the single actionPerformed(Event e) method in standard Java applications, each
control in a WFC program can have its own Click method.

A delegate is a wrapper class that is used for passing one method to another method.
WEC delegate classes are comparable to AWT event interfaces.

When you register a component in a WFC application, you “delegate” the responsibility
for the event to an event handler method.

An event handler is a method created to run in response to a particular event. An
event handler receives two arguments from a delegate: a reference to the component
that initiated the event, and the event object itself.

In WFC applications, Visual J++ automatically creates an event’s delegate and event
handler method for you.

When you create a number of classes that inherit from each other, you can place these
classes in a package.

When you create classes for others to use, you most often do not want to provide
users with your source code in .java files. Rather, you provide users with compiled
.class files.

You place .class files in a package so other programmers can import them.

To place compiled code in a specific folder, you include the package statement at the
beginning of your .class file.

Package statements, import statements, and comments are the only statements that
appear outside class definitions in Java program files.

Because the Java programming language is used extensively on the Internet, it is
important to give every package a unique name. The convention for naming packages
involves using your Internet domain name in reverse order.

The JVIEW program that comes with Visual J++ is freely distributable to users of
your programs.

Visual J++ enables you to compile your project in several types of packages, or output
formats, to make distribution easier. A CAB file is a Microsoft format that contains
compressed files. A Windows EXE file is a standard file that starts applications on
Windows platforms.

Visual J++ has two types of build configurations: debug and release. A debug build
includes information that assists in the debugging process. A release build is the version
that is distributed to your program’s users and does not contain debugging information.

UESTIONS

WEFC controls are registered for events using the method.

a. registerEvent()

b. add<event>Listener()
c. addOn<event>()

d. <event>Register()

section B

2. A wrapper class that is used for passing one method to another method is called a

parameter

. constructor
function

. delegate

oo o

3. Which is the correct syntax to add a delegate to a component named myButton?
a. myButton.addOnClick(new EventHandler());
b. myButton.addOnClick(new EventHandler (Click));
c. myButton.addOnClick(new EventHandler(this.myButton_Click));
d. myButton. (new EventHandler(this.myButton Click));
4. The WFC delegate that is most similar to the AWT ActionListener interface is

a. EventHandler
b. MouseEventHandler
c. KeyEventHandler
d. KeyListener
5. A(n) is a method created to run in response to a particular event.
. event controller

a
b. response function
c. control routine
d. event handler

6. An event handler receives two arguments from a delegate: a reference to the
component that initiated the event, and the

a. type of Windows platform
b. Java version number
c. event object itself
d. name of the application
7. Which is the correct syntax for the header of a click event handler for a component
named myButton?
a. private void myButton_click(Event e)
b. private void myButton click(Object source)
c. private void myButton click(Object source, Event e)
d. private void myButton click()
8. You place class groups in so you or other programmers can easily
import them into new programs.

a. abstract classes
b. interfaces
c. packages
d. bundles
9. The files you usually place in packages are files with the extension
a. .doc

b. .class
c. .Java
d. .javac

";:ﬁ

10.

11.

12.

13.

14.

Windows Applications and Packaging

You include a(n) statement at the beginning of a class file to place
the compiled class code into the indicated folder.

a. build

b. bundle

c. export

d. package

The location of custom packages that are imported into a Java file must be specified
in the tab of the Project Properties dialog box.

a. Classpath

b. Launch

c. Compiler

d. Custom Build Rules

If your Internet domain name is mycompany.com, then your package names should
begin with

a. mycompanycom
b. commycompany

c. com.mycompany

d. mycompany.com

The Standard edition of Visual J++ can package files as Windows EXE and
package types.

a. Setup

b. COM DLL
c. ZIP

d. CAB

Visual J++ projects have two types of build configurations: debug and

final
. release
completion

o0 o

. non-debug

X ERCISES

Save each of the programs that you create in the exercises in the Chapter.16 folder on your
Student Disk.

1.

Create a WFC program named ButtonEvents and add a button to the program’s form.
Add an event handler for at least three of the button’s events. Use a MessageBox to
display the name of the event each time it is executed.

Create a WFC program named SharedEvents. Add three buttons to the program:
Button1, Button2, and Button3. Also add a label. Add to each button a delegate that
calls a single event handler method. Each time you click a button, display the button’s
name in the label.

800

section B

3.

a. Create a WFC program that calculates the weekly salary for an individual based on
a regular hourly rate. Allow the user to input the hourly rate and then pay the user
for a 40-hour week. Use two forms. Each form should have a text box. Use one
form for input and one for output showing the total salary for the week. On the
input form, include a button that displays the output form, and on the output
form, include a button that displays the input form.

b. Write a WFC program that calculates the weekly salary for an individual based on
a regular hourly rate, plus a premium percent for overtime. Allow the user to input
the hourly rate, the overtime premium percent, the regular hours worked, and the
overtime hours worked.

Write a WFC program that calculates the new balance of a checking account based on
the current balance, a check, or a deposit. Allow the user to enter the current balance,
a check amount, and a deposit amount.

Create a Java class file named stringPackage and declare a String named
packageString. Assign the text “You have imported a package!” to packageString.
Write a public method named getPackageString that returns packageString. Export the
class to a package named com.stringPackage. Create a WFC application that imports
the stringPackage. Add to the WFC program’s main form a button that calls the
getPackageString method in the stringPackage class.

