
627

CHAPTER

14
EXTENSIBLE STYLESHEET

LANGUAGE (XSL)
In this chapter, you will:

♦ Study Extensible Stylesheet Language (XSL)
♦ Transform Extensible Markup Language (XML) data using XSL

Transformations (XSLT)
♦ Work with XSLT templates
♦ Use XSLT to manipulate transformed data

In Chapter 1, you learned the basics of Extensible Markup Language (XML).
While XML is primarily a way of defining and organizing data, it does not

include any of the display capabilities of Extensible Hypertext Markup
Language (XHTML). However, because XML is fast becoming the standard
method of transmitting data across the Internet, there will be times when you
will want to display XML data as a formatted Web page. In this chapter, you
will learn how to use Extensible Stylesheet Language (XSL) to format and
display XML data as Web pages.

Before you begin working through this chapter, you may find it useful to
review the XML information in Chapter 1.

Tip

14 Chapter C1426 29548 5/12/03 3:21 PM Page 627

EXTENSIBLE STYLESHEET LANGUAGE (XSL)
You can create formatted Web pages using XML and Extensible Stylesheet Language
(XSL), which is a stylesheet language for XML.Think of XSL as being roughly equal to
the Cascading Style Sheets (CSS) you use with XHTML documents, although XSL is
much more complex than CSS. XSL does not just format XML data so it can be displayed
in a Web browser; it also extracts and transforms specific data from an XML document.A
transformation refers to the conversion of XML data into another type of document.
To understand what this means, examine the following XML code, which organizes the
2002 Winter Olympics medal counts by country:

<?xmlƒversion="1.0"ƒencoding="iso-8859-1"ƒ
standalone="yes"?>
<olympics>
ƒƒƒƒƒ<year>2002ƒWinterƒOlympics</year>
ƒƒƒƒƒ<medals>OlympicƒMedalƒCounts</medals>
ƒƒƒƒƒ<countryƒname="Germany">
ƒƒƒƒƒƒƒƒƒƒƒ<gold>12</gold>
ƒƒƒƒƒƒƒƒƒƒƒ<silver>16</silver>
ƒƒƒƒƒƒƒƒƒƒƒ<bronze>7</bronze>
ƒƒƒƒƒ</country>
ƒƒƒƒƒ<countryƒname="USA">
ƒƒƒƒƒƒƒƒƒƒƒ<gold>10</gold>
ƒƒƒƒƒƒƒƒƒƒƒ<silver>13</silver>
ƒƒƒƒƒƒƒƒƒƒƒ<bronze>11</bronze>
ƒƒƒƒƒ</country>
ƒƒƒƒƒ<countryƒname=”Norway”>
ƒƒƒƒƒƒƒƒƒƒƒ<gold>11</gold>
ƒƒƒƒƒƒƒƒƒƒƒ<silver>7</silver>
ƒƒƒƒƒƒƒƒƒƒƒ<bronze>6</bronze>
ƒƒƒƒƒ</country>
</olympics>

If you were to open the preceding document in a Web browser, the document would
simply be displayed as XML data, as shown in Figure 14-1.

But what if you want to display the Olympic medals XML data as a Web page, not just
as the XML data shown in Figure 14-1? Your choices are to re-create a new XHTML
document from scratch or use XSL to transform the data into an XHTML document.
The following XHTML document shows an example of how the Olympic medals XML
data may appear after you transform it with XSL.The elements in the body of the new
document are created using data extracted from the XML document.You will learn how
to perform this type of transformation later in the chapter. The important thing to
understand is that you can use XSL to convert the preceding XML document into the
following XHTML document, which can then be displayed as the formatted Web page
shown in Figure 14-2.

628 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 628

Extensible Stylesheet Language (XSL) 629

<htmlƒxmlns="http://www.w3.org/1999/xhtml"ƒlang="en"ƒ
xml:lang="en"ƒdir="ltr">
<head>
<title>2002ƒWinterƒOlympics</title>
<metaƒhttp-equiv="content-type"ƒcontent="text/html;ƒ
charset=iso-8859-1"ƒ/>
<styleƒtype="text/css">
bodyƒ{ƒfont-family:ƒVerdana,ƒArial,ƒsans-serifƒ}
h1ƒ{ƒfont-size:ƒ1.5em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
h2ƒ{ƒfont-size:ƒ1.2em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
p,ƒtd,ƒthƒ{ƒfont-size:ƒ.8em;ƒcolor:ƒolive;ƒ
background-color:ƒtransparentƒ}
</style>
</head>
<body>
<h1>2002ƒWinterƒOlympics</h1>
<h2>OlympicƒMedalƒCounts</h2>
<tableƒwidth="100%"ƒborder="1">
ƒƒ<colgroupƒspan="1"ƒalign="left"ƒ/>
ƒƒ<colgroupƒspan="3"ƒalign="center"ƒ/>
ƒƒ<tr>
ƒƒƒƒ<th>Country</th>
ƒƒƒƒ<th>Gold</th>

Figure 14-1 Olympic medals XML data in a Web browser

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 629

ƒƒƒƒ<th>Silver</th>
ƒƒƒƒ<th>Bronze</th>
ƒƒ</tr>
ƒƒ<tr>
ƒƒƒƒ<td>Germany</td>
ƒƒƒƒ<td>12</td>
ƒƒƒƒ<td>16</td>
ƒƒƒƒ<td>7</td>
ƒƒ</tr>
ƒƒ<tr>
ƒƒƒƒ<td>USA</td>
ƒƒƒƒ<td>10</td>
ƒƒƒƒ<td>13</td>
ƒƒƒƒ<td>11</td>
ƒƒ</tr>
ƒƒ<tr>
ƒƒƒƒ<td>Norway</td>
ƒƒƒƒ<td>11</td>
ƒƒƒƒ<td>7</td>
ƒƒƒƒ<td>6</td>
ƒƒ</tr>
</table>
</body>
</html>

XHTML documents are really just specialized XML documents; unlike standard
XML documents, XHTML documents contain code that allows them to be
displayed in a Web browser. As you have seen, to transform a standard XML
document into an XHTML document, you use XSL. In fact, this type of
transformation is one of the more common uses of XSL.

Note

Figure 14-2 XHTML document created using XML and XSL

630 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 630

Extensible Stylesheet Language (XSL) 631

XSL can be much more complicated than the previous example suggests.With XSL you
can extract only the elements or attributes that you want from an XML document using
conditional expressions, math operations, and other types of operations that you would
normally see in a programming language such as JavaScript.

Although XSL is much more powerful that CSS, XML and XSL will not replace XHTML
or CSS anytime in the near future.This is because XSL is primarily designed for adding
complex formatting to XML so it can be used with a variety of user agents, including
Personal Digital Assistants (PDAs) and mobile phones, as well as Web browsers. If you have
an XML document from which you want to extract, display, and format data, then you
should use XSL. However, if your goal is simply to design Web pages, then you should stick
with XHTML and CSS.

The Parts of XSL
XSL is actually a combination of the following parts:

■ XSLT

■ XMLƒPathƒLanguageƒ(XPath)

■ XSLƒFormattingƒObjectsƒ(XSL-FO)

XSL Transformations (XSLT) is a language that transforms one XML document into
another XML document. For example, a Web site for an online merchant, such as a travel
company, may frequently receive XML documents that list travel specials. Instead of
manually creating new XHTML to display this information, the company could use
XSLT to format the XML data so it can be displayed as a Web page. XSLT is considered
the most important part of XSL because it is within an XSLT style sheet that you specify
the rules for transforming XML data into a new XML document.

XML Path Language (XPath) is a language this is used in XSLT to access or refer to
the parts of an XML document. Essentially, XPath allows you to select the elements and
attributes that you want XSLT to include in a transformed document. XPath also allows
you to manipulate the values that will be added to a transformed XML document. For
example, XPath includes a sum() function that you can use to add the values of numbers
stored within designated elements and attributes, and then include the result in the trans-
formed XML document. For example, with the travel Web site you might use XML doc-
uments to store reservation information.You could use the XPath sum() function to add
the total cost of a travel reservation such as airfare, car rental, and hotel information.The
transformed document with the total trip cost could then be displayed to the traveler as a
formatted Web page.

XPath is also used with XPointers, which identify locations within XML
documents.

Note

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 631

XSL Formatting Objects (XSL-FO) is a language that determines how an XML doc-
ument should be displayed. XSL-FO uses XSLT to transform an XML document into an
XSL-FO document, which is essentially an XHTML document that is formatted using
XSL-FO instead of CSS. XSL-FO was created as a way for formatting long and complex
documents, such as those found in the publishing or technical writing industries. At the
time of this writing, XSL-FO is not supported by any major browsers.Therefore, there is
little reason to study the language at this point. Even if XSL-FO is widely supported, you
will probably have little reason to work with it, unless you work on long and complex
documentation, such as engineering specifications or books that will be commercially
published. Instead, you should continue using CSS to format your documents. CSS is
often used with XSL to format XML documents that have been transformed using XSLT.

This chapter only covers the basics of XSL, primarily the use of XSLT. For more
information, see the World Wide Web Consortium’s (W3C’s) XSL page at
http://www.w3.org/Style/XSL/.

Extensible Markup Language (XML) Processors
You need to use an XML processor to transform a document. An XML processor is an
application that builds a new XML document by reading a source XML document and
applying the rules in an associated XSLT style sheet. There are various standalone XML
processing programs, both commercial and free, that you can use to transform an XML
document. Two of the more popular free XML processors are the Apache XML Project’s
Xalan and SAXON,written by Michael Kay.You can download Xalan at http://xml.apache.org/
xalan-j/ and SAXON at http://saxon.sourceforge.net/.

Recent Web browsers also include built-in XML processors. When you open an XML
document in a Web browser that includes a built-in XML processor, the XML processor
automatically builds a new XML document by reading the source XML document and
applying the rules in an associated XSLT style sheet. The XML processor for Internet
Explorer is called the MSXML Parser. Microsoft claims that MSXML Parser version 3.0,
which shipped with Internet Explorer version 6, is 100% compatible with the W3C’s XSL
recommendation.Other browsers, including Netscape version 6,partially support the W3C’s
XML recommendation. For this reason, you should use Internet Explorer version 6 or
higher for the exercises you create in this chapter.

For more information on MSXML Parser, including information on where you can
download the most recent version, visit http://msdn.microsoft.com/xml/general/
xmlparser.asp.Tip

Tip

632 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 632

XSL Transformations (XSLT) 633

XSL TRANSFORMATIONS (XSLT)
The structure of an XML document is arranged in a hierarchical tree. Each element and
attribute in an XML document tree is referred to as a node.The document’s root element
is referred to as the root node. Individual nodes in an XML document tree can contain
other nodes; similar to the way a folder on a hard drive can contain subfolders.An XML
document tree is really just another way of looking at nested elements. However, the tree
structure is important to understand because it is critical to how XSLT transforms one
XML document into another. Figure 14-3 shows a conceptual example of the document
tree for the Olympic Medals XML document you saw earlier.

During the transformation process, the XML processor looks for patterns in the source
tree that match the patterns contained in an XSLT style sheet. A pattern is a sequence
of nested elements that represent a branch in an XML document tree. A source tree is
the document tree of the XML document that is being transformed. If a branch in a
source tree matches a pattern in an XSLT style sheet, then its nodes will be included with
the data that is transformed into the result tree.A result tree is the document tree of the

<olympics>

<year>

<medals>

<country>

name <gold> <silver> <bronze>

<country>

name <gold> <silver> <bronze>

2002 Winter Olympics

<country>

name <gold> <silver> <bronze>

Olympic Medal Counts

Germany

USA

Norway

12

10

11

16

13

7

7

11

6

Figure 14-3 Olympic Medals XML document tree

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 633

transformed XML document. For example, an XSL style sheet may specify that the nodes
of any pattern that matches olympics\country\gold should be added to the result
tree.This pattern specifies that an XML transformation should include the contents of any
<gold> element that are nested within <country> element, which in turn are nested
within the <olympics> root element. In the case of XSLT, the <olympics> element
is referred to as the olympics root node, and the <gold> and <country> elements are
referred to as the gold and country nodes.

Next, you will study the predefined elements that you can use with XSLT.

XSLT Elements
You add XSLT to XSLT style sheets using a set of predefined elements that begin with the
xsl namespace. For example, the XSLT style sheet root element is <xsl:stylesheet>.
Table 14-1 lists the top-level XSLT elements that you can nest within an XSLT style sheet’s
root element.

XSLT includes additional elements, called instruction elements that you can nest within
the elements listed in Table 14-1. For example, the <xsl:sort> element is used to sort
the nodes that appear in the result tree and can be nested within the <xsl:template>
element.You will work with several of the instruction elements in this chapter.

Element Description

<xsl:import> Imports another XSLT style sheet

<xsl:include> Includes another XSLT style sheet

<xsl:strip-space> Identifies elements in the source XML document that should be
stripped of white space before they are transformed

<xsl:preserve-space> Identifies elements in the source XML document that should not
be stripped of white space before they are transformed

<xsl:output> Specifies the output format of the result tree

<xsl:key> Defines a key for a node that can be referenced elsewhere in the
document using the XSLT key() function

<xsl:decimal-format> Defines the decimal format to be used when converting numbers
into strings with the XSLT format-number() function

<xsl:namespace-alias> Declares one namespace Uniform Resource Identifier (URI) as an
alias for another namespace Uniform Resource Locator (URL)

<xsl:attribute-set> Defines a named set of attributes

<xsl:variable> Declares a variable

<xsl:param> Declares a parameter

<xsl:template> Defines a template rule which contains a pattern for identifying
nodes that should be transformed

Table 14-1 Top-level XSLT elements

634 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 634

XSL Transformations (XSLT) 635

You can find a complete listing of XSLT elements and functions in Appendix F.

XSLT Style Sheets
You create XSLT style sheets using a text editor, just like when you create XHTML and
CSS files. However, you need to use a filename extension of .xls for your XSLT style
sheets. Because an XSLT style sheet is also an XML document, it needs to contain a root
element. An XSLT style sheet’s root element can be either <xsl:stylesheet> or
<xsl:transform>. Both of these elements perform identical functions in that they
declare the document to be an XSLT style sheet. You can use either one, but
<xsl:stylesheet> is more commonly used.

The W3C recommends that you declare your XSLT style sheet root elements using the
following syntax. The following code also includes an XML declaration (or processing
instruction) in the first line to specify the version of XML being used.

<?xmlƒversion="1.0"ƒencoding="iso-8859-1"ƒ
standalone="yes"?>
<xsl:stylesheetƒversion="1.0"ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
styleƒdeclarations
</xsl:stylesheet>

You studied processing instructions in Chapter 1. Recall that a processing
instruction is a special statement that passes information to the user agent or
application that is processing the XML document. You can easily recognize
processing instructions because they begin with <? and end with ?>.

To link an XSLT style sheet to an XML document, you add to the XML document an
<xsl-stylesheet> processing instruction similar to the following:

<?xml-stylesheetƒtype="text/xsl"ƒhref="stylesheet.xsl"?>

The <xsl-stylesheet> processing instruction should include the two properties
shown in the preceding code: type, which is assigned a value of ”“text/xsl” and href,
which is assigned the name of the XSLT style sheet.You add the <xsl-stylesheet>
processing instruction after the XML declaration. The following code shows the
Olympic Medals XML document with an <xsl-stylesheet> processing instruction
that links the document to an XSLT style sheet named olympics.xsl:

<?xmlƒversion="1.0"ƒencoding="iso-8859-1"ƒ
standalone="yes"?>
<?xml-stylesheetƒtype="text/xsl"ƒhref="olympics.xsl"?>
<olympics>
ƒƒƒƒƒ<year>2002ƒWinterƒOlympics</year>
ƒƒƒƒƒ<medals>OlympicƒMedalƒCounts</medals>
...

Note

Tip

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 635

To format an XML document to display as a Web page, you add the usual XHTML
elements to an XSLT style sheet document, as the content of the <xsl:stylesheet>
element. For example, the following code shows the basis of an XSLT style sheet that will
format the Olympic Medals XML document as a Web page. Notice that instead of includ-
ing a <!DOCTYPE> declaration to identify the resulting Web page as XHTML Strict, the
document simply includes another xmlns attribute in the <xsl:stylesheet> element
that is assigned a value of “http://www.w3.org/TR/xhtml1/strict”. Because the document
is an XSLT style sheet, you cannot declare it as an XHTML Strict document. Using the
xmlns="http://www.w3.org/TR/xhtml1/strict" attribute, however, identifies the
output document as XHTML Strict.

<?xmlƒversion="1.0"ƒencoding="ISO-8859-1"?>
<xsl:stylesheetƒversion="1.0"ƒ
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/strict">
<html>
<headƒxmlns="http://www.w3.org/1999/xhtml"ƒlang="en"ƒ
xml:lang="en"ƒdir="ltr">
<title>2002ƒWinterƒOlympics</title>
<metaƒhttp-equiv="content-type"ƒcontent="text/html;ƒ
charset=iso-8859-1"ƒ/>
<styleƒtype="text/css">
bodyƒ{ƒfont-family:ƒVerdana,ƒArial,ƒsans-serifƒ}
h1ƒ{ƒfont-size:ƒ1.5em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
h2ƒ{ƒfont-size:ƒ1.2em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
p,ƒtd,ƒthƒ{ƒfont-size:ƒ.8em;ƒcolor:ƒolive;ƒ
background-color:ƒtransparentƒ}
</style>
</head>
<body>
</body>
</html>
</xsl:stylesheet>

The preceding document is only the basis for an XSLT style sheet that will transform an
XML document into a Web page.To complete it, you still need to add additional XSLT
elements that identify which nodes from the source tree will be added to the transformed
result tree.

Next, you will start working on an XSLT style sheet that formats the contents of an XML
file named Forecast.xml that contains weather forecast data for selected American cities.
You can find a copy of the Forecast.xml file in your Chapter.14\Chapter folder.The file
contains a root element named <weather> that contains a single <data> element, along
with numerous <forecast> elements for various cities. City names are assigned to a
city attribute in each <forecast> element. Each forecast element also contains three
nested elements: <high_temp>, <low_temp>, and <conditions>.

636 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 636

XSL Transformations (XSLT) 637

To create an XSLT style sheet:

1. Create a new file in your text editor.

2. Type the opening XML declaration, as follows:

<?xmlƒversion="1.0"ƒencoding="iso-8859-1"ƒ
standalone="yes"?>

3. Next, type the following <xsl:stylesheet> element:

<xsl:stylesheetƒversion="1.0"ƒ
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/strict">
</xsl:stylesheet>

4. Now add the following elements within the <xsl:stylesheet> element.
These elements will form the basis of how the Forecast.xml file will display
in a Web browser.

<htmlƒxmlns="http://www.w3.org/1999/xhtml"ƒlang="en"
xml:lang="en"ƒdir="ltr">
<head>
<title>WeatherƒForecast</title>
<metaƒhttp-equiv="content-type"ƒcontent="text/html;ƒ
charset=iso-8859-1"ƒ/>
<styleƒtype="text/css">
bodyƒ{ƒbackground-color:ƒsilver;ƒcolor:ƒnavy;ƒfont-family:
'TrebuchetƒMS',ƒArial,ƒHelveticaƒ}
h1ƒ{ƒfont-size:ƒ2em;ƒfont-weight:ƒnormalƒ}
h2ƒ{ƒfont-size:ƒ1.2em;ƒfont-weight:ƒnormalƒ}
</style></head>
<body>
<h1>WeatherƒForecast</h1>
</body>
</html>

5. Save the file as WeatherForecast.xsl in your Chapter.14\Chapter folder.

6. Open the Forecast.xml file in your text editor and add the following
<xsl-stylesheet> processing instruction immediately after the XML
declaration:

<?xml-stylesheetƒtype="text/xsl"ƒ
href="WeatherForecast.xsl"?>

7. Save the Forecast.xml document and open it in Explorer.Although the style
sheet does not transform any elements yet, you should see the heading element.

8. Close your Web browser window.

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 637

WORKING WITH TEMPLATES

A template is created with the <xsl:template> element and defines the transformation
procedures for a node or group of nodes that match a given pattern.The <xsl:template>
element is arguably the most important XSLT element because it selects and applies rules to
the nodes that will be added to the result tree.

The <xsl:template> element has several attributes, the most important of which is the
match attribute, which specifies the pattern to which the template will apply.Assigning a
value of “/” to the match attribute specifies that the template will apply to the root node.
This means that the entire source tree is available for transformation. However, this does
not mean that the entire source tree will automatically be included in the result tree.You
need to specify which nodes you want included in the transformation. Before you can
specify which nodes to include in a transformation, you need to understand how to use
patterns in XSLT.

Patterns
Assigning a value of “/” to the <xsl:template> element’s match attribute essentially
gives you access to all of the nodes in the document. One way to specify which nodes you
want included in the transformation is to use the <xsl:value-of> element to access a
node’s value.The only required value of the <xsl:value-of>ƒelement is the select
attribute, which you use to specify the node you want included in the transformation. If
you use a match attribute value of “/” with the Olympic Medals XML document, you
can access the value of each of the document’s top-level nodes by assigning the name of
the node, preceded by a slash (/) and the name of the root node to the select attribute.
For example, the following code shows the XSLT style sheet for the Olympic Medals
XML document. An <xsl:template> element now contains the XHTML elements.
Two <xsl:value-of> element’s in the <body> element select the content of the year
and medals nodes for transformation. Notice that the first <xsl:value-of> element
accesses the value of the year node by assigning the value “olympics/year” to the select
attribute. If you opened the Olympic Medals XML document in Internet Explorer, you
would see the output shown in Figure 14-4.

<?xmlƒversion="1.0"ƒencoding="ISO-8859-1"?>
<xsl:stylesheetƒversion="1.0"ƒ
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/strict">
<xsl:templateƒmatch="/">
<htmlƒxmlns="http://www.w3.org/1999/xhtml"ƒlang="en"ƒ
xml:lang="en"ƒdir=”ltr">
<head>
<title>2002ƒWinterƒOlympics</title>
<metaƒhttp-equiv="content-type"ƒcontent="text/html;ƒ
charset=iso-8859-1"ƒ/>
<styleƒtype=”text/css”>

638 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 638

Working with Templates 639

bodyƒ{ƒfont-family:ƒVerdana,ƒArial,ƒsans-serifƒ}
h1ƒ{ƒfont-size:ƒ1.5em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
h2ƒ{ƒfont-size:ƒ1.2em;ƒcolor:ƒnavy;ƒbackground-color:ƒ
transparentƒ}
p,ƒtd,ƒthƒ{ƒfont-size:ƒ.8em;ƒcolor:ƒolive;ƒ
background-color:ƒtransparentƒ}
</style>
</head>
<body>
<h1><xsl:value-ofƒselect=”olympics/year”ƒ/></h1>
<h2><xsl:value-ofƒselect=”olympics/medals”ƒ/></h2>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

If you are familiar with path statements used in file systems, then you probably recognize
the syntax for assigning values to the <xsl:value-of> element’s select attribute.The
values you assign to the select attribute are actually XPath instructions. XPath gets its
name because it uses a path syntax to access the nodes in an XML document in much the
same way you access folders and files using path statements. Following this syntax, you can
access nodes that are nested within an XML document’s top-level nodes by appending
them with slashes to the value you assign to the select attribute. For example, you may
have an XML document with a root node named banking that contains a top-level node
named checking.The checking node in turn may contain a node named balance.
You can use the <xsl:value-of> element to access the value of the balance node
using the following statement:

<xsl:value-ofƒselect=”banking/checking/balance”ƒ/>

Figure 14-4 Olympic Medals XML document after adding two <xsl:value-of>
elements to the style sheet

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 639

Assigning a value of “1/” to the <xsl:template> element’s match attribute sets the root
node as the current node.The term current node refers to the node that is assigned to an
<xsl:template> element’s match attribute.You can access the nodes within the current
node without specifying the node path. For example, the following code assigns a value of
“banking/checking” to the <xsl:template> element’s match attribute, making the
checking the current node. Because the checking node is the current node, the value
assigned to the <xsl:value-of> element’s select attribute does not need to specify
the node path to access the value of the balance node. In fact, if you attempt to specify
the node path, you will receive an error because the XML processor would attempt to look
for the banking/checking path beneath the current balance node.

<xsl:templateƒmatch=”banking/checking”>
<xsl:value-ofƒselect=”balance”ƒ/>
</xsl:template>

To access the value of an attribute node, you precede the node name with an amper-
sand (@). Returning to the banking XML example, suppose the checking node
includes an attribute node named interest. If the attribute node is an attribute of the
current element node, then you can access its value by assigning the value “@interest”
to the <xsl:value-of> element’s select attribute.The following code shows how
you can access the value of the interest attribute node if the current node for the
banking XML document is the root node:

<xsl:templateƒmatch=”/”>
<xsl:value-ofƒselect=”banking/checking/@interest”ƒ/>
</xsl:template>

The following code shows another example of the body section of the Olympic Medals
XSLT style sheet. This time, the code includes a table that displays the medal count
information for the first country in the XML document, Germany. Figure 14-5 shows
how the Olympic Medals XML document appears in Internet Explorer.

...
<body>
<h1><xsl:value-ofƒselect=”olympics/year”ƒ/></h1>
<h2><xsl:value-ofƒselect=”olympics/medals”ƒ/></h2>
<tableƒwidth=”100%”ƒborder=”1”>
<colgroupƒspan=”1”ƒalign=”left”ƒ/>
<colgroupƒspan=”3”ƒalign=”center”ƒ/>
<tr>
<th>Country</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
</tr>
<tr>
<td><xsl:value-ofƒselect=”olympics/country/@name”ƒ/></td>
<td><xsl:value-ofƒselect=”olympics/country/gold”ƒ/></td>
<td><xsl:value-ofƒselect=”olympics/country/silver”ƒ/></td>

640 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 640

Working with Templates 641

<td><xsl:value-ofƒselect=”olympics/country/bronze”ƒ/></td>
</tr>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

One limitation of the <xsl:value-of> element is that it only applies to the first
matching node in the XML document. Because Germany is the first country node in the
Olympic Medals XML document, it is the only node included in the result tree. In the
next section, you will learn how to transform all of the country nodes to the result tree,
not just nodes for Germany.

Next, you will add an <xsl:template> element and <xsl:value-of> elements to
the WeatherForecast.xsl file.

To add an <xsl:template> element and <xsl:value-of> elements to the
WeatherForecast.xsl file:

1. Return to the WeatherForecast.xsl file in your text editor.

2. Add an opening <xsl:templateƒmatch=”/”> tag immediately above the
opening <html> tag.

3. Add a closing </xsl:template> tag immediately above the closing
</xsl:stylesheet> tag.

4. Now add the following <h2> element immediately after the <h1> element.
The element contains a nested <xsl:value-of> element that adds the
<date> element to the result tree:

<h2>forƒselectedƒAmericanƒcitiesƒonƒ<xsl:value-ofƒ
select=”weather/date”ƒ/></h2>

Figure 14-5 Olympic Medals XML document after adding a table to the style sheet

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 641

5. Next, add the following table after the <h2> element to display the trans-
formed data for each city forecast from the Forecast.xml file.The table also
uses <xsl:value-of> elements to add data to the result tree.

<tableƒwidth=”100%”ƒborder=”1”>
<colgroupƒspan=”1”ƒalign=”left”ƒ/>
<colgroupƒspan=”3”ƒalign=”center”ƒ/>
<tr>
<th>City</th>
<th>HighƒTemperature</th>
<th>LowƒTemperature</th>
<th>Conditions</th>
</tr>
<tr>
<td><xsl:value-ofƒselect=”weather/forecast/@city”ƒ/></td>
<td><xsl:value-ofƒselect=”weather/forecast/
ƒƒƒƒƒhigh_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”weather/forecast/
ƒƒƒƒƒlow_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”weather/forecast/
ƒƒƒƒƒconditions”ƒ/></td>
</tr>
</table>

6. Save the WeatherForecast.xsl file and then open the Forecast.xml file in
Internet Explorer.The data from the first city, Albuquerque, should appear in
the table as shown in Figure 14-6.You will learn how to add the data for the
rest of the cities in the next section.

7. Close your Web browser window.

In addition to directly assigning a path as a select attribute’s pattern, you can also use the
references listed in Table 14-2.

Figure 14-6 Forecast.xml after adding <xsl:value-of> elements

642 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 642

Working with Templates 643

Combining one of the pattern references listed in Table 14-2 with the <xsl:value-of>
element transforms the contents of the referenced node (or nodes) into the result tree. For
example, if you use a period reference (.) as a pattern, then the contents of the current
node are transformed. However, if you use two slashes (//), then the contents of all child
nodes of the current node will be transformed. For example, the <xsl:template>
element in the following code looks for the “banking/checking/balance”pattern.To access
the contents of balance node, the select attribute of the <xsl:value-of> element
is assigned a value “.”.

<xsl:templateƒmatch=”banking/checking/balance”>
<xsl:value-ofƒselect=”.”ƒ/>
</xsl:template>

This section only presents the tip of the iceberg when it comes to patterns. If
you would like to learn more about XSLT patterns, then see the “5.2 Patterns”
topic in the W3C’s XSL Transformations (XSLT) Recommendation at
http://www.w3.org/TR/xslt#patterns.

The <xsl:apply-templates> Element
You will often want to apply the same transformation rules to all of the nodes in an XML
document that match a given name. For example, with the Olympic Medals XML docu-
ment, you would want the data for all of the country nodes added to the result tree, not
just the data for Germany’s country node.To specify XSLT rules that will transform all
matching nodes in a source tree to the result tree, you need to create an additional
<xsl:template> element for the node’s pattern. For example, in the Olympic Medals
style sheet, you would add the following new <xsl:template> element after the closing
</xsl:template> tag that sets up the basic transformation structure:

<xsl:templateƒmatch=”olympics/country”>
<tr>
<td><xsl:value-ofƒselect=”@name”ƒ/></td>
<td><xsl:value-ofƒselect=”gold”ƒ/></td>
<td><xsl:value-ofƒselect=”silver”ƒ/></td>
<td><xsl:value-ofƒselect=”bronze”ƒ/></td>
</tr>
</xsl:template>

Note

Reference Description

. Current node

/ Root node

.. Parent node

// All child nodes

* All nodes

Table 14-2 Pattern references

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 643

Nesting one <xsl:template> element inside another will generate an error.

The preceding template looks for all nodes that match the “olympics/country” path and
transforms each node’s data into a table row in the result tree. In order to use the new tem-
plate, you need to use the <xsl:apply-templates> element to specify where the
nodes should be placed in the result tree. You include a select attribute in the
<xsl:apply-templates> element to specify the node whose template should be
applied.With the Olympic Medals style sheet, you place the <xsl:apply-templates>
element after the closing </tr> tag for the table header row and above the closing
</table> tag.The following code shows the Olympic Medals style sheet that calls the
new template.Keep in mind that the code includes two templates.The first template assigns
a value of “/”to the match attribute, which gives the style sheet access to all of the nodes
in the document.This template also determines the XHTML document structure that will
be added to the result tree.The second template only specifies transformation rules for the
country node. The <xsl:apply-templates> element in the first template applies
the transformation rules in the template for the country node. Figure 14-7 shows the
Olympic Medals document as it appears in Internet Explorer.

<xsl:templateƒmatch=”/”>
...
<body>
<h1><xsl:value-ofƒselect=”olympics/year”ƒ/></h1>
<h2><xsl:value-ofƒselect=”olympics/medals”ƒ/></h2>
<tableƒwidth=”100%”ƒborder=”1”>
<colgroupƒspan=”1”ƒalign=”left”ƒ/>
<colgroupƒspan=”3”ƒalign=”center”ƒ/>
<tr>
<th>Country</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
</tr>
<xsl:apply-templatesƒselect=”olympics/country”ƒ/>
</table>
</body>
</html>
</xsl:template>
<xsl:templateƒmatch=”olympics/country”>
<tr>
<td><xsl:value-ofƒselect=”@name”ƒ/></td>
<td><xsl:value-ofƒselect=”gold”ƒ/></td>
<td><xsl:value-ofƒselect=”silver”ƒ/></td>
<td><xsl:value-ofƒselect=”bronze”ƒ/></td>
</tr>
</xsl:template>

644 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 644

Working with Templates 645

The order in which <xsl:template> elements appear in an XSLT style sheet
makes no difference.

Next, you will add another template to the WeatherForecast.xsl file that adds the data in
all of the <forecast> elements to the result tree.

To add another template to the WeatherForecast.xsl file that adds the data in all of the
<forecast> elements to the result tree:

1. Return to the WeatherForecast.xsl file in your text editor window.

2. Add the following new <xsl:template> element and table row elements
above the closing <xsl:stylesheet> element:

<xsl:templateƒmatch=”weather/forecast”>
<tr>
<td><xsl:value-ofƒselect=”@city”ƒ/></td>
<td><xsl:value-ofƒselect=”high_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”low_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”conditions”ƒ/></td>
</tr>
</xsl:template>

3. Replace the table row elements in the document body with the following
<xsl:apply-templates> element:

...
<th>Conditions</th>
</tr>
<xsl:apply-templatesƒselect=”weather/forecast”ƒ/>
</table>
</body>

Tip

Figure 14-7 Olympic Medals XML document after adding a template for the
country node

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 645

4. Save the WeatherForecast.xsl file and open the Forecast.xml file in Internet
Explorer.Your Web browser should appear similar to Figure 14-8.

5. Close your Web browser window.

MANIPULATING TRANSFORMED DATA

In this section, you will learn how to use additional XSLT instruction elements to perform
repetitions, make decisions, and sort XML data.

Repetition
Most programming languages include repetition, or loop, statements that repeatedly
execute a statement or a series of statements while a specific condition is true or until
a specific condition becomes true.The <xsl:for-each> element loops through the
nodes in a source tree that match a given pattern, applying the same transformation rules
to each node. On the surface, this is not much different than creating an additional
<xsl:template> element for the node’s pattern and applying it with the
<xsl:apply-templates> element. However, the <xsl:for-each> element can be
nested within <xsl:template> element and does not need to be applied with the
<xsl:apply-templates> element. For example, instead of creating an additional
<xsl:template> element for the Olympic Medals XML document, you can simply add
the following <xsl:for-each> element in place of the <xsl:apply-templates>
element:

<xsl:for-eachƒselect=”olympics/country”>
<tr>
<td><xsl:value-ofƒselect=”@name”ƒ/></td>

Figure 14-8 Forecast.xml after adding a new template

646 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 646

Manipulating Transformed Data 647

<td><xsl:value-ofƒselect=”gold”ƒ/></td>
<td><xsl:value-ofƒselect=”silver”ƒ/></td>
<td><xsl:value-ofƒselect=”bronze”ƒ/></td>
</tr>
</xsl:for-each>

Whether you use an <xsl:template> element or use an <xsl:for-each> element
will depend on the situation. In general, you should use an <xsl:template> element
when you need to use the same transformation rules in multiple places within an XSLT
style sheet. However, you should use an <xsl:for-each> element if you anticipate the
transformation rules will only be used once within the template.

Next, you will replace the <xsl:template> element in WeatherForecast.xsl with an
<xsl:for-each> element.

To replace the <xsl:template> element in WeatherForecast.xsl with an
<xsl:for-each> element:

1. Return to the WeatherForecast.xsl document in your text editor.

2. Replace the <xsl:apply-templates> element in the document body
with the following <xsl:for-each> element:

<xsl:for-eachƒselect=”weather/forecast”>
<tr>
<td><xsl:value-ofƒselect=”@city”ƒ/></td>
<td><xsl:value-ofƒselect=”high_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”low_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”conditions”ƒ/></td>
</tr>
</xsl:for-each>

3. Delete the <xsl:template> element that appears above the closing
</xsl:stylesheet> tag along with its contents.

Be sure not to delete the closing </xsl:template> tag that appears directly
after the </html> tag.

4. Save the WeatherForecast.xsl file and open the Forecast.xml file in Internet
Explorer.The file should render the same as it did before you added the
<xsl:for-each> element.

5. Close your Web browser window.

Decision Making
XSLT includes two decision-making elements, <xsl:if> and <xsl:choose>, that are
similar to some of the JavaScript decision-making statements you studied in Chapter 10.The
<xsl:if> element is similar to the JavaScript if statement while the <xsl:choose>

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 647

element is similar to the JavaScript switch statement. Both elements use conditional
expressions to determine whether to apply transformation rules. XPath comparison oper-
ators work in a similar fashion to JavaScript comparison operators, although there are
some differences, one of the most important is that you must use a character entity for
any comparison operators that include the < or > characters.Table 14-3 lists some of the
more common XPath comparison operators.

First you will look at the <xsl:if> element.

The <xsl:if> Element

The <xsl:if> element applies transformation rules if a conditional expression is true.
You must nest the <xsl:if> element beneath the <xsl:template> element or the
<xsl:for-each> element.The <xsl:if> element includes a single attribute, test,
to which you assign a conditional expression.

As an example of how to use the <xsl:if> element, consider the following XML
document, which contains stock information for an investment portfolio.

<portfolio>
ƒƒƒ<stock>
ƒƒƒƒƒƒ<name>BEAƒSystems</name>
ƒƒƒƒƒƒ<symbol>BEAS</symbol>
ƒƒƒƒƒƒ<exchange>NASDAQ</exchange>
ƒƒƒƒƒƒ<last_trade>
ƒƒƒƒƒƒƒƒƒ<date>Marchƒ14</date>
ƒƒƒƒƒƒƒƒƒ<price>11.07</price>
ƒƒƒƒƒƒ</last_trade>
ƒƒƒ</stock>
ƒƒƒ<stock>
ƒƒƒƒƒƒ<name>Oracle</name>
ƒƒƒƒƒƒ<symbol>ORCL</symbol>
ƒƒƒƒƒƒ<exchange>NASDAQ</exchange>
ƒƒƒƒƒƒ<last_trade>
ƒƒƒƒƒƒƒƒƒ<date>Marchƒ14</date>

Operator Description

= Determines if the values are equal

!= Determines if the values are not equal

< Determines if one value is less than another value

<= Determines if one value is less than or equal to another value

> Determines if one value is greater than another value

>= Determines if one value is greater than or equal to another value

and Determines whether two conditional expressions are both true

or Determines if either of two conditional expressions are true

Table 14-3 Common XPath comparison operators

648 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 648

Manipulating Transformed Data 649

ƒƒƒƒƒƒƒƒƒ<price>11.94</price>
ƒƒƒƒƒƒ</last_trade>
ƒƒƒ</stock>
ƒƒƒ<stock>
ƒƒƒƒƒƒ<name>BoltƒTechnology</name>
ƒƒƒƒƒƒ<symbol>BTJ</symbol>
ƒƒƒƒƒƒ<exchange>AMEX</exchange>
ƒƒƒƒƒƒ<last_trade>
ƒƒƒƒƒƒƒƒƒ<date>Marchƒ14</date>
ƒƒƒƒƒƒƒƒƒ<price>3.04</price>
ƒƒƒƒƒƒ</last_trade>
ƒƒƒ</stock>
ƒƒƒ<stock>
ƒƒƒƒƒƒ<name>Medifast</name>
ƒƒƒƒƒƒ<symbol>MED</symbol>
ƒƒƒƒƒƒ<exchange>AMEX</exchange>
ƒƒƒƒƒƒ<last_trade>
ƒƒƒƒƒƒƒƒƒ<date>Marchƒ14</date>
ƒƒƒƒƒƒƒƒƒ<price>4.77</price>
ƒƒƒƒƒƒ</last_trade>
ƒƒƒ</stock>
ƒƒƒ<stock>
ƒƒƒƒƒƒ<name>WRƒGrace</name>
ƒƒƒƒƒƒ<symbol>GRA</symbol>
ƒƒƒƒƒƒ<exchange>NYSE</exchange>
ƒƒƒƒƒƒ<last_trade>
ƒƒƒƒƒƒƒƒƒ<date>Marchƒ14</date>
ƒƒƒƒƒƒƒƒƒ<price>2.06</price>
ƒƒƒƒƒƒ</last_trade>
ƒƒƒ</stock>
</portfolio>

To transform only the stocks that trade on the NASDAQ exchange, you use the following
XSLT template that includes a nested <xsl:if> element. Notice that because the condi-
tional expression assigned to the test attribute is contained within double quotations,
NASDAQ is surrounded by single quotations. If a stock’s exchange is NASDAQ, then a
table row is added to the result tree that includes the node values. If you add the following
template to an XLST style sheet using the <xsl:apply-templates> element, then the
result tree in Internet Explorer will appear similar to Figure 14-9.

<xsl:templateƒmatch=”portfolio/stock”>
<xsl:ifƒtest=”exchange='NASDAQ'”>
<tr>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:if>
</xsl:template>

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 649

The following template shows another example of how to use the <xsl:if> element.This
time, the element uses the XPath less-than comparison operator (<) to transform any
stocks that are selling for less than $10.00. Figure 14-10 shows the result tree in Internet
Explorer.

<xsl:templateƒmatch=”portfolio/stock”>
<xsl:ifƒtest=”last_trade/priceƒ<ƒ10”>
<tr>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:if>
</xsl:template>

Next, you will add an <xsl:if> element to WeatherForecast.xsl that adds only cities
that are expecting showers to the result tree.

To add an <xsl:if> element to WeatherForecast.xsl that adds only cities that are
expecting showers to the result tree:

1. Return to the WeatherForecast.xsl document in your text editor.

2. Modify the <xsl:for-each> element so it includes an <xsl:if> element
that adds only cities that are expecting showers to the result tree, as follows:

<xsl:for-eachƒselect=”weather/forecast”>
<xsl:ifƒtest=”conditions='Showers'”>
<tr>
<td><xsl:value-ofƒselect=”@city”ƒ/></td>
<td><xsl:value-ofƒselect=”high_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”low_temp”ƒ/></td>

Figure 14-9 Results from a style sheet that includes an <xsl:if> element

650 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 650

Manipulating Transformed Data 651

<td><xsl:value-ofƒselect=”conditions”ƒ/></td>
</tr>
</xsl:if>
</xsl:for-each>

The condition you assign to an <xsl:if> element’s test attribute is case
sensitive. Be sure to type “Showers” with an uppercase ‘S’.

3. Save the WeatherForecast.xsl file and open the Forecast.xml file in Internet
Explorer.The table should only show cities that are expecting showers, as shown
in Figure 14-11.

4. Close your Web browser window.

The <xsl:choose> Element

The <xsl:choose> element applies different sets of transformation rules based on
multiple conditional expression. As with the <xsl:if> element, the <xsl:choose>
element cannot be used as a top-level element beneath the <xsl:stylesheet> root
element.You must nest the <xsl:choose> element beneath the <xsl:template> ele-
ment or the <xsl:for-each> element.

Figure 14-10 Results from a style sheet that includes an <xsl:if> element with a
less-than comparison operator

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 651

The <xsl:choose> element is used with the <xsl:when> element and the
<xsl:otherwise> element. You do not use the test attribute with the
<xsl:choose> element. Instead, you use the test attribute with The <xsl:when>
element. The <xsl:when> element is equivalent to a switch statement’s case label
while the <xsl:otherwise> element is equivalent to a switch statement’s default
label.You do not use the testƒattribute with the <xsl:choose> element. Instead,
you use the test attribute with The <xsl:when> element.The following code shows
an example of a template for the portfolio style sheet that includes nested <xsl:if>,
<xsl:when>, and <xsl:otherwise> elements.The <xsl:if> element checks each
stock node to determine its exchange. Then, <xsl:when> elements add a red table
row to the result tree for NASDAQ, a blue table row for AMEX, and a green table row
for NYSE.The <xsl:otherwise> element formats table rows in black for any nodes
that do not match the <xsl:when> elements. Figure 14-12 shows how the result tree
appears in Internet Explorer for the portfolio XML document you saw earlier.

<xsl:templateƒmatch=”portfolio/stock”>
<xsl:choose>
<xsl:whenƒtest=”exchange='NASDAQ'”>
<trƒstyle=”color:ƒred”>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:when>
<xsl:whenƒtest=”exchange='AMEX'”>
<trƒstyle=”color:ƒblue”>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>

Figure 14-11 Forecast.xml after adding an <xsl:if> element

652 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 652

Manipulating Transformed Data 653

<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:when>
<xsl:whenƒtest=”exchange='NYSE'”>
<trƒstyle=”color:ƒgreen”>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:when>
<xsl:otherwise>
<trƒstyle=”color:ƒblack”>
<td><xsl:value-ofƒselect=”name”ƒ/></td>
<td><xsl:value-ofƒselect=”symbol”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/date”ƒ/></td>
<td><xsl:value-ofƒselect=”last_trade/price”ƒ/></td>
</tr>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Next, you will add to WeatherForecast.xsl an <xsl:choose> element that formats cities
that are expecting showers in red.

To add to WeatherForecast.xsl an <xsl:choose> element that formats cities that are
expecting showers in red:

1. Return to the WeatherForecast.xsl file in your text editor.

Figure 14-12 Results from a style sheet that includes an <xsl:choose> element

Red text

Blue text

Green text

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 653

2. Replace the <xsl:if> element in the <xsl:for-each> element with an
<xsl:choose> element that formats cities that are expecting showers in red,
as follows:

<xsl:for-eachƒselect=”weather/forecast”>
<xsl:choose>
<xsl:whenƒtest=”conditions='Showers'”>
<trƒstyle=”color:red”>
<td><xsl:value-ofƒselect=”@city”ƒ/></td>
<td><xsl:value-ofƒselect=”high_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”low_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”conditions”ƒ/></td>
</tr>
</xsl:when>
<xsl:otherwise>
<tr>
<td><xsl:value-ofƒselect=”@city”ƒ/></td>
<td><xsl:value-ofƒselect=”high_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”low_temp”ƒ/></td>
<td><xsl:value-ofƒselect=”conditions”ƒ/></td>
</tr>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

3. Save the WeatherForecast.xsl file and open the Forecast.xml file in Internet
Explorer.The cities that are expecting showers should be formatted in red, as
shown in Figure 14-13.

4. Close your Web browser window.

Figure 14-13 Forecast.xml after adding an <xsl:choose> element

Red text

654 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 654

Manipulating Transformed Data 655

Sorting
The <xsl:sort> element allows you to sort the nodes that are added to the result tree.
You can nest the <xsl:sort> element beneath the <xsl:template> and
<xsl:for-each> elements.The <xsl:sort> element includes the attributes listed in
Table 14-4.

The most important of the <xsl:sort> element attributes is the select attribute,
which specifies the node by which to sort. As an example of how to use the
<xsl:sort> element, consider the following XML document, which lists populations
of American cities.

<demographics>
ƒƒƒ<municipality>
ƒƒƒƒƒƒ<city>LosƒAngeles</city>
ƒƒƒƒƒƒ<state>California</state>
ƒƒƒƒƒƒ<population>3694820</population>
ƒƒƒ</municipality>
ƒƒƒ<municipality>
ƒƒƒƒƒƒ<city>SanƒFrancisco</city>
ƒƒƒƒƒƒ<state>California</state>
ƒƒƒƒƒƒ<population>776733</population>
ƒƒƒ</municipality>
ƒƒƒ<municipality>
ƒƒƒƒƒƒ<city>SanƒDiego</city>
ƒƒƒƒƒƒ<state>California</state>
ƒƒƒƒƒƒ<population>1223400</population>
ƒƒƒ</municipality>
ƒƒƒ<municipality>
ƒƒƒƒƒƒ<city>SanƒAntonio</city>
ƒƒƒƒƒƒ<state>Texas</state>
ƒƒƒƒƒƒ<population>1144646</population>
ƒƒƒ</municipality>
ƒƒƒ<municipality>

Attribute Description

case-order Specifies whether uppercase letters should be sorted before lowercase
letters; valid values are “upper-first” and “lower-first”

data-type Specifies the data type of the nodes to be sorted; valid values include
“text” and “number”

lang Specifies the language of the nodes to be sorted; accepts the same values
as the lang and xml:lang standard attributes

order Determines the order that the nodes should be sorted; valid values are
“ascending” or “descending”

select Specifies the node you want sorted

Table 14-4 Attributes of the <xsl:sort> element

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 655

ƒƒƒƒƒƒ<city>Dallas</city>
ƒƒƒƒƒƒ<state>Texas</state>
ƒƒƒƒƒƒ<population>1188580</population>
ƒƒƒ</municipality>
</demographics>

You can use the following <xsl:for-each> element that includes a nested <xsl:sort>
element to sort the demographics XML document by city. Figure 14-14 shows how the
result tree appears in Internet Explorer.

<xsl:for-eachƒselect=”demographics/municipality”>
<xsl:sortƒselect=”city”ƒorder=”ascending”ƒ
ƒƒƒƒƒdata-type=”text”ƒ/>
<tr>
<td><xsl:value-ofƒselect=”city”ƒ/></td>
<td><xsl:value-ofƒselect=”state”ƒ/></td>
<td><xsl:value-ofƒselect=”population”ƒ/></td>
</tr>
</xsl:for-each>

You can include multiple levels of sorting by adding additional <xsl:sort> elements.
For example, the following <xsl:for-each> element for the demographics XML
document includes two <xsl:sort> elements. The first <xsl:sort> element sorts
the nodes by state; the second <xsl:sort> element then sorts the cities within each
state by population. Figure 14-15 shows how the result tree appears in Internet Explorer.

<xsl:for-eachƒselect=”demographics/municipality”>
<xsl:sortƒselect=”state”ƒorder=”ascending”ƒ
ƒƒƒƒƒdata-type=”text”ƒ/>
<xsl:sortƒselect=”population”ƒorder=”descending”ƒ
ƒƒƒƒƒdata-type=”number”ƒ/>
<tr>
<td><xsl:value-ofƒselect=”city”ƒ/></td>

Figure 14-14 Demographics XML document sorted by city name

656 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 656

Manipulating Transformed Data 657

<td><xsl:value-ofƒselect=”state”ƒ/></td>
<td><xsl:value-ofƒselect=”population”ƒ/></td>
</tr>
</xsl:for-each>

Next, you will add to WeatherForecast.xsl an <xsl:sort> element that sorts the data by
city name.

To add to WeatherForecast.xsl an <xsl:sort> element that sorts the data by city name:

1. Return to the WeatherForecast.xsl file in your text editor.

2. Add an <xsl:sort> element after the opening <xsl:for-each> tag, but
above the opening <xsl:choose> tag, as follows:

...
<xsl:for-eachƒselect=”weather/forecast”>
<xsl:sortƒselect=”@city”ƒorder=”ascending”ƒ
ƒƒƒƒƒdata-type=”text”ƒ/>
<xsl:choose>
...

3. Save the WeatherForecast.xsl file and open the Forecast.xml file in
Internet Explorer.The table rows should be sorted by city name, as shown in
Figure 14-16.

4. Close your Web browser window and text editor.

Figure 14-15 Demographics XML document sorted by state and population

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 657

CHAPTER SUMMARY
❒ You can create formatted Web pages using Extensible Markup Language (XML) and

Extensible Stylesheet Language (XSL), which is a style sheet language for XML.

❒ The term “transformation” refers to the conversion of XML data into another type of
document.

❒ XSL Transformations (XSLT) is a language that transforms one XML document into
another XML document.

❒ XML Path Language (XPath) is a language this is used in XSLT to access or refer to
the parts of an XML document.

❒ XSL Formatting Objects (XSL-FO) is a language that determines how an XML
document should be displayed.

❒ An XML processor is an application that builds a new XML document by reading a
source XML document and applying the rules in an associated XSLT style sheet.

❒ Each element and attribute in an XML document tree is referred to as a node.

❒ A pattern is a sequence of nested elements that represents a branch in an XML
document tree.

❒ A source tree is the document tree of an XML document that is being transformed.

❒ A result tree is the document tree of the transformed XML document.

❒ You add XSLT to XSLT style sheets using a set of predefined elements that begin
with the xsl namespace.

Figure 14-16 Forecast.xml after adding an <xsl:sort> element

Red text

658 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 658

Review Questions 659

❒ A template is created with the <xsl:template> element and defines the transfor-
mation procedures for a node or group of nodes that match a given pattern.

❒ One way to specify which nodes you want included in the transformation is to use
the <xsl:value-of> element to access a node’s value.

❒ The current node refers to the node that is assigned to an <xsl:template>
element’s match attribute.

❒ In order to use the new template, you need use the <xsl:apply-templates>
element to specify where the nodes should be placed in the result tree.

❒ The <xsl:for-each> element loops through the nodes in a source tree that
match a given pattern, applying the same transformation rules to each node.

❒ The <xsl:if> element applies transformation rules if a conditional expression is true.

❒ The <xsl:choose> element applies different sets of transformation rules based on
multiple conditional expression.

❒ The <xsl:sort> element allows you to sort the nodes that are added to the
result tree.

REVIEW QUESTIONS
1. Explain how XSL differs from CSS and when you should use each technology.

2. Which of the following technologies are parts of XSL? (Choose all that apply.)

a. XSL Transformations

b. Cascading Style Sheets

c. XML Path Language

d. XSL Formatting Objects

3. A(n) builds a new XML document by reading a source XML
document and applying the rules in an associated XSLT style sheet.

a. JavaScript function

b. DOM method

c. XML processor

d. XSLT template

4. Each element and attribute in an XML document tree is referred to as a
.

a. node

b. branch

c. object

d. method

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 659

5. A pattern represents a branch in an XML document tree.True or False?

6. Which of the following refers to the document tree of an XML document that is
being transformed

a. directory

b. source tree

c. result tree

d. target tree

7. You can use either the <xsl:stylesheet> or <xsl:transform> as the root
element of an XSLT style sheet.True or False?

8. What value do you assign to an <xsl:template> element’s match attribute to
specify that the template will apply to the root node?

a. /

b. //

c. .

d. ..

9. What is the only required attribute of the <xsl:value-of> element?

a. test

b. node

c. select

d. match

10. What character do you use to access the value of an attribute node?

a. *
b. &

c. @

d. #

11. Explain how to create more than one template in an XSLT style sheet and how to
use the <xsl:apply-templates> element to specify where the nodes transformed
by the template should be placed in the result tree.

12. You must nest an <xsl:for-each> element within an <xsl:apply-templates>
element.True or False?

13. What is the correct way of using the greater than or equal to XPath comparison
operator?

a. >=

b. >>=

c. &>=;

d. >=

660 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 660

Hands-on Projects 661

14. Beneath which elements can you nest the <xsl:if> and <xsl:choose> elements?
(Choose all that apply.)

a. <xsl:template>

b. <xsl:for-each>

c. <xsl:stylesheet>

d. <xsl:transform>

15. Which of the following are valid values that you can apply to an <xsl:sort>
element’s order attribute? (Choose all that apply.)

a. alpha

b. numeric

c. ascending

d. descending

HANDS-ON PROJECTS

Project 14-1
In this project, you will create an XSL style sheet that formats and displays an XML doc-
ument containing data you would find in an e-mail message.Your Chapter.14\Projects
folder contains a file named Message.xml that you can use for this project.

1. Create a new document in your text editor.

2. Type the following elements that form the basis of an XSLT style sheet:

<?xmlƒversion=”1.0”ƒencoding=”ISO-8859-1”?>
<xsl:stylesheetƒversion=”1.0”ƒ
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/TR/xhtml1/strict”>
<htmlƒxmlns=”http://www.w3.org/1999/xhtml”ƒlang=”en”ƒ
xml:lang=”en”ƒdir=”ltr”>
<head>
<title>E-mailƒMessage</title>
<metaƒhttp-equiv=”content-type”ƒcontent=”text/html;ƒ
charset=iso-8859-1”ƒ/>
</head>
<body>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

3. Add the following <xsl:template> element above the <html> tag to give the
style sheet access to all the nodes in the Message.xml document:

<xsl:templateƒmatch=”/”>

Hands-on
Project

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 661

4. Next, add the following elements to the document body.The elements include
<xsl:value-of> elements that add nodes in the source tree to the result tree.

<h1>E-mailƒMessage</h1>
<p>To:ƒ<xsl:value-ofƒselect=”message/to”ƒ
/><brƒ/>
From:ƒ<xsl:value-ofƒselect=”message/from”
/><brƒ/>
Date:ƒ<xsl:value-ofƒ
select=”message/received”ƒ/><brƒ/>
Subject:ƒ<xsl:value-ofƒ
select=”message/subject”ƒ/></p>
<hrƒ/>
<p><xsl:value-ofƒselect=”message/body”ƒ/></p>

5. Save the XSLT style sheet as Message.xsl in your Chapter.14\Projects folder.

6. Open the Message.xml document from your Chapter.14\Projects in your text
editor and add the following statement immediately after the XML declaration to
give the document access to the Message.xsl style sheet:

<?xml-stylesheetƒtype=”text/xsl”ƒhref=”Message.xsl”?>

7. Save the Message.xml document and open it in Internet Explorer. Figure 14-17
shows how the transformed XML document should appear.

8. Close your Web browser window.

Figure 14-17 Project 14-1

662 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 662

Hands-on Projects 663

Project 14-2
In this project, you will create an XSL style sheet that formats and displays an XML doc-
ument containing several paragraphs from a chapter of the book Call of the Wild, by Jack
London.Your Chapter.14\Projects folder contains a file named Book.xml that you can use
for this project.

1. Create a new document in your text editor.

2. Type the following elements that form the basis of an XSLT style sheet:

<?xmlƒversion=”1.0”ƒencoding=”ISO-8859-1”?>
<xsl:stylesheetƒversion=”1.0”ƒ
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/TR/xhtml1/strict”>
<htmlƒxmlns=”http://www.w3.org/1999/xhtml”ƒlang=”en”ƒ
xml:lang=”en”ƒdir=”ltr”>
<head>
<title>CallƒofƒtheƒWild</title>
<metaƒhttp-equiv=”content-type”ƒcontent=”text/html;ƒ
charset=iso-8859-1”ƒ/>
</head>
<body>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

3. Add the following <xsl:template> element that above the <html> tag to give
the style sheet access to all the nodes in the Book.xml document:

<xsl:templateƒmatch=”/”>

4. Next, add the following elements to the document body.The elements include an
<xsl:value-of> elements and an <xsl:apply-templates> element that calls
a template that applies all the paragraph nodes in the source tree to the result tree.

<h1>CallƒofƒtheƒWild</h1>
<h2>Byƒ<xsl:value-ofƒselect=”book/author”ƒ/></h2>
<h3>Chapterƒ<xsl:value-
ofƒselect=”book/chapter/chapter_num”ƒ
/>,ƒ<xsl:value-ofƒselect=”book/chapter/chapter_title”ƒ
/></h3>
<xsl:apply-templatesƒselect=”book/chapter/paragraph”ƒ/>

5. Finally, add the following <xsl:template> element above the closing
<xsl:stylesheet> element.This element applies all of the paragraph nodes
in the source tree to the result tree.

<xsl:templateƒmatch=”book/chapter/paragraph”>
<p><xsl:value-ofƒselect=”.”ƒ/></p>
</xsl:template>

6. Save the XSLT style sheet as Book.xsl in your Chapter.14\Projects folder.

Hands-on
Project

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 663

Don Gosselin
Break the code here and move the "/>," to the previous line

7. Open the Book.xml document from your Chapter.14\Projects folder in your text
editor and add the following statement immediately after the XML declaration to
give the document access to the Book.xsl style sheet:

<?xml-stylesheetƒtype=”text/xsl”ƒhref=”Book.xsl”?>

8. Save the Book.xml document and open it in Internet Explorer. Figure 14-18 shows
how the transformed XML document should appear.

9. Close your Web browser window.

Project 14-3
In this project, you will create an XSL style sheet that uses the <xsl:apply-templates>
element to format and display an XML document containing information on the world’s
ten highest mountains. Your Chapter.14\Projects folder contains a file named
Mountains.xml that you can use for this project.

1. Create a new document in your text editor.

2. Type the following elements that form the basis of an XSLT style sheet:

<?xmlƒversion=”1.0”ƒencoding=”ISO-8859-1”?>
<xsl:stylesheetƒversion=”1.0”ƒ
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/TR/xhtml1/strict”>
<xsl:templateƒmatch=”/”>ƒ
<htmlƒxmlns=”http://www.w3.org/1999/xhtml”ƒlang=”en”ƒ
xml:lang=”en”ƒdir=”ltr”>
<head>
<title>World'sƒHighestƒMountains</title>

Hands-on
Project

Figure 14-18 Project 14-2

664 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 664

Hands-on Projects 665

<metaƒhttp-equiv=”content-type”ƒcontent=”text/html;ƒ
charset=iso-8859-1”ƒ/>
</head>
<body>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

3. Use an <xsl:apply-templates> element to display the Mountains.xml docu-
ment as shown in Figure 14-19.

4. Save the XSLT style sheet as Mountains.xsl in your Chapter.14\Projects folder.

5. Open the Mountains.xml document from your Chapter.14\Projects folder in
your text editor and add the appropriate statements to give the document access
to the Mountains.xsl style sheet:

6. Save the Mountains.xml document and open it in Internet Explorer.Your Web
browser should resemble Figure 14-19.

7. Close your Web browser window.

Project 14-4
In this project, you will create an XSL style sheet that uses the <xsl:for-each> element
to format and display an XML documemnt containing the names of the world’s 10 busiest
airports along with average numbers of passengers.Your Chapter.14\Projects folder contains
a file named Airports.xml that you can use for this project.

Hands-on
Project

Figure 14-19 Project 14-3 14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 665

1. Create a new document in your text editor.

2. Type the following elements that form the basis of an XSLT style sheet:

<?xmlƒversion="1.0"ƒencoding="ISO-8859-1"?>
<xsl:stylesheetƒversion="1.0"ƒ
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/strict">
<xsl:templateƒmatch="/">ƒ
<htmlƒxmlns="http://www.w3.org/1999/xhtml"ƒlang="en"ƒ
xml:lang="en"ƒdir="ltr">
<head>
<title>World'sƒ10ƒBusiestƒAirports</title>
<metaƒhttp-equiv="content-type"ƒcontent="text/html;ƒ
charset=iso-8859-1"ƒ/>
</head>
<body>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

3. Use an <xsl:for-each> element to display the Airports.xml document as shown
in Figure 14-20.

4. Save the XSLT style sheet as Airports.xsl in your Chapter.14\Projects folder.

5. Open the Airports.xml document from your Chapter.14\Projects folder in your
text editor and add the appropriate statements to give the document access to the
Airports.xsl style sheet:

Figure 14-20 Project 14-4

666 Chapter 14 Extensible Stylesheet Language (XSL)

14 Chapter C1426 29548 5/12/03 3:21 PM Page 666

Case Projects 667

6. Save the Airports.xml document and open it in Internet Explorer.Your Web
browser should resemble Figure 14-20.

7. Close your Web browser window.

CASE PROJECTS

For the following projects, save the files you create in the Chapter.14\Cases folder. Be
sure to validate the files you create with the W3C Markup Validation Service.

Project 14-1
Create an XML document that contains elements you would find in a business memo. Use
<memo> as the root element.Add a date attribute to the root element that is assigned the
date the memo was written. Include elements such as sender, recipient, subject, salutation,
and paragraph. The XML document should contain multiple <paragraph> elements.
Add whatever you like as the content of each element. Create an XSLT style sheet that
formats the XML document for display in a Web browser. Save the XML document as
Memo.xml and the XSLT template as Memo.xsl.

Project 14-2
Create an XML document that contains elements you would find in a resume. Use
<resume> as the root element. Include elements such as your name and the position
desired. Use an <employer_name> element to contain information about each
employer.The <employer_name> element should include two attributes, start_date
and end_date for the employment period. Create any other nested elements that you
deem appropriate, such as <special_skills>. Use your own employment and educa-
tional experience as the content of the elements and be sure to include multiple elements
for former employers, education, and references. If you do not have a great deal of
employment experience, make something up. Create an XSLT style sheet that formats the
XML document for display in a Web browser. Save the XML document as Resume.xml
and the XSLT template as Resume.xsl.

Project 14-3
Create an accounts receivable XML document. Use <accts_receivable> as the root
element and <payment> as the top-level elements beneath the root element. Beneath each
<payment> element, include elements such as <name>, <date>, and <amount>.Within
the <vendor> element, include a pay_method attribute that you can assign one of the
following types of payment options: check, credit card, or cash. For check payments, include
a <check_number> element beneath the <payment> element. For credit card payments,
include <card_name> and <card_number> elements beneath the <payment> element.
Make up some data and be sure to use at least one of the three payment methods. Create an
XSLT style sheets that formats the XML document for display in a Web browser by payment
type (check, credit card, or cash). Also, sort the payments by vendor name. Save the XML
document as AccountsReceivable.xml and the XSLT template as AccountsReceivable.xsl.

Case
Project

Case
Project

Case
Project

14

14 Chapter C1426 29548 5/12/03 3:21 PM Page 667

14 Chapter C1426 29548 5/12/03 3:21 PM Page 668

