
4-1

Chapter 4: Namespaces and DTDs

In this chapter you will:

 Organize your elements with namespaces

 Define your elements with Document Type Definitions (DTDs)

 Validate your XML documents against DTDs

 Declare elements in a DTD

 Declare attributes in a DTD

As you learned in Chapter 3, XML has no predefined elements or attributes. Instead,
you must define your own elements, attributes, and document structure. Because you
have to build everything in your XML documents from the ground up, you are actually
writing your own markup language. One of the biggest challenges you will face with
XML is deciding which elements and attributes to use in your new markup language,
and how those elements should be structured. Simply creating new elements and
attributes each time you need them works fine for XML documents that you will only use
once. However, you may want to design an XML document that is used many times, or
that should include specific elements, attributes, and structure expected by an
application that needs to access the document’s data.

In this chapter, you will study namespaces and Document Type Definitions (DTDs) to
learn how to organize, define, and structure the elements and attributes in your XML
documents. You will also learn how to validate your XML documents against a DTD.

Organizing Elements with Namespaces

One of XML’s greatest strengths is that you can define your own elements in your
documents. However, it is only a matter of time before you create an XML document
containing elements with names that are identical to elements in another XML
document. At first, you may not realize that this can cause problems, but remember
from Chapter 3 that XML documents commonly define and transfer data between Web
applications. If an application accesses two separate XML documents that contain
identical element names, the application will have no way of differentiating them. Or,
you may combine into a single document two separate XML documents, both of which
contain elements with the same names, but with different purposes.

4-2

For instance, consider an element named name. The name element could contain the
name of a person, an organization, a country, and so on. Suppose you have an XML
document that contains multiple name elements, with each element storing data with a
different meaning. For instance, one of the name elements in the document could store
customer names, while another name element could store product names. Without some
way to uniquely identify each name element, an application that is accessing the XML
document will have no way of knowing which name element to use. Or, an application
may need to access the name elements in your XML document, along with the name
elements in someone else’s XML document. Again, an application will have no way of
knowing which name elements to use. To solve these problems, you use namespaces
to organize the elements and attributes of an XML document into separate collections.

Namespaces and URIs

You should already be familiar with the basics of working with the Web, but to review, a

Uniform Resource Identifier (URI) is a generic term for identifying namespaces and

addresses on the World Wide Web. A Uniform Resource Locator, or URL, is a unique
address that identifies a Web page. URLs are also referred to as Web addresses. For
instance, www.course.com is a typical URL that points to Course Technology’s home
page. Namespaces are identified by a URI because it is guaranteed to be unique, which
means that an associated namespace will also be unique. This allows any applications
that use an XML document to clearly identify its elements and attributes, resolving any
conflicts with identically named elements and attributes in other XML documents.

With URL namespaces, common practice is to include an ns folder in the URL name.
(The ns stands for “namespace”.) Beneath the ns folder, you create additional folders
that uniquely identify individual namespaces. For instance, the following two Course
Technology URLs could be used to identify two unique namespaces:

http://www.course.com/ns/catalog
http://www.course.com/ns/certification

One potentially confusing fact about namespaces is that a URL you use to identify a
namespace does not need to exist. In other words, you do not actually need to create
an ns folder or any subfolders on your server. If you do create an ns folder and
subfolders for namespaces on your server, you can place anything you want into the
folder or you can leave it empty; it makes no difference. The point is that a URL
associated with a namespace only needs to be a unique name used to identify the
namespace; it does not matter if it physically exists as a resource on your Web site.

4-3

Default Namespaces

A default namespace is applied to all of the elements and nested elements beneath
the element that declares the namespace. You select a default namespace for an entire
XML document by using the xmlns attribute in the document’s root element. The xmlns
attribute assigns a namespace to an element; to this attribute you assign the URI that
you want to use as a namespace. For instance, the following XML document contains
the hardware costs associated with the renovation of a company’s offices. A default
namespace for the document is created by assigning the URL
www.GosselinConsulting.com/ns/renovation to the xmlns attribute in the renovation root
element.

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<renovation xmlns="http://www.GosselinConsulting.com/
 ns/renovation">
 <hardware><description>plumbing</description>
 <cost>$15,000</cost></hardware>
 <hardware><description>electrical</description>
 <cost>$11,000</cost></hardware>
</renovation>

You can also apply a namespace to a particular element in an XML document. In this
case, the namespace will be applied to all of the element’s nested elements, with the
exception of elements with explicit namespace declarations (which you will study next).
For instance, you may want to use separate namespaces for each of the hardware
elements in the preceding code. The following code shows how to assign two default
namespaces: one for the plumbing <hardware> element and one for the electrical
<hardware> element:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<renovation>
 <hardware xmlns="http://www.GosselinConsulting.com/
 ns/plumbing">
 <description>plumbing</description>
 <cost>$15,000</cost></hardware>
 <hardware xmlns="http://www.GosselinConsulting.com/
 ns/electrical">
 <description>electrical</description>
 <cost>$11,000</cost></hardware>
</renovation>

Next you will create a simple XML document that contains weather-related elements.
You will apply a default namespace to the weather document’s root element.

To create a simple XML document that uses a default namespace:

4-4

1. Start your text editor and create a document.

2. Type the opening XML declaration, as follows:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>

3. Next, type the following root element named <weather> that uses the xmlns attribute
to declare a default namespace. Replace the “Your_Name” portion of the domain
name with your name. This namespace assumes that the weather being reported is
for San Francisco. Notice that the default namespace includes an ns folder in the
URL name.

<weather
xmlns="http://www.Your_Name.com/ns/SanFrancisco">

4. Type the following <weather_reading> element, which contains other nested weather
elements:

<weather_reading>
 <date>January 27, 2003</date>
 <temperature>48.0</temperature>
 <rainfall>2 inches</rainfall>
 <humidity>70</humidity>
</weather_reading>

5. Type the closing tag for the <weather> root element:

</weather>

6. Save the file as Ch04XML01.xml in the Chapter folder for Chapter 4.

7. Open the Ch04XML01.xml file in Internet Explorer. Your Web browser should look
like Figure 4-1. If you did not create the document properly, fix the error that appears
in the browser and reload the document.

Figure 4-1: Ch04XML01.xml file in Internet Explorer

4-5

8. Close your Web browser.

Explicit Namespaces

Sometimes you will want to explicitly declare a namespace for a specific element in an
XML document. Namespaces that are assigned to individual elements in an XML
document are called explicit namespaces. For instance, with the renovation XML
document, you could probably get by with using a single default namespace for the
<hardware> elements that relate to construction. However, as part of your renovation,
you may want to upgrade your computer hardware. If you used <hardware> as the
element name for your computer hardware, then you would want to use a separate
namespace because computer hardware is quite different from construction hardware.
To explicitly declare a namespace for a specific element in an XML document, you must
assign a prefix to the namespace declaration using the following syntax:

xmlns:prefix="URI"

The following statement declares a computers prefix within the opening <renovation>
tag for a namespace that represents computer hardware elements:

<renovation xmlns:computers="http://www.GosselinConsulting
 /ns/computers">

Usually, you place all namespace declarations, including default and explicit
namespaces, within an XML document’s root element. For instance, the following code

4-6

shows how to declare both a default namespace and an explicit namespace within the
root element of the renovation XML document.

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<renovation xmlns="http://www.GosselinConsulting
 /ns/construction"
 xmlns:computers="http://www.GosselinConsulting
 /ns/computers">
 <hardware><description>plumbing</description>
 <cost>$15,000</cost></hardware>
 <hardware><description>electrical</description>
 <cost>$11,000</cost></hardware>
 <computers:hardware>
 <computers:description>
 personal computers</computers:description>
 <computers:cost>$25,000</computers:cost>
 </computers:hardware>
</renovation>

Next, you will declare an explicit namespace for weather in Los Angeles. You will also
add a new <weather_reading> element that contains the weather information.

To add an explicit namespace for an element:

1. Return to the Ch04XML01.xml file in your text editor.

2. Modify the <weather> root element so it declares an explicit namespace for Los
Angeles, as follows:

<weather xmlns="http://www.DonGosselin.com/ns/SanFrancisco"
 xmlns:losangeles="http://www.DonGosselin.com/
 ns/LosAngeles"> (so, it doesn’t matter here that “L”

and “A” are in caps?)

3. Above the closing </weather> element, add the following new <weather_reading>
element:

<weather_reading>
 <date>January 27, 2003</date>
 <temperature>74.0</temperature>
 <rainfall>0 inches</rainfall>
 <humidity>20</humidity>
</weather_reading>

4. Save the Ch04XML01.xml file, and then open it in Internet Explorer. The file should
look like Figure 4-2.

4-7

Figure 4-2: Ch04XML01.xml file in Internet Explorer after adding an explicit
namespace and new <weather_reading> element

5. Close your Web browser.

To explicitly assign a namespace to a specific element, you must place the
namespace’s prefix and a colon in an element’s opening and closing tag. The following
code shows how to assign the computers prefix to a <hardware> element and its nested
elements for the computer hardware equipment. Notice that the prefix and colon are
applied to both the opening and closing tags for each element.

<computers:hardware>
 <computers:description>personal computers
 </computers:description>
 <computers:cost>$25,000</computers:cost>
</computers:hardware>

Any elements that do not contain an explicit namespace declaration will belong to the
default namespace. This means that you must explicitly assign a namespace to any
nested elements, even if the element that contains them declares an explicit
namespace. For instance, in the following code, the <description> and <cost>

4-8

elements belong to the default namespace, even though the <hardware> element that
contains them declares an explicit namespace:

<computers:hardware>
 <description>personal computers</description>
 <cost>$25,000</cost>
</computers:hardware>

Next, you will assign the explicit losangeles namespace to the new <weather_reading>
element in the weather XML document.

To assign an explicit namespace to an element in an XML document:

1. Return to the Ch04XML01.xml file in your text editor.

2. Modify the new <weather_reading> element and its nested elements so that each
element is explicitly assigned the losangeles namespace, as follows:

<losangeles:weather_reading>
 <losangeles:date>January 27, 2003</losangeles:date>
 <losangeles:temperature>74.0</losangeles:temperature>
 <losangeles:rainfall>0 inches</losangeles:rainfall>
 <losangeles:humidity>20</losangeles:humidity>
</losangeles:weather_reading>

3. Save the Ch04XML01.xml file, and then open it in Internet Explorer. The file should
look like Figure 4-3.

Figure 4-3: Ch04XML01.xml file in Internet Explorer after adding explicit
namespace declarations

4-9

4. Close your Web browser.

Tip: Remember that the prefix is only a way of referring to a namespace within an XML
document—the namespace itself is still identified by a unique URI. Namespaces with
the same prefix but different URIs are considered to be separate namespaces.
However, namespaces with different prefixes but the same URI are considered to be
the same namespace.

Defining Elements with DTDs

The XML documents you have created so far have been well formed, but they have not
been valid. When an XML document conforms to an associated DTD, it is said to be
valid. When an XML document does not conform to an associated DTD, it is said to be

invalid. As you learned in Chapter 3, a DTD is a set of rules that define the elements
and attributes you can use in an XML document. A DTD also defines how the elements
should be structured in an XML document. You can think of a DTD as the place where
you define your own markup language. An XML document must use only the elements
and attributes defined in an associated DTD, and be structured according to the DTD’s

4-10

rules, or it will not be valid. Later in this section, you learn how to use a validating parser
to check whether your XML documents conform to their associated DTDs.

Tip: An XML document can be well formed but invalid if it does not conform to its
associated DTD. Most non-validating parsers (such as a Web browser) will render an
invalid but well-formed XML document. The only problem with this scenario is that an
application may not function properly if it expects an XML document to use specific
elements and attributes, and be structured in a certain way.

Document Type Declarations

You use the <!DOCTYPE> tag to create a document type declaration, which defines
the structure of a DTD. The syntax for the <!DOCTYPE> tag is as follows:

<!DOCTYPE root_element [element_declarations]>

Caution: Do not be confused by a Document Type Definition (DTD) and a document
type declaration. The acronym DTD is only used with Document Type Definitions, while
the term “document type declaration” refers to the DTD’s elements and structure, which
are defined within the <!DOCTYPE> tag.

You can create two types of DTDs: internal and external. An internal DTD is defined
within an XML document. Use an internal DTD when you want to define the elements,
attributes, and structure for a single XML document, or when you are first developing
and testing your DTD. When you create an internal DTD, you place the document type
declaration after the XML declaration. The following code shows an example of an XML
document with an internal DTD that a museum might use to catalog a collection of
artworks:

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE artwork [
 <!ELEMENT artwork (artist+, title, date, medium)>
 <!ELEMENT artist (#PCDATA)><!ELEMENT title (#PCDATA)>
 <!ELEMENT date (#PCDATA)><!ELEMENT medium (#PCDATA)>
]>
<artwork>
 <artist>Rembrandt van Rijn</artist>
 <title>Lucretia</title><date>1666</date>
 <medium>oil on canvas</medium>
</artwork>

For now, do not worry about how the <!ELEMENT> tags in the document type declaration
are structured—you will study them in the next section. Instead, focus on how the XML
document is structured. Notice how the standalone attribute in the XML declaration is

4-11

assigned a value of “no” because the document requires a DTD to be rendered
correctly. Also notice how the <artwork> root element is defined within the document
type declaration.

Next, you will create a human resources XML document with an internal DTD.

To create an XML document with an internal DTD:

1. Start your text editor and create a document.

2. Type the opening XML declaration, as follows. Be sure to assign the standalone
attribute a value of “no”.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

3. Next, declare the following internal DTD, which defines several elements that would
be used in a human resources document. Again, do not worry about how the
<!ELEMENT> tags are structured. You will study them in the next section.

<!DOCTYPE human_resources [
 <!ELEMENT human_resources (employee+)>
 <!ELEMENT employee (first_name, last_name,
 position, department)>
 <!ELEMENT first_name (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT position (#PCDATA)>
 <!ELEMENT department (#PCDATA)>
]>

4. Next, add the following XML document, which declares two employees:

<human_resources>
 <employee><first_name>Scott</first_name>
 <last_name>Morinaga</last_name>
 <position>Programmer</position>
 <department>Software Engineering</department>
 </employee>
 <employee><first_name>Raymond</first_name>
 <last_name>Picard</last_name>
 <position>Analyst</position>
 <department>Program Management</department>
 </employee>
</human_resources>

5. Save the file as Ch04XML02.xml in the Chapter folder for Chapter 4.

4-12

6. Open the Ch04XML02.xml file in Internet Explorer. Your Web browser should look
like Figure 4-4. If you did not create the document properly, fix the error that appears
in the browser and reload the document.

Figure 4-4: Ch04XML02.xml file in Internet Explorer

7. Close your Web browser.

Although an internal DTD is useful when you are first developing and testing a DTD,
most of the DTDs you create will usually be external DTDs that can be shared by
multiple XML documents. An external DTD is defined in a separate document with an
extension of .dtd. One of the main differences between declaring an internal DTD and
an external DTD is that you do not include an XML declaration or document type
declaration in the external DTD file. Also, you do not place the element declarations
inside brackets ([]). For instance, the following code shows how you declare an external
DTD for the artworks example:

<!ELEMENT artwork (artist+, title, date, medium)>
<!ELEMENT artist (#PCDATA)><!ELEMENT title (#PCDATA)>
<!ELEMENT date (#PCDATA)><!ELEMENT medium (#PCDATA)>

4-13

To declare that an XML document uses an external DTD, you place the document type
declaration within the XML document using the following syntax:

<!DOCTYPE root_element SYSTEM or PUBLIC "DTD file">

You use either the SYSTEM or the PUBLIC attribute in an external document type
declaration. The SYSTEM attribute declares that the DTD file is located on a local
computer, network server, or corporate intranet. The PUBLIC attribute declares that the
DTD is publicly available on the Internet. With either the SYSTEM or the PUBLIC attribute,
you can use a URL for the location of the DTD file. For simplicity, this chapter assumes
that the DTD files you use are local, so you will use a SYSTEM attribute along with a local
filename for your DTD files. For instance, if the artworks DTD were named Artworks.dtd,
then you would place the following document type declaration in an XML document that
uses the DTD:

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE artwork SYSTEM "Artworks.dtd">
<artwork>
 <artist>Rembrandt van Rijn</artist>
 <title>Lucretia</title><date>1666</date>
 <medium>oil on canvas</medium>
</artwork>

Next, you will modify the human resources document so the DTD is defined in a
separate document as an external DTD.

To define a DTD in a separate document as an external DTD:

1. Return to the Ch04XML02.xml file in your text editor.

2. Modify the <!DOCTYPE> declaration so that it uses the SYSTEM attribute to
reference an external DTD named HumanResources.dtd. Before you modify the
<!DOCTYPE> declaration, cut the <!ELEMENT> tags to your Clipboard–you will
need them when you create the external DTD file. Your modified <!DOCTYPE>
declaration should appear as follows:

<!DOCTYPE human_resources SYSTEM "HumanResources.dtd">

3. Save the Ch04XML02.xml file.

4. Create a document in your text editor and type or cut and paste the element
declarations that were included in the internal DTD:

<!ELEMENT human_resources (employee+)>
<!ELEMENT employee (first_name, last_name,
 position, department)>

4-14

<!ELEMENT first_name (#PCDATA)><!ELEMENT last_name (#PCDATA)>
<!ELEMENT position (#PCDATA)><!ELEMENT department (#PCDATA)>

5. Save the file as HumanResources.dtd in the Chapter folder for Chapter 4.

6. Reopen the Ch04XML02.xml file in Internet Explorer. The file should look the same
in your Web browser as it did in Figure 4-4.

7. Close your Web browser.

Validating XML Documents against DTDs

When you open an XML document in a non-validating parser such as Internet Explorer,
it only checks to see if the document is well formed; it does not check to see if the
document is structured according to an associated DTD. A validating parser, on the
other hand, checks to see if an XML document is well formed and also compares the
document to a DTD to ensure that it adheres to the DTD’s rules. There are numerous
XML parsers on the market, both validating and non-validating. The one you choose is
completely up to you, but keep in mind that you must use a validating parser if you want
to ensure that an XML document complies with the rules of any given DTD.

Tip: You can find a comprehensive list of validating and non-validating parsers by
searching for “XML parsers” on a search engine such as Google.

The book’s CD includes an evaluation copy of Altova’s xmlspy 5, a popular XML
development tool. xmlspy 5 is a large and comprehensive program with many features
that are far too advanced for this chapter’s purposes. However, xmlspy 5 is an excellent
tool to use as both a validating and non-validating parser. You will need a validating
parser for the rest of the exercises in this chapter, so be sure to install xmlspy 5 (or
some other validating parser) before you continue. The instructions in this chapter
assume you are using xmlspy 5, but feel free to use whatever validating parser you like.

Next, you will validate the human resources XML document against its DTD.

To validate an XML document against its DTD:

1. Start xmlspy 5 and open the Ch04XML02.xml file by clicking File on the menu bar
and then clicking Open and browsing for the file. By default, xmlspy 5 validates a
file when you first open it, although you can change this setting by clicking Tools on
the menu bar and then clicking Options. If xmlspy 5 does not automatically validate
the Ch04XML02.xml file when you first open it, then click XML on the menu bar and
then click Validate.

4-15

Tip: The XML menu also contains a “Check well-formedness” command that you can
use to check if an XML document is well formed, but not valid.

2. If your Ch04XML02.xml file is valid, then you should receive a “This file is valid”
message box, as shown in Figure 4-5. Click OK to close the message box. If your
file is not valid, then you will receive a message box that points you to the error. You
can fix the error directly in xmlspy 5, and then click the Recheck button to revalidate
the file.

Figure 4-5: Ch04XML02.xml after being validated in xmlspy 5

Tip: The easiest way to edit an XML file in xmlspy 5 is to click View on the menu bar
and then click Text view, which opens the XML file in a simple text editor window.

3. Once your Ch04XML02.xml file is valid, close it by clicking File on the menu bar and
then clicking Close. Click Yes if you are prompted to save changes to the file.

Declaring Elements in a DTD

As you know, elements are the main building blocks of XML documents. You use an
element declaration in a DTD to define an element’s name and the content it can

4-16

contain. You create an element declaration using the <!ELEMENT> tag with the following
syntax:

<!ELEMENT name content>

While a DTD’s element declarations determine the names of the elements you can use
in an XML document, they also declare the content (if any) that can be stored in a
particular element, along with the elements that must be structured.

The root element must be the first element declaration to follow the document type
definition in an internal DTD, or it must be the first element declaration in an external
DTD. The root element also cannot be an empty element. (You will learn how to define
empty element declarations shortly.) One of the simplest ways to define the root
element is to use the ANY keyword, which declares that an element can contain any type
of content. For instance, the following statement declares the root element for the
artworks DTD using the ANY keyword:

<!ELEMENT artwork ANY>

You need to understand, however, that it is considered very bad form to include the ANY
keyword in any final DTDs because it essentially prevents an element from having any
enforceable structure. For any element, including the root element, it is much more
preferable to define the exact content that the element can accept. However, when you
first start developing a DTD, you may find the ANY keyword useful as a placeholder until
you determine the exact element structure that will appear in your DTD. Once you finish
developing your DTD, remember to replace the ANY keyword with the element structure
to which you want users of your DTD to adhere.

Next, you will start creating a DTD that defines elements a shipping company may use
when shipping a package.

To create a DTD with an element declaration:

1. Create a document in your text editor.

2. Declare the following <shipping> root element using the ANY keyword:

<!ELEMENT shipping ANY>

3. Save the file as Shipping.dtd in the Chapter folder for Chapter 4.

For the rest of this section, you will study other types of content and element structure
you can define with an element declaration.

4-17

Character Data Elements

You can create a simple element that stores only character data by placing the keyword
#PCDATA inside parentheses in an element declaration. PCDATA stands for “parsed
character” data and declares that an XML parser should parse the content of the
element. This type of element can only contain character data and not other types of
elements. For instance, the following statements declare parsed character elements in
the artworks DTD:

<!ELEMENT artist (#PCDATA)><!ELEMENT title (#PCDATA)>
<!ELEMENT date (#PCDATA)><!ELEMENT medium (#PCDATA)>

Next, you will add parsed character elements to the shipping DTD.

To add parsed character elements to a DTD:

1. Return to the Shipping.dtd file in your text editor.

2. Add the following parsed character elements to the end of the file:

<!ELEMENT package ANY><!ELEMENT sender (#PCDATA)>
<!ELEMENT recipient (#PCDATA)><!ELEMENT weight (#PCDATA)>
<!ELEMENT cost (#PCDATA)>

3. Save the Shipping.dtd file in the Chapter folder for Chapter 4.

Next, you will create an XML document that conforms to Shipping.dtd and validate it
using xmlspy 5.

To create and then validate an XML document that conforms to a DTD:

1. Create a document in your text editor.

2. Type the opening XML declaration, as follows.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

3. Add the following <!DOCTYPE> declaration that uses the SYSTEM attribute to reference
the Shipping.dtd file.

<!DOCTYPE shipping SYSTEM "Shipping.dtd">

4. Add the following root and body elements that conform to the elements you declared
in the Shipping.dtd file:

<shipping>
 <package><sender>Rajesh Singh</sender>

4-18

 <recipient>Dennis Blair</recipient>
 <weight>2.5 lbs.</weight>
 <cost>$14.95</cost></package>
</shipping>

5. Save the Ch04XML03.xml file in the Chapter folder for Chapter 4.

6. Validate the Ch04XML03.xml file with xmlspy 5. Once the file is valid, close xmlspy 5.

7. Open the Ch04XML03.xml file in Internet Explorer. Your Web browser should look
like Figure 4-6.

Figure 4-6: Ch04XML03.xml in Internet Explorer

8. Close your Web browser.

Empty Elements

You should be familiar with empty elements, which do not require ending tags and
therefore do not include content. A number of elements in HTML do not have
corresponding ending tags, including the <hr> tag, which inserts a horizontal rule into
the document, and the
 tag, which inserts a line break. The example of an empty
XML tag you saw in the last chapter was in a document containing automobile data. The
document included an empty <photo> element with a single attribute that stored the
name of an image file containing a photograph of the automobile. Using the same
example, you might want to create a <photo> element for the artworks DTD that stores
the name of an image file containing a photograph of a particular artwork.

4-19

You create an empty element declaration in a DTD by using the keyword EMPTY in the
content portion of an element declaration. For instance, the following statement
declares an empty <photo> element for the artworks DTD:

<!ELEMENT photo EMPTY>

When you use an empty element in XML, you can either use an opening and closing tag
or just use the opening tag by adding a single slash (/) before the tag’s closing bracket
to close the element. For instance, both of the following statements are valid for using
the empty <photo> element in an XML document:

<photo></photo>
<photo/>

Keep in mind that even though some empty HTML elements can include content, such
as the element, empty XML elements cannot. The following statement would
result in an invalid XML document because content is placed within the opening and
closing tags of the empty <photo> element:

<photo>Rembrandt's "Lucretia"</photo>

Next, you will add an empty <account> element to Shipping.dtd and to the
Ch04XML03.xml file.

To add an empty element to a .dtd file and an .xml file:

1. Return to the Shipping.dtd file in your text editor.

2. Add the following empty declaration for the <account> element:

<!ELEMENT account EMPTY>

3. Save the Shipping.dtd file.

4. Return to the Ch04XML03.xml file in your text editor.

5. Add the following empty <account> element above the closing </package> tag:

<account/>

6. Save the Ch04XML03.xml file.

7. Validate the Ch04XML03.xml file with xmlspy 5 and then open it in Internet
Explorer. Your Web browser should look like Figure 4-7.

4-20

Figure 4-7: Ch04XML03.xml in Internet Explorer after adding an empty element

8. Close your Web browser.

Tip: An empty XML element is essentially useless unless it includes attributes. Later in
this section, you will learn how to create attribute declarations in your DTDs.

Element Sequences

One of the most important aspects of DTDs is their ability to define the number and
order of elements you can add to an XML document. This lets a DTD determine exactly
how to structure XML documents that conform to it. For instance, with the artworks
DTD, you would want to give an XML document the ability to add multiple artists, and to
list multiple works for each artist. However, you would only want to allow each artwork
to be given a single title, date, and medium. Or, you may want XML documents that
conform to the artworks DTD to nest the elements in a specific order to conform to the
requirements of a Web application. You define the number of elements and the order in
which they can be added to an XML document using the symbols in Table 4-1.

Table 4-1: Symbols for Defining Content in Element Declarations

Symbol Description

4-21

() Groups expressions in the content portion of an element
declaration

, Determines the sequence in which elements must appear

+ Requires that at least one instance of the element be included

? Allows zero or one instance of an element

* Allows zero or more instances of an element

| Allows one element from a group of elements to be included

To define an element sequence, you place the elements you want to include in the
sequence within parentheses in the content portion of an element declaration. This
essentially determines how elements can be nested within an XML document that
conforms to the DTD. For instance, you may have an element named <employee> within
a DTD with a root element of <company>. If you want the <employee> element to contain
a single <name>, then you add the following element declarations to your DTD:

<!ELEMENT company ANY><!ELEMENT employee (name)>
<!ELEMENT name (#PCDATA)>

An XML document that conforms to the DTD in the previous code must include an
<employee> root element that contains a single <name> element. If you want an element
to include multiple nested elements, but in a specific order, you separate the element
names with a comma. The following code, for instance, shows the same code as the
previous example, but includes three required elements for the <employee> element:
<first_name>, <last_name>, and <position>.

<!ELEMENT company ANY>
<!ELEMENT employee (first_name, last_name, position)>
<!ELEMENT first_name (#PCDATA)><!ELEMENT last_name (#PCDATA)>
<!ELEMENT position (#PCDATA)>

If you created an XML document that conformed to the preceding DTD, then the
document could only contain a single <employee>. To require an XML document to
include one or more instances of a particular element, you follow the element name with

4-22

the + symbol. Similarly, you use the ? symbol to allow an XML document to include zero
or one instance of an element, and you use the * to allow an XML document to include
zero or more instances of an element. The following code shows another example of
the company DTD. This time, however, the content portion of the <company> element
declaration includes the employee element name, followed by the + symbol, which
allows XML documents that conform to the DTD to create one or more <employee>
elements. Also, the <employee> element includes a new <middle_name> element that is
optional because its name is followed by the ? symbol in the <employee> element
declaration. Finally, the code includes new <phone>, <fax>, and <mobile> elements that
are followed by * symbols, which means you can include zero or more instances of each
of these elements.

<!ELEMENT company (employee+)>
<!ELEMENT employee (first_name, middle_name?,
 last_name, position, phone*, fax*, mobile*)>
<!ELEMENT first_name (#PCDATA)><!ELEMENT middle_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)><!ELEMENT position (#PCDATA)>
<!ELEMENT phone (#PCDATA)><!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>

The | symbol is useful in that it allows one element from a group of elements to be
included. You must enclose the group of elements and | symbols within another set of
parentheses. For instance, the following code shows another version of the artworks
DTD. In this case, the <medium> element has been replaced with two new elements:
<painting> and <sculpture>. The <artwork> root element requires an XML document
to include either the <painting> or the <sculpture> elements.

<!ELEMENT artwork (artist+, title, date, medium,
 (painting | sculpture))>
<!ELEMENT artist (#PCDATA)><!ELEMENT title (#PCDATA)>
<!ELEMENT date (#PCDATA)><!ELEMENT painting (#PCDATA)>
<!ELEMENT sculpture (#PCDATA)>

Next, you will add element sequences to the Shipping.dtd file.

To add element sequences to a .dtd file:

1. Return to the Shipping.dtd file in your text editor.

2. Modify the <shipping> root element declaration so that it can contain multiple
<package> elements, as follows:

<!ELEMENT shipping (package+)>

4-23

3. Next, modify the <package> element as follows, so that it must contain the <sender>,
<recipient>, <cost>, and <account> elements. Make the <weight> element optional
by following it with a question mark.

<!ELEMENT package (sender, recipient, weight?,
 cost, account)>

4. Save the Shipping.dtd file.

5. Validate the Ch04XML03.xml file with xmlspy 5 and then open it in Internet
Explorer. Your Web browser should look the same as it did in Figure 4-7.

6. Close your Web browser.

Mixed Content Elements

Mixed content elements contain both character data and other elements. A mixed
content element is useful when you want to specify the elements that can be nested
within the element, but also allow the element to contain character data. Mixed content
elements also allow you to define elements that should be nested within another
element, but do not require XML documents to follow a specific element sequence. This
can be useful when the XML documents that conform to your DTD do not need to be
structured as rigidly as they would with element sequences. The syntax for creating a
mixed content element is as follows:

<!ELEMENT name (#PCDATA | element | element | ...)* >

You must use the preceding syntax to create a mixed content element. Specifically, the
#PCDATA keyword must be the first item in the option list. Also, you must place the *
symbol after the option list to indicate that the mixed content element is optional and
that an XML document can contain more than one instance of it. (Recall that the *
symbol allows an XML document to create zero or more instances of an element.)
Understand that the preceding syntax is required for the DTD to be well formed.

As an example of a mixed content element, consider a DTD that defines travel
information elements. You may not need to require XML documents that conform to the
DTD to use a specific sequence of elements, and you may want to allow the document
to have different types of travel comments. Therefore, you could create the DTD’s root
element as a mixed content element, as follows:

<!ELEMENT travel (#PCDATA | destination | airline |
travel_dates | cost)* >
<!ELEMENT destination (#PCDATA)><!ELEMENT airline (#PCDATA)>
<!ELEMENT travel_dates (#PCDATA)><!ELEMENT cost (#PCDATA)>

4-24

The following code shows an XML document that uses the travel information DTD.
Notice that the code does not include the <airline> element. However, it does include
character data that specifies the transportation method for getting to Napa Valley.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE travel SYSTEM "Travel.dtd">
<travel>
 <destination>Napa Valley, California</destination>
 Transportation: We drove from Portland, Oregon
 <travel_dates>May 4</travel_dates>
 <cost>$850</cost>
</travel>

Keep in mind that with mixed content elements you can include as many or as few of
the elements in the option list as you like. For instance, with the travel information DTD,
you can include only some character data between the <travel> root element, and the
XML document will still be valid:

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<!DOCTYPE travel SYSTEM "Travel.dtd">

<travel>Our trip was cancelled.</travel>

Or, you can include multiple instances of the same element, as follows:

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE travel SYSTEM "Travel.dtd">
<travel><destination>Paris, France</destination>
<destination>London, England</destination>
<destination>Rome, Italy</destination></travel>

Declaring Attributes in a DTD

As you know, you use attributes to provide additional information about an element.
Attributes are placed before the closing bracket of the starting tag, and separated from
the tag name or other attributes with a space. The value assigned to an attribute must
be in quotations. It’s important to understand that many attributes can also be created
as an element. For instance, the following code shows a <company> element containing
a name attribute that stores the name of the company:

<company name="Course Technology">
nested elements
</company>

4-25

However, the name attribute in the preceding code could just as easily be created as an
element, as follows:

<company><name>Course Technology></name></company>

In general, elements should contain information that will be displayed. Attributes, on the
other hand, should contain information about the element. For instance, because the
company name in the preceding code would probably be displayed, it should be created
as an element. By comparison, you may want to record a tax ID number for the
<company> element that you do not need displayed. In this case, you could create a
tax_id attribute, as follows:

<company tax_id="12-3456789">
<name>Course Technology></name>
</company>

You use an attribute declaration in a DTD to declare all of the attributes that are
allowed or required for a particular element. You create an attribute declaration using
the <!ATTLIST> tag with the following syntax:

<!ATTLIST element-name
attribute-name attribute-type default-value
attribute-name attribute-type default-value
...
>

As you can see in the preceding syntax, the element name to which the attribute
declaration applies immediately follows the <!ATTLIST portion of the declaration. Then,
you create a list of attribute names, types, and default values that are allowed or
required for the element.

Attribute Types

Just as you can specify an element’s content, you can also specify the values that can
be assigned to an attribute by declaring its type. Although you can create several types

of attributes, the type you will study in this chapter is the CDATA type. The CDATA
attribute type can accept any combination of character data, with the exception of tags
and elements. For instance, the following code declares a CDATA attribute type named
name for the <company> element. The “Course Technology” portion of the attribute
declaration is the default value for the attribute, and will appear automatically if an XML
document does not declare the name attribute in a <company> element.

4-26

<!ATTLIST company
name CDATA "Course Technology"
>

Next, you will add an attribute declaration for the empty <account> element to the
Shipping.dtd file.

To add an attribute declaration for an empty element to a .dtd file:

1. Return to the Shipping.dtd file in your text editor.

2. At the end of the file, add the following declaration for an attribute named “number”
in the <account> element. The attribute declaration includes a default value of
unknown.

<!ATTLIST account
 number CDATA "unknown"
>

3. Save the Shipping.dtd file.

4. Validate the Ch04XML03.xml file with xmlspy 5 and then open it in Internet
Explorer. Your Web browser should look like Figure 4-8. Notice that because no
number attribute was declared for the <account> element, the default value of
“unknown” is added automatically.

Figure 4-8: Ch04XML03.xml after adding an attribute declaration

4-27

5. Close your Web browser.

Attribute Defaults

You can declare a default value for an attribute by placing the value in quotations, as
shown in the name attribute declaration in the preceding section. If you use an element in
an XML document and exclude an attribute that has a default value, then the default
value will automatically be used by a program that is accessing the XML document. For
instance, the following code shows a simple internal DTD that defines the <company>
element and a parent attribute. A default value of “Thomson Learning” (Course
Technology’s parent company) is assigned to the parent attribute. Notice that even
though the <company> element does not include the parent attribute, the default value of
“Thomson Learning” is automatically added when you open the document in Internet
Explorer, as shown in Figure 4-9.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE corporation [
<!ELEMENT corporation (company+)>
<!ELEMENT company (#PCDATA)>
<!ATTLIST company
 parent CDATA "Thomson Learning" >
]>
<corporation><company>Course Technology</company>
</corporation>

Figure 4-9: Output of an XML document with a default attribute

If you do not want to include a default value for an attribute, then you can use one of the
attribute defaults in Table 4-2.

4-28

Table 4-2: Attribute Defaults

Default Description

#REQUIRED

An XML document must assign the attribute a value each time it is
used.

#FIXED

This assigns a default value to an attribute that cannot be modified.

#IMPLIED

The attribute is not required and there is no default value.

The following code shows an attribute declaration for the <company> element that uses
the three values listed in Table 4-2. Notice that the #FIXED attribute also declares a
default value. Even though the <company> element does not include the #FIXED parent
attribute, the default value of “Thomson Learning” is automatically added when you
open the document in Internet Explorer, as shown in Figure 4-10.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE corporation [
<!ELEMENT corporation (company+)>
<!ELEMENT company (#PCDATA)>
<!ATTLIST company
 tax_id CDATA #REQUIRED
 web_site CDATA #IMPLIED
 parent CDATA #FIXED "Thomson Learning" >
]>
<corporation>
 <company tax_id="12-3456789" web_site="www.course.com">
Course Technology</company>
</corporation>

4-29

Figure 4-10: Output of an XML document with multiple attribute declarations

Because each shipped package must include an account number, you will now modify
the Shipping.dtd file so that the number attribute of the <account> element is required.

To modify the example .dtd file so the element’s number attribute is required:

1. Return to the Shipping.dtd file in your text editor.

2. Modify the declaration for the number attribute so that it uses the #REQUIRED attribute
default instead of the default value of “unknown”, as follows:

<!ATTLIST account
 number CDATA #REQUIRED
>

3. Save and Close the Shipping.dtd file.

4. Return to the Ch04XML03.xml file in your text editor.

5. Modify the <account> element so that it assigns a value to the number attribute as
follows.

<account number="12-34567"/>

6. Save and Close the Ch04XML03.xml file.

7. Validate the Ch04XML03.xml file with xmlspy 5 and then open it in Internet
Explorer. Your Web browser should look like Figure 4-11.

4-30

Figure 4-11: Ch04XML03.xml after modifying the attribute declaration

8. Close your Web browser.

Chapter Summary

 You use namespaces to organize the elements and attributes of an XML
document into separate collections. Uniform Resource Identifiers, such as
Uniform Resource Locators, are used to identify namespaces.

 A default namespace is applied to all of the elements and nested elements
beneath the element that declares the namespace.

 The xmlns attribute assigns a namespace to an element. Namespaces that are
assigned to individual elements in an XML document are called explicit
namespaces.

 When an XML document conforms to an associated DTD, it is said to be valid.

 You use the <!DOCTYPE> tag to create a document type declaration, which
defines the structure of a DTD.

 An internal DTD is defined within an XML document. An external DTD is defined
in a separate document with an extension of .dtd.

4-31

 A validating parser checks to see if an XML document is well formed and also
compares the document to a DTD to ensure that it adheres to the DTD’s rules.

 You use an element declaration in a DTD to define an element’s name and the
content it can contain. Use an attribute declaration in a DTD to declare all of the
attributes that are allowed or required for a particular element.

 An attribute’s type determines the values that you can assign to the attribute. For
example, the CDATA attribute type can accept any combination of character data,
with the exception of tags and elements. You can declare a default value for an
attribute by placing the value in quotations.

Review Questions

1. Which of the following statements is true?

a. If an application accesses two separate XML documents that contain identical
element names, the application can automatically tell them apart without the use
of namespaces.

b. You must include an ns folder in the URL name you want to use as a
namespace.

c. You are not allowed to place any files within an ns folder that is part of a URL
name.

d. The URL you use to identify a namespace does not need to exist.

2. A _____ namespace is applied to all of the elements and nested elements beneath
the element that declares the namespace.

a. default

b. standard

c. implied

d. built-in

3. The _____ attribute assigns a namespace to an element.

a. namespace

b. xmlns

4-32

c. xml

d. ns

4. Namespaces that are assigned to individual elements in an XML document are
called _____ namespaces.

a. local

b. nested

c. explicit

d. child

5. How do you explicitly assign a namespace to a specific element?

a. You must place the namespace’s prefix and a colon in an element’s opening tag.

b. You must place the namespace’s prefix and a colon in an element’s closing tag.

c. You must place the namespace’s prefix and a colon in an element’s opening and
closing tag.

d. You cannot explicitly assign a namespace to a specific element.

6. When an XML document conforms to an associated DTD, it is said to be _____.

a. valid

b. well formed

c. intrinsic

d. correct

7. Which tag do you use to create a document type declaration?

a. <!DECLARATION>

b. <!DOC>

c. <!TYPE>

d. <!DOCTYPE>

4-33

8. Inside which symbols do you place the element and attribute declarations in an
internal DTD?

a. ()

b. < >

c. { }

d. []

9. Which attribute do you use in an external document type declaration to declare that
the DTD file is located on a local computer, network server, or corporate intranet?

a. PUBLIC

b. PRIVATE

c. SYSTEM

d. LOCAL

10. Which of the following statements about the root element is false?

a. The root element must be the first element declaration to follow the document
type definition in an internal DTD.

b. The root element must be the first element declaration in an external DTD.

c. You can declare the root element with the ANY keyword.

d. The root element can be empty.

11. What is the correct syntax for declaring a <name> element that stores only character
data?

a. <!ELEMENT name (PCDATA)>

b. <!ELEMENT name (#PCDATA)>

c. <!ELEMENT name #PCDATA>

d. <!ELEMENT name CDATA>

12. What is the correct syntax for declaring an empty <sales> element?

4-34

a. <!ELEMENT sales>

b. <!ELEMENT />

c. <!ELEMENT sales EMPTY>

d. <!ELEMENT EMPTY sales>

13. Which element sequence symbol requires that at least one instance of the element
be included?

a. +

b. ?

c. *

d. |

14. Which symbol must you place after the option list in a mixed content element?

a. +

b. ?

c. *

d. |

15. Which attribute default value assigns a value that cannot be modified?

a. #REQUIRED

b. #FIXED

c. #IMPLIED

d. #STATIC

Hands-on Exercises

Exercise 4-1

In this exercise, you will create an XML document that includes default and explicit
namespaces.

4-35

1. Create a document in your text editor and type the opening XML declaration.

2. Type the opening tag for a root element named <mail_order>. Use the xmlns
attribute to include a default namespace:

<mail_order xmlns="http://www.MailOrderCatalogs.com/
 ns/clothing">

3. Create the following nested <catalog> element for a clothing catalog:

<catalog>
<merchandise>clothing</merchandise>
<customers>children</customers>
<pages>83</pages>
</catalog>

4. Modify the <mail_order> root element so it includes an explicit namespace, as
follows:

<mail_order xmlns="http://www.MailOrderCatalogs.com/
 ns/clothing"
xmlns:automotive="http://www.MailOrderCatalogs.com/
 ns/automotive">

5. At the end of the document, add the following <catalog> element and its nested
<catalog> element, along with explicit namespace declarations for each element:

<automotive:catalog>
<automotive:merchandise>auto parts</automotive:merchandise>
<automotive:customers>mechanics</automotive:customers>
<automotive:pages>77</automotive:pages>
</automotive:catalog>

6. Type the closing tag for the <mail_order> root element.

7. Save the XML document as Ch04XMLEX01.xml in the Exercises folder for Chapter
4. (students may need to create this folder)

8. Validate the Ch04XMLEX01.html (xml) document in Internet Explorer. If you receive
any parsing errors, fix them and then reopen the document.

Exercise 4-2

In this exercise, you will create an XML document that includes three explicit
namespaces.

1. Create a document in your text editor and type the opening XML declaration.

4-36

2. Type the opening tag for a root element named <coffee_house>.

3. Within the <coffee_house> root element, create the following nested elements for
different types of coffee:

<coffee>
 <name>Kona</name>
 <price>$18.95</price>
</coffee>
<coffee>
 <name>Sumatran</name>
 <price>$7.95</price>
</coffee>
<coffee>
 <name>Columbian</name>
 <price>$5.95</price>
</coffee>

4. Type the closing tag for the </coffee_house> root element.

5. Create three explicit namespaces, one for each of the <coffee> elements. Assign the
explicit namespaces to the appropriate elements for each <coffee> element.

6. Save the XML document as Ch04XMLEX02.xml in the Exercises folder for Chapter
4.

7. Validate the Ch04XMLEX02.html (xml) document in Internet Explorer. If you receive
any parsing errors, fix them and then reopen the document.

Exercise 4-3

In this exercise, you will declare elements in a DTD that will store university information.
You will also create and validate an XML document against the universities DTD.

1. Create a document in your text editor.

2. Create the following DTD that declares elements for the universities DTD:

<!ELEMENT universities (university+)>
<!ELEMENT university (name, location)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>

3. Save the DTD document as Ch04XMLEX03.dtd in the Exercises folder for Chapter
4.

4-37

4. Create another document in your text editor and type the following XML document
that uses the universities DTD:

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
 (need to include the DOCTYPE declaration for corresponding
dtd file here)
<universities>
 <university>
 <name>Harvard University</name>
 <location>Cambridge, MA</location>
 </university>
 <university>
 <name>Yale University</name>
 <location>New Haven, CT</location>
 </university>
 <university>
 <name>Columbia University</name>
 <location>New York, NY</location>
 </university>
</universities>

5. Save the XML document as Ch04XMLEX03.xml in the Exercises folder for Chapter
4.

6. Use xmlspy 5 to validate the Ch04XMLEX03.html (xml) document against the
Ch04XMLEX03.dtd file. If you receive any parsing errors, fix them and then open the
document in Internet Explorer.

Exercise 4-4

In this exercise, you will add an attribute declaration to the DTD you created in the last
exercise.

1. Open the Ch04XMLEX03.dtd file in your text editor and immediately save it as
Ch04XMLEX04.dtd.

2. In the Ch04XMLEX04.dtd file, add the following declaration for a name attribute that
will be used in the <university> element:

<!ATTLIST university
 name CDATA #REQUIRED
>

3. Delete the <name> attribute declaration. (Users also need to delete “name” from the
parenthetical mandatory element list in the university element declaration)

4-38

4. Save and close the Ch04XMLEX04.dtd file.

5. Open the Ch04XMLEX03.xml file in your text editor and immediately save it as
Ch04XMLEX04.xml.

6. Modify the three <university> elements so they include a name attribute with the
name of the university. Also, delete each <name> element.

7. Save and close the Ch04XMLEX04.xml file.

8. Use xmlspy 5 to validate the Ch04XMLEX04.html (xml) document against the
Ch04XMLEX04.dtd file. If you receive any parsing errors, fix them and then open the
document in Internet Explorer.

Exercise 4-5

In this exercise, you will create a DTD for an existing XML document.

1. Create a document in your text editor and type the following XML document.

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
(Users will need to enter the DOCTYPE declaration here for the dtd file
they are about to create)
<travel>
 <transportation mode="airplane">
 <destination>Paris</destination>
 <depart_date>June 1</depart_date>
 <carrier company="United" />
 </transportation>
 <transportation mode="train">
 <destination>New Orleans</destination>
 <depart_date>April 15</depart_date>
 <railroad company="Amtrak" />
 </transportation>
 <transportation mode="automobile">
 <destination>Vancouver</destination>
 <depart_date>August 3</depart_date>
 </transportation>
</travel>

2. Save the XML document as Ch04XMLEX05.xml in the Exercises folder for Chapter
4.

3. Create another document in your text editor and create a DTD for the
Ch04XMLEX05.xml document.

4-39

4. Save the DTD document as Ch04XMLEX05.dtd in the Exercises folder for Chapter
4.

5. Use xmlspy 5 to validate the Ch04XMLEX05.html document against the
Ch04XMLEX05.dtd file. If you receive any parsing errors, fix them and then open the
document in Internet Explorer.

Web Programming Projects

In the following projects, use xmlspy 5 to validate each XML document against its
associated DTD. Save the documents in the Projects folder for Chapter 4.

Project 4-1

Create an accounts receivable DTD. Include elements such as <vendor>, <date>, and
<amount>. Also, include empty elements for different payment options, such as check,
credit card, and cash, but allow only one payment option to be selected. Create unique
attributes for each payment option, such as a check number attribute for the check
element. Also create an XML document that uses the accounts receivable DTD. Save
the DTD document as Ch04XMLProject01.dtd and the XML document as
Ch04XMLProject01.xml.

Project 4-2

Create a DTD that contains elements you would find in a business memo. Include
elements such as sender, recipient, subject, salutation, and paragraph. Add at least one
empty element and one attribute with a default value - but do not use an attribute
default. Be sure to set up the element sequence so that XML documents must add each
element in the proper order. Also, allow XML documents to include multiple <paragraph>
elements. Create an XML document that uses the elements and attributes in the DTD.
Save the DTD document as Ch04XMLProject02.dtd and the XML document as
Ch04XMLProject02.xml.

Project 4-3

Create a DTD that contains elements you would find in a resume. Include elements
such as your name and position desired. Create any other nested elements that you
deem appropriate, such as <references> or <special_skills> elements. Be sure to set
up the element sequence so that XML documents must add each element in the proper
order. Also, allow XML documents to include multiple <employment> and <education>
elements. Save the XML document as Ch04XMLProject03.xml in the Projects folder
for Chapter 4.

