
C H A P T E R 11
Manipulating the
Browser Object
Model

In this chapter, you will:

 Study the browser object model

 Work with the Window object

 Study the History, Location, Navigator, and Screen
objects

0538474610_ch11_Rev2.indd 5860538474610_ch11_Rev2.indd 586 04/10/10 9:27 AM04/10/10 9:27 AM

In some situations, you may need to use JavaScript to control the
Web browser. For example, you might want to change the Web page
being displayed or write information to the Web browser’s status bar.
Or, you may want to control elements of the Web page itself. To con-
trol the Web browser window or the Web page, you use the browser
object model. Th is chapter discusses the components of the browser
object model.

Understanding the Browser
Object Model
Th e browser object model (BOM), or client-side object model, is
a hierarchy of objects, each of which provides program access to a
 diff erent aspect of the Web browser window or the Web page. You
can use the methods and properties of objects in the browser object
model to manipulate the window and elements displayed in a Web
browser. Th e most basic objects in the browser object model are illus-
trated in Figure 11-1.

Figure 11-1 Browser object model

The concept
of object
models is
fairly com-
plex. You do
not need to

understand the details of
working with object mod-
els to work with the
browser object model in
JavaScript. Instead, you
should simply understand
that object models defi ne
groups of interrelated
objects.

The browser
object model
is also called
the JavaScript
object model
or the

Navigator object
model. However, other
scripting technologies,
such as VBScript, can
also control aspects of
the Web browser window
or Web page. Therefore,
the term browser object
model or client-side
object model is more
accurate.

587

Understanding the Browser Object Model

0538474610_ch11_Rev2.indd 5870538474610_ch11_Rev2.indd 587 04/10/10 9:27 AM04/10/10 9:27 AM

You do not have to create any objects or arrays explicitly in the
browser object model; they are created automatically when a
Web browser opens a Web page. Th e top-level object in the
browser object model is the Window object, which represents a
Web browser window. Th e Web browser automatically creates the
Window object for you. Th e Window object is called the global object
because all other objects in the browser object model are contained
within it. For example, the Window object contains the Document
object, just as a Web browser window contains a Web page docu-
ment. You use the methods and properties of the Window object
to control the Web browser window, and you use the methods
and properties of the Document object to control the Web page.
Figure 11-2 illustrates the concepts of the Window object and the
Document object.

Web browser window
represented by the Window
object

Web page represented
by the Document object

Figure 11-2 Window object and Document object

Using the Document Object
Th e Document object is arguably the most important object in
the browser object model because it represents the Web page
 displayed in a browser. You are already familiar with the write()
and writeln() methods, which refer to the Document object. Th e
statement document.write("Go Patriots!"); adds the text “Go
Patriots!” to a Web page when it is rendered by a Web browser.
All elements on a Web page are contained within the Document
object, and each element is represented in JavaScript by its own
object. Th is means that the Document object contains all of the
 elements you create on a Web page. For example, the Form object,

588

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5880538474610_ch11_Rev2.indd 588 04/10/10 9:27 AM04/10/10 9:27 AM

which is used by JavaScript to represent forms created with the
<form> element, is contained within the Document object, which
is contained within the Window object. Th e Radio object, which
is used by JavaScript to represent a radio button created with an
<input> element, is contained within the Form object, which is
 contained within the Document object, which is contained within
the Window object.

In this book, objects in the browser object model are referred to
with an initial uppercase letter (Document object). However, when
you use the object name in code, you must use a lowercase letter.
For example, the following statement refers to the Document object:
document.write("Go Patriots!");. Note the use of the lowercase d
in document.

Referencing JavaScript Objects
Some of the objects in the browser object model represent arrays.
In Figure 11-1, objects that are arrays are followed by brackets,
such as forms[] or images[]. Th e arrays contain objects created
from the corresponding elements on a Web page. For example, the
images[] array contains Image objects that represent all the
elements on a Web page. Image objects for each element are
assigned to the elements of the images[] array in the order that
they appear on the Web page. Th e fi rst Image object is represented
by images[0], the second Image object is represented by images[1],
and so on.

As you learned in Chapter 8, you can use JavaScript to reference any
element on a Web page by using periods to append the element’s
name to the name of any elements in which it is nested, starting
with the Document object. For elements that are represented by
arrays, you can reference the object through the array instead of
with the element name. Consider an Image object, which contains a
src property that contains the URL assigned to an element’s
src attribute. Assuming that the image is assigned a name of
companyLogo, use the following code to display the image’s URL in
an alert dialog box:
<img src="company_logo.gif" name="companyLogo"
 height="100" width="200" onclick="window.alert(
 'This image is located at the following URL: '
 + document.companyLogo.src);"
 alt="Image of a company logo." />

Instead of referencing the image by name, you can access it through
the images[] array. Th e following element includes an onclick

The
Document
object branch
of the
browser
object model

is represented by its own
object model called the
Document Object Model,
or DOM. You will learn
more about the DOM in
Chapter 13.

589

Understanding the Browser Object Model

0538474610_ch11_Rev2.indd 5890538474610_ch11_Rev2.indd 589 04/10/10 9:27 AM04/10/10 9:27 AM

event handler that uses the Document object to display the image’s
URL in an alert dialog box. Th e code assumes that the image is
the fi rst one on the page by referencing the fi rst element (0) in the
images[] array.
<img src="company_logo.gif" height="100" width="200"
 onclick="window.alert(
 'This image is located at the following URL:'
 + document.images[0].src);"
 alt="Image of a company logo." />

Next, you start working on a simple Web site for an online bicycle
retailer named DRG Cycles. You will fi nd four prewritten Web pages
in the DRGCycles folder within your Chapter folder for Chapter 11:
index.html, cannondale.html, intense.html, and pinarello.html. Th e
index.html document is the home page; the other pages display pho-
tos and information about diff erent bicycles. You will modify these
Web pages throughout the chapter.

In this exercise, you add an advertisement to the DRG Cycles home
page. Th e ad changes when users click the image. You will change the
image using the images[] array.

To add an advertisement that changes when users click
the image:

1. Open your text editor, then open the index.html document
from the DRGCycles folder in your Chapter folder for
Chapter 11.

2. Locate the element that displays the banner1.png image
and add an onclick event handler, as follows. When the user
clicks the image, an onclick event handler changes the image
to another image named banner2.png. Note that the banner
image is the 27th image on the page, so the images[] array
references element 26.
<img src="images/banner1.png" width="234"
 height="60" alt="Banner ads"
 onclick="document.images[26].src
 ='images/banner2.png';" />

3. Save the index.html document and open it in your Web
browser. Figure 11-3 shows how the Web page appears. Click
the image to make sure that it changes to banner2.png.

590

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5900538474610_ch11_Rev2.indd 590 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-3 DRG Cycles Web page with an advertisement

4. Close your Web browser window.

Th e code you entered in the preceding exercise refers to the 27th
 element (26) in the images[] array. If other images are added to the
Web page before the preceding statement, then referring to the 27th
element in the images[] array would result in the wrong URL being
displayed. When referring to the current object (in this case, the
Image object for the preceding statement), you can simply use the
this keyword instead of including the Document object and images[]
array. Th e this keyword refers to the current object. Th e following
code shows the example you saw before the last exercise, but this time
it is written with the this keyword:
<img src="company_logo.gif" height="100" width="200"
 onclick="window.alert('This image is located
 at the following URL: ' + this.src);"
 alt="Image of a company logo." />

591

Understanding the Browser Object Model

0538474610_ch11_Rev2.indd 5910538474610_ch11_Rev2.indd 591 04/10/10 9:27 AM04/10/10 9:27 AM

Next, you will modify the onclick event handler in the index.html
document so that it uses this references instead of referring to the
Document object and images[] array.

To modify the event handler in the index.html document
so that it uses this references instead of referring to the
Document object and images[] array:

1. Return to the index.html fi le in your text editor.

2. Modify the onclick event handler in the banner image as
follows:
<img src="images/banner1.png" width="234"
 height="60" alt="Banner ads"
 onclick="this.src='images/banner2.png';" />

3. Save the index.html document and open it in your Web
browser. Figure 11-4 shows how the Web page appears after
clicking the banner image.

Figure 11-4 DRG Cycles Web page after adding a this reference

4. Close your Web browser window.

592

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5920538474610_ch11_Rev2.indd 592 04/10/10 9:27 AM04/10/10 9:27 AM

Short Quiz 1

1. Explain what the browser object model is and why it’s impor-
tant to JavaScript.

2. What is the top-level object in the browser object model?

3. Explain how to reference arrays that are part of the browser
object model.

Manipulating the Browser with the
Window Object
Th e Window object includes several properties that contain infor-
mation about the Web browser window. For instance, the status
property contains information displayed in a Web browser’s status
bar. Also contained in the Window object are various methods that
allow you to manipulate the Web browser window itself. You have
already used some methods of the Window object, including the
window.alert(), window.confi rm(), and window.prompt() methods,
which all display dialog boxes. Table 11-1 lists the Window object
properties, and Table 11-2 lists the Window object methods.

Property Description
closed Returns a Boolean value that indicates whether a

window has been closed

defaultStatus Sets the default text that is written to the status bar

document Returns a reference to the Document object

history Returns a reference to the History object

location Returns a reference to the Location object

name Returns the name of the window

opener Refers to the window that opened the current window

self Returns a self-reference to the Window object; identical
to the window property

status Specifi es temporary text that is written to the status bar

window Returns a self-reference to the Window object; identical
to the self property

Table 11-1 Window object properties

593

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 5930538474610_ch11_Rev2.indd 593 04/10/10 9:27 AM04/10/10 9:27 AM

Another way of referring to the Window object is by using the self
property, which refers to the current Window object. Using the self
property is identical to using the window property to refer to the
Window object. For example, the following lines are identical:
window.alert("Your order has been received.");
self.alert("Your order has been received.");

Some JavaScript programmers prefer to use the window property;
others prefer to use the self property. Th e choice is yours. However,
when attempting to decipher JavaScript code created by other
 programmers, be aware that both properties refer to the current
Window object.

Because a Web browser assumes that you are referring to the global
object, you do not need to refer explicitly to the Window object when
using one of its properties or methods. For example, the alert()
method is a method of the Window object. Th roughout this text, you

Some Web
browsers,
including
Internet
Explorer, have
custom

 properties and methods
for the Window object.
This book describes only
properties and methods
that are common to
browser objects in all
current Web browsers.

Method Description
alert() Displays a simple message dialog box with an OK button

blur() Removes focus from a window

clearInterval() Cancels an interval that was set with setInterval()

clearTimeout() Cancels a timeout that was set with setTimeout()

close() Closes a Web browser window

confi rm() Displays a confi rmation dialog box with OK and Cancel
buttons

focus() Makes a Window object the active window

moveBy() Moves the window relative to the current position

moveTo() Moves the window to an absolute position

open() Opens a new Web browser window

print() Prints the document displayed in the current window

prompt() Displays a dialog box prompting a user to enter information

resizeBy() Resizes a window by a specifi ed amount

resizeTo() Resizes a window to a specifi ed size

scrollBy() Scrolls the window by a specifi ed amount

scrollTo() Scrolls the window to a specifi ed position

setInterval() Repeatedly executes a function after a specifi ed number of
milliseconds have elapsed

setTimeout() Executes a function once after a specifi ed number of
milliseconds have elapsed

Table 11-2 Window object methods

594

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5940538474610_ch11_Rev2.indd 594 04/10/10 9:27 AM04/10/10 9:27 AM

have used the full syntax of window.alert(text);, although the
syntax alert(text); without the Window object works equally well.
However, it’s good practice to use the window or self references when
referring to a property or method of the Window object to clearly
identify them as belonging to the Window object. If you do not use the
window or self reference, then you or another programmer might
confuse a property or method of the Window object with JavaScript
variables or functions.

Understanding Windows and Events
In Chapter 8, you learned how to use events with your Web pages.
Events are particularly important when it comes to working with the
browser object model because they allow you to execute the methods
and change the properties of objects in the browser object model. In
this section, you learn more about mouse events.

The click and dblclick Events
You have already extensively used the click event with form controls,
such as radio buttons, to execute JavaScript code. However, keep in
mind that the click event can be used with other types of elements.
Earlier in this chapter, you used the click event to change the image
displayed on the DRG Cycles Web page. Th e click event is often
used for the anchor element. In fact, the primary event associated
with the anchor element is the click event. When a user clicks a link,
the Web browser handles execution of the onclick event handler
automatically, so you do not need to add an onclick event handler to
your anchor elements.

Sometimes, however, you might want to override an anchor element’s
automatic onclick event handler with your own code. For instance,
you may want to warn the user about the content of a Web page that
a particular link will open. To override the automatic click event
with your own code, you add an onclick event handler that executes
custom code to the <a> element. When you override an internal event
handler with your own code, your code must return a value of true
or false using the return statement. With the <a> element, a value of
true indicates that you want the Web browser to perform its default
event handling operation of opening the URL referenced in the link.
A value of false indicates that you do not want the <a> element to
perform its default event handling operation. For example, the <a>
element in the following code includes an onclick event handler.
Th e warnUser() function that is called by the onclick event handler
returns a value generated by the window.confi rm() method. Recall
that when a user clicks the OK button in a confi rm dialog box, a value

595

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 5950538474610_ch11_Rev2.indd 595 04/10/10 9:27 AM04/10/10 9:27 AM

of true is returned. When a user clicks the Cancel button, a value of
false is returned. Notice the two return statements in the following
code. Th e return statement in the warnUser() function returns a
value to the onclick event handler. Th e return statement in the
onclick event handler returns the same value to the Web browser.
...
<script type="text/javascript">
/* <![CDATA[*/
function warnUser() {
 return window.confi rm("This link is only for
 Red Sox fans. Are you sure you want to
 continue?");
}
/*]]> */
</script>
</head>
<body>
<p><a href="redsox.html"
onclick="return warnUser();">
Red Sox Fan Club</p>
</body>
</html>

Th e dblclick event works the same as the click event, except that
users need to double-click the mouse instead of single-clicking it. Th e
dblclick event is rarely used, and it is not generally used with links
because they are driven by single mouse clicks. From the user’s point
of view, single clicks are much easier than double-clicks.

The mouseover and mouseout Events
You use the mouseover and mouseout events to create rollover
eff ects, which occur when your mouse moves over an element. Th e
mouseover event occurs when the mouse passes over an element and
the mouseout event occurs when the mouse moves off an element.
Th ese events are also commonly used to change an element’s style,
such as the formatting of a link when the mouse passes over it. To
refer to a CSS style in JavaScript, you use the this reference and
the style property in an event handler within the element itself.
You use the style property to modify an element’s CSS properties
with JavaScript. To refer to a style with the this reference, you use a
period to append the style property to it, followed by another period
and a CSS property. CSS properties without hyphens are referred
to in JavaScript with all lowercase letters. However, when you refer
to a CSS property that contains a hyphen in JavaScript code, you
remove the hyphen, convert the fi rst word to lowercase, and convert
the fi rst letter of subsequent words to uppercase. For example,
the text-decoration property is referred to as textDecoration,

596

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5960538474610_ch11_Rev2.indd 596 04/10/10 9:27 AM04/10/10 9:27 AM

font-family is referred to as fontFamily, font-size is referred
to as fontSize, and so on. In the following code, the onmouseover
event handler underlines the link when the mouse passes over it,
and the onmouseout event handler removes the link when the mouse
passes off it:
<a href="redsox.html"
onmouseover="this.style.textDecoration='underline';"
onmouseout="this.style.textDecoration='none';">
Red Sox Fan Club

Th e mouseover and mouseout events are also commonly used to dis-
play an alternate image or explanatory text when the mouse passes
over an element. Th e following table cell shows a more complex
example of the mouseover and mouseout events. Th e cell contains fi ve
links representing diff erent types of homes that a real estate agent is
selling. When the user passes the mouse over a link, the link changes
from blue to red and an image of the house is displayed. Moving
the mouse off the link changes the link back to blue and displays an
empty image. Figure 11-5 shows the page with the mouse over the
Townhouse link.
<td>
 <p>
 <a href="cottage.html"
 onmouseover="document.images[9].src
 ='cottage.jpg';this.style.color='Red'"
 onmouseout="document.images[9].src
 ='noselection.jpg';this.style.color
 ='Blue'">Cottage:
 $149,000

 <a href="ranch.html"
 onmouseover="document.images[9].src
 ='ranch.jpg';this.style.color='Red'"
 onmouseout="document.images[9].src
 ='noselection.jpg';this.style.color
 ='Blue'">Ranch:
 $189,000

 <a href="townhouse.html"
 onmouseover="document.images[9].src
 ='townhouse.jpg';this.style.color='Red'"
 onmouseout="document.images[9].src
 ='noselection.jpg';this.style.color
 ='Blue'">Townhouse:
 $319,000

 <a href="colonial.html"
 onmouseover="document.images[9].src
 ='colonial.jpg';this.style.color='Red'"
 onmouseout="document.images[9].src
 ='noselection.jpg';this.style.color
 ='Blue'">Colonial:
 $389,000

597

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 5970538474610_ch11_Rev2.indd 597 04/10/10 9:27 AM04/10/10 9:27 AM

 <a href="contemporary.html"
 onmouseover="document.images[9].src
 ='contemporary.jpg';this.style.color='Red'"
 onmouseout="document.images[9].src
 ='noselection.jpg';this.style.color
 ='Blue'">Contemporary:
 $474,000</p>
</td>

Figure 11-5 Real estate page with the mouse over the Townhouse link

By default, Firefox does not allow scripts to change status bar text. To allow
scripts to change status bar text on Windows systems, select the Tools menu,
select Options, and then select Content in the Options dialog box. Click the
Advanced button next to the Enable JavaScript button, and then click the
Change status bar text box in the Advanced JavaScript Settings dialog box.
Click OK twice to close each dialog box. To make the same setting on Linux
systems, select Preferences from the Edit menu; on Macintosh systems,
select Preferences from the Firefox menu.

Th e defaultStatus property specifi es the default text that
appears in the status bar whenever the mouse is not positioned
over a link. Th e syntax for the defaultStatus property is
window.defaultStatus = "status bar text here";. You will now
add the defaultStatus property to the DRG Cycles Web page so
the text “Welcome to DRG Cycles!” is displayed in the status bar by

You can fi nd a
working copy of
the real estate
page in a folder
named

RealEstate in your
Chapter folder for
Chapter 11.

598

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 5980538474610_ch11_Rev2.indd 598 04/10/10 9:27 AM04/10/10 9:27 AM

default. You will also add onmouseover event handlers to each of the
bike model links; these event handlers display messages in an <input>
box about clicking the link for more information. Finally, you will
add onmouseout event handlers that remove the value assigned to the
<input> box by changing its value to an empty string.

To add the defaultStatus property and onmouseover and
onmouseout event handlers to the DRG Cycles Web page:

1. Return to the index.html document in your text editor.

2. Add the following script section immediately above the clos-
ing </head> tag. Th e script contains a single statement that
sets the Web page’s default status bar text to “Welcome to
DRG Cycles!”
<script type="text/javascript">
/* <![CDATA[*/
window.defaultStatus = "Welcome to DRG Cycles!";
/*]]> */
</script>

3. Locate <!--[Add form here]--> in the document body and
replace it with the following form, which contains a single text
box that will display messages when the mouse passes over a
bike model link:
<form action="" name="messageForm">
 <p><input type="text" name="bikeLink" size="40"
 style="color:Blue; font-weight:bold;
 border-style:none; border-color: inherit;
 border-width:medium; background-color:
 Transparent" /></p>
</form>

4. Add onmouseover event handlers to the <tr> element
 containing the bicycle model links to modify the value
assigned to the text box when the mouse pointer passes over
the link. Also, add onmouseout event handlers that reset the
text box to an empty string. For example, the <tr> element for
the Cannondale bike should appear as follows:
<tr onmouseover ="document.messageForm.bikeLink.
 value ='Click for more info on the CANNONDALE'"
 onmouseout ="document.messageForm.bikeLink.
 value =''">

5. Save the index.html document and open it in your Web
browser. Figure 11-6 shows how the Web page appears when
you hold your mouse pointer over Intense Cycles 951 FRO
Bike - X9 DH Kit.

599

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 5990538474610_ch11_Rev2.indd 599 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-6 DRG Cycles Web page after adding the defaultStatus property and
onmouseover and onmouseout event handlers

6. Close your Web browser window.

One of the more common uses of rollovers is to replace (or swap)
an image on a Web page with another image. Consider the following
code. By default, the v500tec.gif fi le is displayed. Th e onmouseover
event handler changes the image to showroom.gif, and the
onmouseout event handler changes the image back to the v500tec.gif
fi le. Figure 11-7 shows the Web page before the mouse is placed on
the image. Once the mouse moves over the image, the image shown
in Figure 11-8 is displayed.
<p><img src="v500tec.gif" height="90px" width="700px"
 alt="Banner images"
 onmouseover="this.src='showroom.gif'"
 onmouseout="this.src='v500tec.gif'" /></p>

600

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6000538474610_ch11_Rev2.indd 600 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-7 Web page before the mouse passes over the image

Figure 11-8 Web page with the mouse placed over the image

The mousedown and mouseup Events
Th e mousedown event occurs when you point to an element and
hold the mouse button down; the mouseup event occurs when you
release the mouse button. Th e following code shows the
element that displays the motorcycle and showroom images, this
time using mousedown and mouseup events:
<p><img src="v500tec.gif" height="90px" width="700px"
 alt="Banner images"
 onmousedown="this.src='showroom.gif'"
 onmouseup="this.src='v500tec.gif'" /></p>

Next, you will modify the element that displays the banner
ads in the index.html document so the second image in the banner is
 displayed when you hold the mouse button down over the image.

601

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6010538474610_ch11_Rev2.indd 601 04/10/10 9:27 AM04/10/10 9:27 AM

To modify the element that displays the banner ads
in the index.html document so that the second image in
the banner is displayed when you hold the mouse over it:

1. Return to the index.html document in your text editor.

2. Replace the onclick event handler in the banner-ad
element with onmousedown and onmouseup event handlers that
swap the images.
<img src="images/banner1.png" width="234" height="60"
 alt="Banner ads"
 onmousedown="this.src='images/banner2.png';"
 onmouseup="this.src='images/banner1.png'" />

3. Save the index.html document and open it in your Web
browser. Press and hold the mouse button over the banner
image, then release it. You should see the images change when
you press and release the mouse button.

4. Close your Web browser window.

Opening and Closing Windows
Most Web browsers allow you to open new browser windows in
 addition to the browser window(s) that may already be open. You
may need to open a new browser window for several reasons. For
example, you may want to launch a new Web page in a separate
window, allowing users to continue viewing the current page in the
current window. Or, you may want to use an additional window to
display information such as a picture or an order form.

Whenever a new Web browser window is opened, a new Window
object is created to represent the new window. You can have as many
browser windows open as your system will support, each displaying a
diff erent Web page. For example, you can have one browser window
display Microsoft’s Web site, another browser window display
Firefox’s Web site, and so on.

You may be familiar with how to open a link in a new window by
using the <a> element’s target attribute. For example, the following
link opens the Wikipedia home page in a new window named
wikiWindow:
<p><a href="http://www.wikipedia.org/"
 target="wikiWindow">
 Wikipedia home page</p>

602

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6020538474610_ch11_Rev2.indd 602 04/10/10 9:27 AM04/10/10 9:27 AM

Whenever the user clicks the preceding link, the Web browser looks
for another browser window named wikiWindow. If the window
exists, the link is opened in it. If the window does not exist, a new
window named wikiWindow is created where the link opens.

 Some Web browsers, including Firefox and Internet Explorer, can be
 confi gured to open new pages in either a new window or a tab in the cur-
rent window. To confi gure Firefox to open pages in a new window, select
the Tools menu, select Options, and then select Tabs in the Options dialog
box. Select the check box that opens pages in a new window and then click
OK. To confi gure Internet Explorer to open pages in a new window, select
the Tools menu, select Internet Options, and then select the General tab in
the Internet Options dialog box. In the Tabs section, click the Settings but-
ton. In the Tabbed Browsing Settings dialog box, select the radio button
that opens links in a new window and then click OK twice to close each
dialog box.

Th e links in the DRG Cycles Web page now open in the current
 window; they do not open in a new window. Next, you will modify
the links so they use the <a> element’s target attribute to open each
URL in a separate window.

To modify the links in the DRG Cycles Web page so that
they use the <a> element’s target attribute to open each
URL in a separate window:

1. Return to the index.html document in your text editor.

2. Add the following attribute before the closing bracket for each
of the <a> elements that open the bike model pages. Note that
there are two <a> elements for each bike: one for the bike’s
picture and another for its description.
target="bikeInfo"

3. Save the index.html document and open it in your Web
browser. Click one of the links to see if the Web page opens
in a new browser window. If you click other links on the DRG
Cycles Web page, you should notice that each Web page
opens in the bikeInfo window (if it is currently open) instead
of opening in a separate window. Figure 11-9 shows the
bikeInfo window opened to the Pinarello Web page.

603

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6030538474610_ch11_Rev2.indd 603 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-9 Pinarello Web page opened in the bikeInfo window

4. Close your Web browser window.

Opening a Window
Th e problem with using the target attribute is that it is deprecated
in HTML 5 and XHTML. To open new windows in HTML 5 and the
strict DTD, you must use the open() method of the Window object.
Th e syntax for the open() method is as follows:
window.open(url, name, options, replace);

Table 11-3 lists the arguments of the window.open() method.

604

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6040538474610_ch11_Rev2.indd 604 04/10/10 9:27 AM04/10/10 9:27 AM

Argument Description
URL Represents the Web address or fi lename to be opened

name Assigns a value to the name property of the new Window
object

options Represents a string that allows you to customize the new
Web browser window’s appearance

replace A Boolean value that determines whether the URL should
create a new entry in the Web browser’s history list or
replace the entry

Table 11-3 Arguments of the Window object’s open() method

You can include all or none of the window.open() method arguments.
Th e statement window.open("http://www.wikipedia.org");
opens the Wikipedia home page in a new Web browser window, as
shown in Figure 11-10. If you exclude the URL argument, a blank Web
page opens. For example, the statement window.open(); opens the
browser window displayed in Figure 11-11.

Figure 11-10 Web browser window opened with the URL argument of the open()
method

605

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6050538474610_ch11_Rev2.indd 605 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-11 Blank Web browser window opened with the window.open()
statement

When you open a new Web browser window, you can customize its
appearance by using the options argument of the window.open()
method. Table 11-4 lists some common options that you can use with
the window.open() method.

Name Description
height Sets the window’s height

left Sets the horizontal coordinate of the left side of the
window, in pixels

location Includes the URL Location text box

menubar Includes the menu bar

resizable Determines if the new window can be resized

scrollbars Includes scroll bars

status Includes the status bar

toolbar Includes the Standard toolbar

top Sets the vertical coordinate of the top of the window,
in pixels

width Sets the window’s width

Table 11-4 Common options of the Window object’s open() method

If you are writ-
ing code that
requires a
user to click
a link or a
button, then

you can use an event
handler to call the
window.open()
method, and the window
will open successfully.
However, if you include
JavaScript code that
opens a new window
without a request from
the user, then the pop-up
blocker feature that is
available in most current
Web browsers will
 prevent the window
from opening.

606

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6060538474610_ch11_Rev2.indd 606 04/10/10 9:27 AM04/10/10 9:27 AM

All the options listed in Table 11-4, with the exception of the width
and height options, are set using values of “yes” or “no”, or 1 for
yes and 0 for no. To include the status bar, for example, the options
string should read “status=yes”. You set the width and height options
using integers representing pixels. For example, to create a new
window that is 200 pixels high by 300 pixels wide, the string should
read “height=200,width=300”. When including multiple items in
the options string, you must separate the items by commas. If you
exclude the options string of the window.open() method, then all
the standard options are included in the new Web browser window.
However, if you include the options string, you must include all the
components you want to create for the new window; that is, the new
window is created with only the components you specify.

Figure 11-12 shows the Photo Gallery Web page from the Woodland
Park Zoo in Seattle, Washington. If you select a link from one of the
menus on the page, such as the Fennec fox link that is highlighted
in Figure 11-12, the Photo Gallery Slideshow Web page shown in
Figure 11-13 opens.

Figure 11-12 Woodland Park Zoo Photo Gallery Web page

607

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6070538474610_ch11_Rev2.indd 607 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-13 Woodland Park Zoo Photo Gallery Slideshow
Web page displaying a fox

Notice that the Photo Gallery Slideshow Web page does not display
toolbars, the menu, the URL Location box, or the scroll bars. Also,
keep in mind that it is sized to specifi c dimensions. If you tried to
resize the window, you would fi nd that it couldn’t be resized. Th e
Photo Gallery Web page uses a JavaScript statement similar to the
following to open the Photo Gallery Slideshow Web page when a user
clicks the name of an animal:
var OpenWin = window.open(page, "CtrlWindow",
"toolbar=no,menubar=no,location=no,scrollbars=no,
resizable=no,width=380,height=405");

Th e name argument of the window.open() method is essentially the
same as the value assigned to the deprecated target attribute in that
it specifi es the name of the window where the URL should open. If
the name argument is already in use by another Web browser window,

608

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6080538474610_ch11_Rev2.indd 608 04/10/10 9:27 AM04/10/10 9:27 AM

then JavaScript changes focus to the existing Web browser window
instead of creating a new window. For instance, the Photo Gallery
Web page opens the Photo Gallery Slideshow Web page and assigns
it a name of “CtrlWindow”. If the CtrlWindow Web page already exists
when you select another menu item from the Photo Gallery Web
page, then the CtrlWindow Web page is reused; another window does
not open. Th is is especially important with a Web page such as the
Photo Gallery Web page, which allows you to view dozens of diff erent
Web pages for each of the animals listed in the menu. Imagine how
crowded a user’s screen would be if the program kept opening a new
Photo Gallery Slideshow Web page window for each selected animal.

Next, you will modify the DRG Cycles Web page so the links use the
window.open() method instead of the target attribute to open the
URLs in a separate page.

To modify the DRG Cycles Web page so the links use the
window.open() method instead of the target attribute
to open the URLs in a separate page:

1. Return to the index.html document in your text editor.

2. Add the following global variable declaration and function to
the end of the script section. Th e function will be called by
onclick event handlers in each of the links.
var bikeWindow;
function showBike(linkTarget) {
 bikeWindow = window.open(linkTarget, "bikeInfo",
 "toolbar=no,menubar=no,location=no,
 scrollbars=no,resizable=no,width=620,
 height=575");
}

3. Next, replace the target attribute in the six <a> elements
with an onclick event handler that calls the showBike()
function, passing to it the URL of the target Web page. Th e
onclick event handler should also return a value of “false”
to prevent the index.html Web page from being replaced
with the target Web page that you are opening in a separate
window.

4. Save the index.html document and open it in your Web
browser. Click one of the links to see if the Web page opens in
a new browser window. Figure 11-14 shows how the window
appears with the cannondale.html Web page displayed.

609

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6090538474610_ch11_Rev2.indd 609 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-14 Window opened with the open() method

5. Close your Web browser windows.

A Window object’s name property can be used only to specify a target
window with a link and cannot be used in JavaScript code. If you want
to control the new window by using JavaScript code located within
the Web browser in which it was created, then you must assign the
new Window object created with the window.open() method to a
variable. Th e statement that opens the Photo Gallery Slideshow Web
page assigns an object representing the new Web browser window to a
variable named OpenWin. You can use any of the properties and methods
of the Window object with a variable that represents a Window object.

One problem with Web pages such as the DRG Cycles Web page is
that windows that open in response to the user clicking a link can
get hidden or “lost” behind other windows on the user’s screen. For
example, suppose that the user clicks the Cannondale Moto Carbon
1 link on the DRG Cycles Web page, thereby opening a new window.
Th en suppose that the user returns to the DRG Cycles Web page
(without closing the Cannondale Moto Carbon 1 window) and clicks

610

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6100538474610_ch11_Rev2.indd 610 04/10/10 9:27 AM04/10/10 9:27 AM

a diff erent link. Th e window that displays the bicycle pages is not
automatically displayed as the active window on the screen. Th at is,
it does not necessarily appear as the top window; it could instead be
hidden behind other windows. Th e user may continually click links,
thinking that nothing is happening in response to his or her clicks,
when in fact the code is working. Th e problem might be that the
windows are open but not visible. In order to make a window the
active window, you use the focus() method of the Window object.
You append the focus() method to the variable that represents the
window, not to the name argument of the window.open() method.
For example, to make the Photo Gallery Slideshow window the active
window, you use the following statement:
OpenWin.focus();

Next, you add a focus() method to the showBike() function in the
DRG Cycles Web page.

To add a focus() method to the showBike() function
in the DRG Cycles Web page:

1. Return to the index.html document in your text editor.

2. Add the following statement to the end of the showBike()
function:

 bikeWindow.focus();

3. Save the index.html document and open it in your Web
browser. Click one of the links to open the window that dis-
plays the bicycle pages. Leave the Web page open, navigate
back to the DRG Cycles Web page, and click a diff erent link.
Th e window that displays the bicycle pages should become
the active window and display the URL for the Web page link
you clicked.

4. Close your Web browser windows.

Closing a Window
Th e close() method, which closes a Web browser window, is the
method you will probably use the most with variables representing
other Window objects. To close the Web browser window represented
by the OpenWin variable, you use the statement OpenWin.close();. To
close the current window, you use the statement window.close() or
self.close().

Next, you add links to each of the bicycle Web pages that call the
close() method, which will close the window.

It is not neces-
sary to include
the Window
object or
self prop-
erty when

using the open() and
close() methods of the
Window object.
However, the Document
object also contains
methods named open()
and close(), which are
used for opening and
closing Web pages.
Therefore, the Window
object is usually included
with the open() and
close() methods to
distinguish between the
Window object and the
Document object.

611

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6110538474610_ch11_Rev2.indd 611 04/10/10 9:27 AM04/10/10 9:27 AM

To add links to each of the bicycle Web pages that call the
close() method:

1. Return to your text editor and open the cannondale.html
document from the DRGCycles folder in your Chapter folder
for Chapter 11.

2. Locate the table cell that displays the image of the Cannondale
bike along with its specifi cations. Add the following
 paragraph and anchor elements to the end of the table cell.
Th e onclick event handler in the anchor element calls the
close() method, which will close the window.
<p>
 Close Window</p>

3. Save and close the cannondale.html document.

4. Repeat Steps 2 and 3 for the intense.html and pinarello.html
documents.

5. Open the index.html document in your Web browser and click
one of the links. Figure 11-15 shows the new link (which closes
the window) in the Pinarello FP3 Dura Ace 7900 Web page.

Figure 11-15 Pinarello Web page after adding a link with a close() method

612

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6120538474610_ch11_Rev2.indd 612 04/10/10 9:27 AM04/10/10 9:27 AM

6. Click the Close Window link to close the window you opened.

7. Close the Web browser window containing the DRG Cycles
Web page.

Working with Timeouts and Intervals
As you develop Web pages, you may need to have some JavaScript
code execute repeatedly, without user intervention. Alternately, you
may want to create animation or allow for some kind of repetitive
task that executes automatically. For example, you may want to
include an advertising image that changes automatically every few
seconds. Or, you may want to use animation to change the ticking
hands of an online analog clock (in which case each position of the
clock hands would require a separate image).

You use the Window object’s timeout and interval methods to create
code that executes automatically. Th e setTimeout() method
is used in JavaScript to execute code after a specifi c amount of
time has elapsed. Code executed with the setTimeout() method
executes only once. Th e syntax for the setTimeout() method is
var variable = setTimeout("code", milliseconds);. Th is
statement declares that the variable will refer to the setTimeout()
method. Th e code argument must be enclosed in double or single
quotation marks and can be a single JavaScript statement, a series
of JavaScript statements, or a function call. Th e amount of time the
Web browser should wait before executing the code argument of the
setTimeout() method is expressed in milliseconds.

Th e clearTimeout() method is used to cancel a setTimeout()
method before its code executes. Th e clearTimeout() method
receives a single argument, which is the variable that represents
a setTimeout() method call. Th e variable that represents a
setTimeout() method call must be declared as a global variable.
(Recall from Chapter 9 that a global variable is declared outside of a
function and is available to all parts of a JavaScript program.)

Th e script section in the following code contains a setTimeout()
method and a clearTimeout() method call. Th e setTimeout()
method is set to execute after 10,000 milliseconds (10 seconds) have
elapsed. If a user clicks the OK button, the buttonPressed() function
calls the clearTimeout() method.
...
<script type="text/javascript">
/* <![CDATA[*/
var buttonNotPressed = setTimeout(
 "window.alert('You must press the OK button
 to continue!')", 10000);

A millisecond
is one-
thousandth
of a second;
there are
1,000 mil-

liseconds in a second.
For example, fi ve sec-
onds is equal to 5,000
milliseconds.

613

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6130538474610_ch11_Rev2.indd 613 04/10/10 9:27 AM04/10/10 9:27 AM

function buttonPressed() {
 clearTimeout(buttonNotPressed);
 window.alert("The setTimeout() method
 was cancelled!");
}
/*]]> */
</script>
</head>
<body>
<form action="">
<input type="button" value=" OK "
 onclick="buttonPressed();" />
</form>
</body>
</html>

Two other JavaScript methods that create code and execute automatically
are setInterval() and clearInterval(). Th e setInterval() method
is similar to the setTimeout() method, except that it repeatedly executes
the same code after being called only once. Th e clearInterval()
method is used to clear a setInterval() method call in the same fashion
that the clearTimeout() method clears a setTimeout() method call.
Th e setInterval() and clearInterval() methods are most often used
for starting animation code that executes repeatedly. Th e syntax for the
setInterval() method is the same as the syntax for the setTimeout()
method: var variable = setInterval("code", milliseconds);.
As with the clearTimeout() method, the clearInterval() method
receives a single argument, which is the global variable that represents a
setInterval() method call.

By combining the src attribute of the Image object with the
setTimeout() or setInterval() methods, you can create simple
 animation on a Web page. In this context, “animation” does not
necessarily mean a complex cartoon character, but any situation in
which a sequence of images changes automatically. However, Web
animation can include the traditional type, involving cartoons and
movement (like advertising with changing images or the ticking
hands of the clock mentioned earlier). Th e following code uses the
setInterval() method to automatically swap the motorcycle images
you saw in Figures 11-7 and 11-8 every couple of seconds.
...
<script type="text/javascript">
/* <![CDATA[*/
var curBanner="cycle1";
function changeBanner() {
 if (curBanner == "cycle2") {
 document.images[0].src = "v500tec.gif";
 curBanner = "cycle1";
 }
 else {

614

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6140538474610_ch11_Rev2.indd 614 04/10/10 9:27 AM04/10/10 9:27 AM

 document.images[0].src = "showroom.gif";
 curBanner = "cycle2";
 }
}
/*]]> */
</script>
</head>
<body onload="var begin=setInterval('changeBanner()',
 2000);">
<p><img src="v500tec.gif" height="90px" width="700px"
alt="Banner images" /></p>
</body>
</html>

Next, you will modify the DRG Cycles Web page so that it uses the
setInterval() method to change the banner image automatically.

To modify the DRG Cycles Web page so that it uses the
setInterval() method to change the banner image
automatically:

1. Return to the index.html document in your text editor.

2. To the end of the script section, add the following global vari-
able and bannerAd() function. Th e bannerAd() function will
be called by a setInterval() method. As a result, the images
will change automatically.
var curImage="banner1";
function bannerAd() {
 if (curImage == "banner2") {
 document.images[26].src = "images/banner1.png";
 curImage = "banner1";
 }
 else {
 document.images[26].src = "images/banner2.png";
 curImage = "banner2";
 }
}

3. Modify the opening <body> tag so it includes an onload event
handler that calls the setInterval() method and bannerAd()
function, as follows:
<body onload="var changeImages=setInterval
 ('bannerAd()',2000);">

4. Finally, remove the onmousedown and onmouseup event
 handlers from the banner element.

5. Save the index.html document and then open it in your Web
browser. Th e image should begin alternating automatically.

6. Close your Web browser window.

615

Manipulating the Browser with the Window Object

0538474610_ch11_Rev2.indd 6150538474610_ch11_Rev2.indd 615 04/10/10 9:27 AM04/10/10 9:27 AM

Short Quiz 2

1. What are the diff erent ways that you can refer to the Window
object?

2. Explain how to override an internal event handler with your
own code.

3. How do you open and close a window? How do you custom-
ize its appearance?

4. Explain how to use timeouts and intervals to execute
JavaScript code repeatedly.

Working with the History,
Location, Navigator, and
Screen Objects
In this section, you will learn how to work with the History,
Location, Navigator, and Screen objects.

Using the History Object
Th e History object maintains an internal list (known as a history
list) of all the documents that have been opened during the current
Web browser session. Each browser window contains its own internal
History object. You cannot view the URLs contained in the history
list, but you can write a script that uses the history list to navigate to
Web pages that have been opened during a Web browser session.

Two important security features are associated with the History
object. First, the History object will not actually display the URLs
contained in the history list. Th is is important because individual user
information in a Web browser, such as the types of Web sites a user
likes to visit, is private information. Preventing others from viewing
the URLs in a history list is an essential security feature because it
keeps people’s online interests confi dential. Th is security feature is
available in both Firefox and Internet Explorer.

A second important security feature of the History object is specifi c
to Internet Explorer and the domain in which a Web page exists. As
mentioned earlier, you can write a script that uses the history list to
navigate to Web pages that have been opened during a Web browser

616

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6160538474610_ch11_Rev2.indd 616 04/10/10 9:27 AM04/10/10 9:27 AM

session. In Internet Explorer, you can use JavaScript code to navigate
through a history list. However, this is only possible if the currently
displayed Web page exists within the same domain as the Web page
containing the JavaScript code that is attempting to move through the
list. For example, a user may open the home page for a company that
sells offi ce supplies. Suppose that the user then clicks a link on the
company’s home page that opens another Web page in the company’s
domain, such as an online ordering page. In this case, the offi ce sup-
ply company’s home page is added to the user’s history list. JavaScript
code on the online ordering page can use the History object to navi-
gate back to the company’s home page. If JavaScript code attempts
to access the History object of a Web browser that contains a URL
located in a diff erent domain, the Web browser ignores the JavaScript
code. Th is security feature helps prevent malicious programmers and
unscrupulous Web sites from seizing control of your browser or even
your computer. As a general rule, you should only use the History
object to help visitors navigate through your particular Web site.

Th e History object includes the three methods listed in Table 11-5.

Method Description
back() Produces the same result as clicking a Web browser’s Back

button

forward() Produces the same result as clicking a Web browser’s
Forward button

go() Opens a specifi c document in the history list

Table 11-5 Methods of the History object

When you use a method or property of the History object, you must
include a reference to the History object itself. For example, the
back() and forward() methods allow a script to move backward or
forward in a Web browser’s history. To use the back() method, you
must use the syntax history.back().

Th e go() method is used for navigating to a specifi c Web page that
has been previously visited. Th e argument of the go() method is an
integer that indicates how many pages you want to navigate forward
or backward in the history list. For example, history.go(-2); opens
the Web page that is two pages back in the history list; the statement
history.go(3); opens the Web page that is three pages forward
in the history list. Th e statement history.go(-1); is equivalent
to using the back() method, and the statement history.go(1); is
equivalent to using the forward() method.

Th e History object contains a single property, the length property,
which contains the specifi c number of documents that have been

617

Working with the History, Location, Navigator, and Screen Objects

0538474610_ch11_Rev2.indd 6170538474610_ch11_Rev2.indd 617 04/10/10 9:27 AM04/10/10 9:27 AM

opened during the current browser session. To use the length
 property, you use the syntax history.length;. Th e length property
does not contain the URLs of the documents themselves, but only an
integer representing how many documents have been opened. Th e
following code uses an alert dialog box to display the number of Web
pages that have been visited during a Web browser session:
window.alert("You have visited " + history.length
 + " Web pages.");

Th e History object is included in this chapter to introduce you to
all of the major objects in the browser object model. However, you
should avoid using the History object to navigate to Web pages that
have been opened during a Web browser session. Instead, you should
use the full URL with the href property of the Location object, as
explained in the next section.

Using the Location Object
When you want to allow users to open one Web page from within
another Web page, you usually create a hypertext link with the <a> ele-
ment. You can also use JavaScript code and the Location object to open
Web pages. Th e Location object allows you to change to a new Web
page from within JavaScript code. One reason you may want to change
Web pages with JavaScript code is to redirect your Web site visitors to a
diff erent or updated URL. Th e Location object contains several prop-
erties and methods for working with the URL of the document that is
currently open in a Web browser window. When you use a method or
property of the Location object, you must include a reference to the
Location object itself. For example, to use the href property, you must
write location.href = URL;. Table 11-6 lists the Location object’s
properties, and Table 11-7 lists the Location object’s methods.

Properties Description
hash A URL’s anchor

host The host and domain name (or IP address) of a network
host

hostname A combination of the URL’s host name and port sections

href The full URL address

pathname The URL’s path

port The URL’s port

protocol The URL’s protocol

search A URL’s search or query portion

Table 11-6 Properties of the Location object

618

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6180538474610_ch11_Rev2.indd 618 04/10/10 9:27 AM04/10/10 9:27 AM

Method Description
assign() Loads a new Web page

reload() Causes the page that currently appears in the Web
browser to open again

replace() Replaces the currently loaded URL with a different one

Table 11-7 Methods of the Location object

Th e properties of the Location object allow you to modify individual
portions of a URL. When you modify any properties of the Location
object, you generate a new URL, and the Web browser automatically
attempts to open that new URL. Instead of modifying individual
portions of a URL, it is usually easier to change the href property,
which represents the entire URL. For example, the statement
location.href = "http://www.google.com"; opens the Google
home page.

Th e assign() method of the Location object performs the same
action as changing the href property: It loads a new Web page. Th e
statement location.assign ("http://www.google.com"); is equiv-
alent to the statement location.href = "http://www.google.com";.

Th e reload() method of the Location object is equivalent to the
Reload button in Firefox or the Refresh button in Internet Explorer.
It causes the page that currently appears in the Web browser to open
again. You can use the reload() method without any arguments,
as in location.reload();, or you can include a Boolean argument
of true or false. Including an argument of true forces the current
Web page to reload from the server where it is located, even if
no changes have been made to it. For example, the statement
location.reload(true); forces the current page to reload. If you
include an argument of false, or do not include any argument at all,
then the Web page reloads only if it has changed.

Th e replace() method of the Location object is used to replace
the currently loaded URL with a diff erent one. Th is method works
 somewhat diff erently from loading a new document by changing
the href property. Th e replace() method actually overwrites one
document with another and replaces the old URL entry in the Web
browser’s history list. In contrast, the href property opens a diff erent
document and adds it to the history list.

Using the Navigator Object
Th e Navigator object is used to obtain information about the current
Web browser. It gets its name from Netscape Navigator, but it is also
supported by Firefox, Internet Explorer, and other current browsers.

 You can use
this.location
to retrieve the
URL of the
 current Web
page.

619

Working with the History, Location, Navigator, and Screen Objects

0538474610_ch11_Rev2.indd 6190538474610_ch11_Rev2.indd 619 04/10/10 9:27 AM04/10/10 9:27 AM

Some Web browsers, including Internet Explorer, contain unique
methods and properties of the Navigator object that cannot be used
with other browsers. Table 11-8 lists properties of the Navigator
object that are supported by most current Web browsers, including
Firefox and Internet Explorer.

Properties Description
appCodeName The Web browser code name

appName The Web browser name

appVersion The Web browser version

platform The operating system in use on the client computer

userAgent The string stored in the HTTP user-agent request
header, which contains information about the browser,
the platform name, and compatibility

Table 11-8 Properties of the Navigator object

Th e Navigator object is most commonly used to determine
which type of Web browser is running. Th e statement
browserType = navigator.appName; returns the name of the Web
browser in which the code is running to the browserType variable.
You can then use the browserType variable to determine which code
to run for the specifi c type of browser. Th e with statement eliminates
the need to retype the name of an object when properties of the same
object are being referenced in a series. To use the with statement, you
create a structure similar to an if statement and pass the name of
the object as a conditional expression. You can then refer to all of the
object properties without referring to the object itself. Th e following
with statement prints the fi ve properties of the Navigator object for
Firefox 3.0. Figure 11-16 shows the output.
with (navigator) {
 document.write("<p>Browser code name: "
 + appCodeName + "
");
 document.write("Web browser name: "
 + appName + "
");
 document.write("Web browser version: "
 + appVersion + "
");
 document.write("Operating platform: "
 + platform + "
");
 document.write("User agent: " + userAgent
 + "</p>");
}

620

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6200538474610_ch11_Rev2.indd 620 04/10/10 9:27 AM04/10/10 9:27 AM

Figure 11-16 Navigator object properties in Firefox

Using the Screen Object
Computer displays can vary widely, depending on the type and size
of the monitor, the type of installed graphics card, and the screen
resolution and color depth selected by the user. For example, some
notebook computers have small screens with limited resolution,
while some desktop systems can have large monitors with very
high resolution. Th e wide range of possible display settings makes
it challenging to determine the size and positioning of windows
 generated by JavaScript. Th e Screen object is used to obtain
 information about the display screen’s size, resolution, and color depth.
Table 11-9 lists the properties of the Screen object that are supported
by most current Web browsers, including Firefox and Internet Explorer.

Properties Description
availHeight Returns the height of the display screen, not including

operating system features such as the Windows taskbar

availWidth Returns the width of the display screen, not including
operating system features such as the Windows taskbar

colorDepth Returns the display screen’s bit depth if a color palette is in
use; if a color palette is not in use, returns the value of the
pixelDepth property

height Returns the height of the display screen

pixelDepth Returns the display screen’s color resolution in bits per
pixel

width Returns the width of the display screen

Table 11-9 Properties of the Screen object

621

Working with the History, Location, Navigator, and Screen Objects

0538474610_ch11_Rev2.indd 6210538474610_ch11_Rev2.indd 621 04/10/10 9:27 AM04/10/10 9:27 AM

Th e colorDepth and pixelDepth properties are most useful in
determining the color resolution that the display supports. For
example, if the colorDepth property returns a value of 32, which
indicates high-color resolution, then you can use JavaScript to display
a high-color image. However, if the colorDepth property returns a
value of 16, which indicates medium-color resolution, then you may
want to use JavaScript to display a lower-color image. Th e following
code illustrates how to use the colorDepth property to determine
which version of an image to display:
if (screen.colorDepth >= 32)
 document.write(
 "");
else if (screen.colorDepth >= 16)
 document.write(
 "");
else
 document.write(
 "");

Th e remaining Screen object properties determine the size of the
display area. For example, on a computer with a screen resolution of
1280 by 768, the following statements print “Your screen resolution is
1280 by 768.”
var screenWidth = screen.width;
var screenHeight = screen.height;
document.write("<p>Your screen resolution is " +
 screenWidth + " by " + screenHeight + ".</p>");

One of the more common uses of the Screen object properties is
to center a Web browser window in the display area. For windows
generated with the window.open() method, you can center a window
when it fi rst opens by assigning values to the left and top options
of the options argument. To center a window horizontally, subtract
the width of the window from the screen width, divide the remainder
by two, and assign the result to the left option. Similarly, to center
a window vertically, subtract the height of the window from the
screen height, divide the remainder by two, and assign the result to
the top option. Th e following code demonstrates how to create a new
window and center it in the display area:
var winWidth=300;
var winHeight=200;
var leftPosition = (screen.width-winWidth)/2;
var topPosition = (screen.height-winHeight)/2;
var optionString = "width=" + winWidth + ",height="
 + winHeight + ",left=" + leftPosition + ",top="
 + topPosition;
OpenWin = window.open("", "CtrlWindow",
 optionString);

Remember
that the state-
ments for
opening a new
window must
be called

from an event handler;
 otherwise, a Web
 browser’s pop-up blocker
will prevent the window
from opening.

622

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6220538474610_ch11_Rev2.indd 622 04/10/10 9:27 AM04/10/10 9:27 AM

Next, you will modify the DRG Cycles Web page so that the bicycle
window is centered in the display area.

To modify the DRG Cycles Web page so that the bicycle
window is centered in the display area:

1. Return to the index.html document in your text editor.

2. Modify the showBike() function as follows so that it uses the
Screen object to calculate the left and top positions of the
bicycle window:
function showBike(linkTarget) {
 var propertyWidth=620;
 var propertyHeight=575;
 var winLeft = (screen.width-propertyWidth)/2;
 var winTop = (screen.height-propertyHeight)/2;
 var winOptions = "toolbar=no,menubar=no,
 location=no,scrollbars=no,resizable=no";
 winOptions += ",width=" + propertyWidth;
 winOptions += ",height=" + propertyHeight;
 winOptions += ",left=" + winLeft;
 winOptions += ",top=" + winTop;
 bikeWindow = window.open(linkTarget,
 "bikeInfo", winOptions);
 bikeWindow.focus();
}

3. Save the index.html document, and then validate it with the
W3C Markup Validation Service. Once the document is valid,
close it in your text editor and open it in your Web browser.
Click one of the bike links. Th e bicycle window should open
and be centered on your screen.

4. Close your Web browser windows.

Short Quiz 3

1. Explain the security features of the History object.

2. How do you use the History object to navigate backward or
forward in a Web browser’s history?

3. How do you use the Location object to change to a new Web
page?

4. What is the Navigator object and how do you use it?

623

Working with the History, Location, Navigator, and Screen Objects

0538474610_ch11_Rev2.indd 6230538474610_ch11_Rev2.indd 623 04/10/10 9:27 AM04/10/10 9:27 AM

Summing Up

• Th e browser object model (BOM) or client-side object model is
a hierarchy of objects, each of which provides program access to a
diff erent aspect of the Web browser window or the Web page.

 • Th e top-level object in the browser object model is the Window
object, which represents a Web browser window.

• Th e Document object is arguably the most important object in
the browser object model because it represents the Web page
 displayed in a browser.

 • For elements that are represented by arrays, you can reference the
object through the array instead of with the element name.

• Because the Window object is the global object, you do not have to
include it in your statements.

 • When you override an internal event handler with your own code,
your code must return a value of true or false using the return
statement.

• A rollover is an eff ect that occurs when your mouse moves over
an element.

 • You use the style property to modify an element’s CSS properties
with JavaScript.

 • Whenever a new Web browser window is opened, a new Window
object is created to represent the new window.

 • When you open a new Web browser window, you can
 customize its appearance by using the options argument of
the window.open() method.

 • A Window object’s name property can be used only to specify a
 target window with a link and cannot be used in JavaScript code.

 • To control a new window by using JavaScript code located within
the Web browser in which it was created, you must assign the
new Window object created with the window.open() method to
a variable.

• Th e setTimeout() method is used in JavaScript to execute code
after a specifi c amount of time has elapsed.

624

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6240538474610_ch11_Rev2.indd 624 04/10/10 9:27 AM04/10/10 9:27 AM

 • Th e clearTimeout() method is used to cancel a setTimeout()
method before its code executes.

 • Th e setInterval() method repeatedly executes the same code
after being called only once.

 • Th e clearInterval() method is used to clear a setInterval()
method call.

 • Th e History object maintains an internal list (known as a history
list) of all the documents that have been opened during the current
Web browser session.

 • Th e Location object allows you to change to a new Web page from
within JavaScript code.

 • Th e Navigator object is used to obtain information about the
 current Web browser.

 • Th e with statement eliminates the need to retype the name of an
object when properties of the same object are being referenced
in a series.

 • Th e Screen object is used to obtain information about the display
screen’s size, resolution, and color depth.

Comprehension Check
1. Which of the following objects is also referred to as the

global object?

a. Document object

b. Window object

c. Browser object

d. Screen object

2. Which of the following elements in the browser object model
are referenced with arrays? (Choose all that apply.)

a. images

b. paragraphs

c. forms

d. links

625

Comprehension Check

0538474610_ch11_Rev2.indd 6250538474610_ch11_Rev2.indd 625 04/10/10 9:27 AM04/10/10 9:27 AM

3. Which of the following terms does not refer to the browser
object model?

a. Firefox object model

b. JavaScript object model

c. client-side object model

d. Navigator object model

4. You must use the Window object or self property when
 referencing a property or method of the Window object. True
or False?

5. Explain how to override an event with an event handler
function.

6. Which of the following events are used to create rollover
eff ects? (Choose all that apply.)

a. onclick

b. onload

c. onmouseover

d. onmouseout

7. Explain how to open a blank window with the window.open()
method.

8. You use the options string of the window.open() method to
specify any elements that you do not want created for the new
window. True or False?

9. Which of the following arguments of the options string of the
window.open() method identifi es the horizontal coordinate
where the window will be positioned?

a. left

b. leftPosition

c. x-axis

d. moveTo

10. Explain why you should include the Window object or self
property when using the open() and close() methods of the
Window object.

626

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6260538474610_ch11_Rev2.indd 626 04/10/10 9:27 AM04/10/10 9:27 AM

11. How do you control a new window that you have created with
JavaScript code?

a. by using the appropriate element in the windows[] array
of the Windows object

b. by using the name argument of the window.open()
method

c. by assigning the new Window object created with the
window.open() method to a variable

d. You cannot control a new window with JavaScript code.

12. Explain the diff erence between the setTimeout() and
setInterval() methods. Which method is most often used
for starting animation code that executes repeatedly?

13. How do you use JavaScript to modify an element’s CSS
properties?

14. Which of the following arguments do you pass to the
history.go() method to navigate three pages back in the
 history list?

a. 3

b. -3

c. 2

d. 4

15. You can use JavaScript code to navigate through a history list,
but only if the currently displayed Web page exists within the
same domain as the Web page containing the JavaScript code
that is attempting to move through the list. True or False?

16. Th e full URL of a Web page is located in the _______ property
of the Location object.

a. href

b. hash

c. src

d. url

627

Comprehension Check

0538474610_ch11_Rev2.indd 6270538474610_ch11_Rev2.indd 627 04/10/10 9:27 AM04/10/10 9:27 AM

17. Which property of the Navigator object returns the Web
browser name?

a. browser

b. browserName

c. appName

d. platform

18. Explain how to use the with statement to reference an object’s
properties.

19. Which of the following properties of the Screen object
returns the height of the display screen, not including
 operating system features such as the Windows taskbar?

a. displayHeight

b. screenHeight

c. availHeight

d. height

20. Explain how to center a window when it is created with the
window.open() method.

Reinforcement Exercises

Exercise 11-1

Most Windows applications include an About dialog box that dis-
plays copyright information and other details about the program. In
this exercise, you will create a script that opens a new window that is
similar to an About dialog box.

1. Create a new HTML 5 document in your text editor and
use “About Dialog Box Example” as the content of the
<title> element.

2. Add a form to the document body that includes a single
 command button that reads “About this JavaScript Program”.

3. Add code to the Web page that opens a new browser window
when a user clicks the command button. Make the new
 window 100 pixels high by 300 pixels wide, and center it in the
screen. Do not use any other display options. Th e new browser
window should display a document named About.html (which
you will create later in this exercise).

628

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6280538474610_ch11_Rev2.indd 628 04/10/10 9:27 AM04/10/10 9:27 AM

4. Save the document as AboutExample.html in the Exercises
folder for Chapter 11.

5. Use the W3C Markup Validation Service to validate the
AboutExample.html document and fi x any errors. Once the
document is valid, close it in your text editor.

6. Create another Web page that displays a single paragraph with
the following text. Be sure to use your name in the paragraph.
<p>This program was created by your name.</p>

7. Add a button to the document body that closes the current
window.

8. Save the document as About.html in the Exercises folder for
Chapter 11.

9. Use the W3C Markup Validation Service to validate the
About.html document and fi x any errors. Once the
 document is valid, close it in your text editor.

10. Open AboutExample.html in your Web browser and test
the script’s functionality. Th e About window should appear
 centered in your screen.

11. Close your Web browser window.

Exercise 11-2

In this exercise, you create a script that repeatedly fl ashes advertising
messages in a text box for a company named Central Valley Florist.

1. Create a new HTML 5 document in your text editor and use
“Central Valley Florist” as the content of the <title> element.

2. Add a script section to the document head.

3. Next, add the following heading elements and form to the
document body, which will display a message in a text box:
<h1>Central Valley Florist</h1>
<h2>Valentine's Day Specials</h2>
<form name="advertising" action="">
<p><input type="text" name="message" size="60"
value="Place your Valentine's Day orders today!" /></p>
</form>

629

Reinforcement Exercises

0538474610_ch11_Rev2.indd 6290538474610_ch11_Rev2.indd 629 04/10/10 9:27 AM04/10/10 9:27 AM

4. In the script section, add the following code, which changes
the message that is displayed in the text box:
var curMessage="message1";
var changeMessage;
function adMessage(){
 if (curMessage == "message2"){
 document.advertising.message.value
 = "Place your Valentine's Day orders today!";
 curMessage = "message1";
 }
 else {
 document.advertising.message.value
 = "All orders must be received by
 February 12th!";
 curMessage = "message2";
 }
}

5. Finally, add the following onload event handler to the opening
<body> tag:
<body onload="var changeQuote=setInterval
 ('adMessage()',2000);">

6. Save the document as ValentinesDayOrders.html in the
Exercises folder for Chapter 11.

7. Use the W3C Markup Validation Service to validate the
ValentinesDayOrders.html document and fi x any errors.
Once the document is valid, close it in your text editor and
then open it in your Web browser. Th e message should
change every few seconds.

8. Close your Web browser window.

Exercise 11-3

In this exercise, you will create a script that redirects users to a
 diff erent Web page after 10 seconds, or allows them to click a
hyperlink.

1. Create a new HTML 5 document in your text editor and use
“New Web Address” as the content of the <title> element.

2. Add a script section to the document head.

630

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6300538474610_ch11_Rev2.indd 630 04/10/10 9:27 AM04/10/10 9:27 AM

3. In the script section, add the following global variable
 declaration and function to handle the task of redirecting
the Web page:
var killRedirect;
function updatedURL() {
 location.href="UpdatedURL.html";
}

4. Add the following onload event handler to the opening
<body> tag:
<body onload="killRedirect =
setTimeout('updatedURL()', 10000);">

5. Add the following elements and text to the document body:
<h2>The URL for the Web page you are trying to
reach has changed!</h2>
<p>You will be automatically redirected in
ten seconds. Click the link if JavaScript is
disabled in your browser.</p>
<p>Be sure to update your bookmark!</p>
<p>UpdatedURL.html</p>

6. Save the document as Redirect.html in the Exercises folder
for Chapter 11.

7. Use the W3C Markup Validation Service to validate the
Redirect.html document and fi x any errors. Once the
 document is valid, close it in your text editor.

8. Create another Web page that displays a single paragraph with
the following text:
<p>You have reached the updated Web page.</p>

9. Save the document as UpdatedURL.html in the Exercises
folder for Chapter 11.

10. Use the W3C Markup Validation Service to validate the
UpdatedURL.html document and fi x any errors. Once
the document is valid, close it in your text editor and then
open the Redirect.html document in your Web browser.
In 10 seconds, the UpdatedURL.html document should open
automatically.

11. Close your Web browser window.

631

Reinforcement Exercises

0538474610_ch11_Rev2.indd 6310538474610_ch11_Rev2.indd 631 04/10/10 9:27 AM04/10/10 9:27 AM

Exercise 11-4

In addition to specifying the size and position of a window when
it fi rst opens, you can also change the size and position of an open
 window by using methods of the Window object. Th e resizeTo()
method resizes a window to a specifi ed size, and the moveTo()
method moves a window to an absolute position. Using these
 methods with properties of the Screen object, you will create a script
that resizes and repositions an open window so that it fi lls the screen.

1. Create a new HTML 5 document in your text editor and use
“Maximize Browser Window” as the content of the <title>
element.

2. Add a form to the document body that includes two
 command buttons: one that reads “Create New Window”
and another that reads “Maximize New Window”.

3. Add a script section to the document head.

4. Add the following function for the Create New Window
 button. Th is function opens a document named
MaxWindow.html (which you will create shortly) in a new
browser window that is centered in the screen when a user
clicks the command button.
var maxWindow;
function createWindow() {
 var winWidth=300;
 var winHeight=100;
 var winLeft = (screen.width-winWidth)/2;
 var winTop = (screen.height-winHeight)/2;
 var winOptions = ",width=" + winWidth;
 winOptions += ",height=" + winHeight;
 winOptions += ",left=" + winLeft;
 winOptions += ",top=" + winTop;
 maxWindow = window.open("MaxWindow.html",
 "newWindow", winOptions);
 maxWindow.focus();
}

5. Add the following function for the Maximize New Window
button. Th e fi rst statement in the function uses the moveTo()
method of the Window object to move the window named
maxWindow (which is created by the createWindow()

632

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6320538474610_ch11_Rev2.indd 632 04/10/10 9:27 AM04/10/10 9:27 AM

 function) to position 0, 0, which represents the upper-left
 corner of the screen. Th e second statement uses the
resizeTo() method of the Window object and the availWidth
and availHeight properties of the Screen object to maximize
the window. Th e fi nal statement changes focus to the
 maximized window.
function maximizeWindow() {
 maxWindow.moveTo(0,0);
 maxWindow.resizeTo(screen.availWidth,
 screen.availHeight);
 maxWindow.focus();
}

6. Save the document as MaximizeBrowser.html in the
Exercises folder for Chapter 11.

7. Use the W3C Markup Validation Service to validate the
MaximizeBrowser.html document and fi x any errors. Once
the document is valid, close it in your text editor.

8. Create a Web page that conforms to the strict DTD, and add
the following text and elements to the document body:
<p>Resizing and Repositioning
Example</p>
<form action="">
<p><input type="button" value="Close Window"
 onclick="window.close();" /></p>
</form>

9. Save the document as MaxWindow.html in the Exercises
folder for Chapter 11.

10. Use the W3C Markup Validation Service to validate the
MaxWindow.html document and fi x any errors. Once the
document is valid, close it in your text editor.

11. Open MaximizeBrowser.html in your Web browser,
and click the Create New Window button. Th e new win-
dow should appear centered in the screen. Return to the
MaximizeBrowser.html fi le in your Web browser, and click
the Maximize New Window button. Th e new window should
be resized and repositioned to fi ll the screen.

12. Close your Web browser windows.

633

Reinforcement Exercises

0538474610_ch11_Rev2.indd 6330538474610_ch11_Rev2.indd 633 04/10/10 9:27 AM04/10/10 9:27 AM

Exercise 11-5

In this exercise, you will create a Web page for a greeting card
 company. Th e page will contain links that display images of greeting
cards in a separate window. Your Exercises folder for Chapter 11
contains the following greeting card images that you can use for this
project: birthday.jpg, halloween.jpg, mothersday.jpg, newyear.jpg,
and valentine.jpg.

1. Create a new HTML 5 document in your text editor and
use “Gosselin Greeting Cards” as the content of the <title>
element.

2. Add the following text and elements to the document body.
Th e onclick events in the links call a function named
showCard() that handles the process of displaying each greet-
ing card in a separate window. You create the showCard()
function later in this exercise.
<h1>Gosselin Greeting Cards</h1>
<h2>All Occasions</h2>
<hr />
<p><a href="valentine.jpg"
onclick="showCard('valentine.jpg');return false">
Valentine's Day

<a href="mothersday.jpg"
onclick="showCard('mothersday.jpg');return false">
Mother's Day

<a href="halloween.jpg"
onclick="showCard('halloween.jpg');return false">
Halloween

<a href="newyear.jpg"
onclick="showCard('newyear.jpg');return false">
New Year

<a href="birthday.jpg"
onclick="showCard('birthday.jpg');return false">
Birthday</p>

3. Add a script section to the document head.

4. Add the following global variable to the script section. Th is
variable will represent the window that displays the greeting
card images.

var cardWindow;

634

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6340538474610_ch11_Rev2.indd 634 04/10/10 9:27 AM04/10/10 9:27 AM

5. Add the following function to the end of the script section.
Th e function opens a new window, centered in the screen,
that displays the selected greeting card image.
function showCard(linkTarget) {
 var propertyWidth=400;
 var propertyHeight=350;
 var winLeft = (screen.width-propertyWidth)/2;
 var winTop = (screen.height-propertyHeight)/2;
 var winOptions =
 "toolbar=no,menubar=no,location=no,
 scrollbars=yes,resizable=no";
 winOptions += ",width=" + propertyWidth;
 winOptions += ",height=" + propertyHeight;
 winOptions += ",left=" + winLeft;
 winOptions += ",top=" + winTop;
 cardWindow = window.open(linkTarget,
 "cardInfo", winOptions);
 cardWindow.focus();
}

6. Save the document as GreetingCards.html in the Exercises
folder for Chapter 11.

7. Use the W3C Markup Validation Service to validate the
GreetingCards.html document and fi x any errors. Once the
document is valid, close it in your text editor, open it in your
Web browser, and test the functionality.

8. Close your Web browser window.

Exercise 11-6

You have probably seen Web sites that invite you to add them to your
browser’s favorites list. With Internet Explorer, you can create a link that
automatically adds the Web page to the favorites list by assigning a value
of javascript:window.external.AddFavorite(url, site name) to
the link’s href property. Firefox does not contain similar functionality,
so you need to use the Navigator object to determine the browser type.
In this exercise, you will create a script that contains functionality for
adding Course Technology’s Web site to a browser’s favorites list.

1. Create a new HTML 5 document in your text editor and use
“Add to Favorites” as the content of the <title> element.

2. Add a script section to the document body.

635

Reinforcement Exercises

0538474610_ch11_Rev2.indd 6350538474610_ch11_Rev2.indd 635 04/10/10 9:27 AM04/10/10 9:27 AM

3. Add the following statements to the script section. Th e fi rst
two statements retrieve the browser’s name and version from
the Navigator object. Th e remaining statements create text
variables that will be used to create the bookmark link.
var browserName = navigator.appName;
var browserVer = parseInt(navigator.appVersion);
var linkText = "Add Course Technology
 to your favorites!";
var url = "http://www.course.com";
var pageName = "Course Technology";
var favLink = "";

4. Add the following if statement to the end of the script
 section. Th e conditional expression determines whether the
browser name is equal to “Microsoft Internet Explorer” and
whether the browser version is greater than or equal to 4.
If so, statements within the if statement build a link that
 automatically adds the Course Technology Web site to the
favorites list in Internet Explorer.
if (browserName == "Microsoft Internet Explorer"
 && browserVer >= 4) {
 favLink = "<p><a href=\"javascript:window.
 external.AddFavorite(url, pageName)\"";
 favLink += " onmouseover=\"window.status='";
 favLink += linkText + "'; return true\"";
 favLink += " onmouseout=\"window.status=";
 favLink += "''" + "; return true\"";
 favLink += ">" + linkText + "</p>";
 document.write(favLink);
}

5. Add the following else clause to the end of the script section
to print “Add Course Technology to your favorites! (Ctrl+D)”
for all other browsers:
else
 document.write("<p>Add Course Technology
 to your favorites! (Ctrl+D)</p>");

6. Save the document as AddToFavorites.html in the Exercises
folder for Chapter 11, and validate the document with the
W3C Markup Validation Service. Once the document is
valid, close it in your text editor and then open it in Internet
Explorer and test the functionality.

7. Close your Web browser window.

636

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6360538474610_ch11_Rev2.indd 636 04/10/10 9:27 AM04/10/10 9:27 AM

Discovery Projects
For the following projects, save the fi les you create in your Projects
folder for Chapter 11. Be sure to validate each Web page with the
W3C Markup Validation Service.

Discovery Project 11-1

Your Projects folder for Chapter 11 contains fi ve advertising images
for a concert series, concert1.gif through concert5.gif. Create a script
that cycles through the images and displays each one for fi ve seconds.
Save the document as ConcertAds.html.

Discovery Project 11-2

Create a Web page with a list of your favorite links. At the top of the
page, include a check box with the text “Open link in a new window.”
If a user clicks the check box, the links on the page should open in a
new window. Otherwise, the links should be loaded into the current
window. Save the document as LinkWindow.html.

Discovery Project 11-3

A common use of the onmouseover and onmouseout event handlers
is to change the button image displayed for a navigational link on
a Web page. For example, holding your mouse over an image of a
Home button (that jumps to the Web site’s home page) could replace
the image with one that is more vivid in order to clearly identify the
page that is the target of the link. Your Projects folder for Chapter
11 contains eight images: home1.gif, home2.gif, faq1.gif, faq2.gif,
guestbook1.gif, guestbook2.gif, join1.gif, and join2.gif. Th ese images
represent typical navigational buttons you fi nd on a Web site. Th e
second version of each button is slightly more vivid than the fi rst
version. Create a Web page that displays the fi rst version of each
button as image links, using the <a> element. Holding your mouse
over each image should display the more vivid version of the image,
while moving your mouse off the image should display the less vivid
version. Do not worry about actually creating a Web page as the
target of each link; just assign an empty string to each <a> element’s
href attribute. Save the document as Buttons.html.

637

Discovery Projects

0538474610_ch11_Rev2.indd 6370538474610_ch11_Rev2.indd 637 04/10/10 9:27 AM04/10/10 9:27 AM

Discovery Project 11-4

You have probably come across Web sites that briefl y display a
sponsor’s advertisement before redirecting you to the page you
originally requested. Create such an ad for a real estate company
named Central Valley Realtors. Start by creating a Web page named
CVR1.html. In the document body, create a table with two columns.
In the left column, display the cvb1.gif image, which is located in
your Projects folder for Chapter 11. Th e cvb1.gif fi le is an animated
GIF fi le that displays an advertisement for a company named Central
Valley Builders. In the right column, display three paragraphs. In
the fi rst paragraph, display the word “Advertisement”. In the second
paragraph, display the text “Th e Central Valley Realtors home page
will be displayed in n seconds.” Use a text fi eld for the number of
seconds, which means you will need to create a form to contain
the text fi eld. Set the default value of the text fi eld to 15 seconds. In
the third paragraph, include a “Skip advertisement” link that opens
a Web page named CVR2.html (which is the “real” home page for
Central Valley Realtors). Within the CVR1.html page’s opening
<body> tag, add an onload event handler that calls a function named
startAdPage(). Within the startAdPage() function, include two
statements: one that uses a setInterval() method to call a function
named changeAd() every fi ve seconds, and another statement
that uses a setInterval() method to call a function named
startCountdown() every second. Create the changeAd() function so
that, every fi ve seconds, it alternates the image in the document body
with the three images in your Projects folder for Chapter 11: cvb1.gif,
cvb2,gif, and cvb3.gif. Create the startCountdown() function so that
it changes the value assigned to the text fi eld in the document body to
the value of a variable named count, which is decreased by a value of
1 (from 15 to 1) each time the startCountdown() function executes.
When the count reaches zero, clear both of the intervals and redirect
the browser to the CVR2.html page. Create the CVR2.html page so
it contains an <h1> element that reads “Central Valley Realtors” and a
paragraph element that reads “Welcome to our home page.”

638

C H A P T E R 1 1 Manipulating the Browser Object Model

0538474610_ch11_Rev2.indd 6380538474610_ch11_Rev2.indd 638 04/10/10 9:27 AM04/10/10 9:27 AM

