
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topic
s/Understanding-ROS2-Topics.html

ROS is a mid-level operator that breaks down complex systems into manageable parts. Each
part of the robotic system is referred to as a “node.” For example, let’s think of a simple car with
a distance sensor mounted on top and a couple of LEDs. The nodes in this robotic system
would be the wheels, the distance sensor, and the LEDs. For more precision, we could even
divide nodes down to individual components of the same functional part. By this, I mean we
could have separate nodes for the right-side wheel and the left-side wheel of our car.

Understanding Nodes

In the context of ROS, Laika’s functionality is broken down into a network of nodes, each
responsible for a specific task or hardware component. For example, one node might control the
front left leg, handling the angles and servo commands needed to move it. Another node could
handle IMU data, publishing information about orientation and acceleration. A camera node
might stream video or publish processed data like object detections or depth maps.

These nodes don’t directly talk to each other, indeed they publish and subscribe to topics. For
instance, a motion controller node might subscribe to the IMU and camera topics to
understand Laika’s current state, then publish velocity commands to the leg control nodes. If
you're running a gait pattern, you might have a gait scheduler node that coordinates leg
movement by publishing timed position commands to each limb node.

rqt

rqt is a graphical tool in ROS that helps visualize, monitor, and debug what's happening in your
robot system. It gives an interface to see which nodes are running, what topics they're
publishing or subscribing to, and how data is flowing between them. You can also use it to plot
real-time sensor data, view system logs, and even change parameters on the fly. (for example in
the turtlesim example package from the ROS documentation, we use rqt to change the
thickness of the line drawn by the virtual turtle.) It’s especially useful when you're trying to
understand how different parts of your robot are interacting or when something isn’t working and
you need to trace the problem visually.

Remapping nodes

ros2 run turtlesim turtle_teleop_key --ros-args --remap

turtle1/cmd_vel:=turtle2/cmd_vel

Remapping a node to work for another node is sometimes useful. In this example we are
remapping the turtle_teleop_key node, first by flagging the args, then flagging the remap to in
this case “turtle1/cmd_vel…” (to :=) “turtle2/cmd_vel. Just like on a calculator the := phrasing
means “store this”. Running this command will open a new node with the remapped functionality
of interfacing with a different named subscriber.

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

Running packages in ROS (We say running the executable from the package)

ros2 run <package_name> <executable_name>

Seeing the Network

“A full robotic system consists of many nodes working in concert. In ROS 2, a single executable
(a Python program for Laika,) can contain one or more nodes.”

- This “network” as we can start thinking of it as is the ROS GRAPH
- List running nodes using ros2 node list
- Find info like publishing, subscribing, etc using ros2 node info <node_name>

Understanding Topics

A node may publish data to any number of topics and simultaneously have
subscriptions to any number of topics. Tops are essential buses that move information
in the ROS architecture

Topics are like forks, they can push data to many or many to one. Below is a ROS
graph.

To visualize a graph of how nodes are connected with each other we can run the
command:

rqt_graph

After running the command you can select to see the Nodes/Topics that are active in the
top left of the rqt viewer

Looking at the center of the graph a flow chart is visible with the topic in the center and
arrows to the topic of nodes that are publishing to it. Arrows from the topic are nodes
subscribed to the topic

To see topics that are active using just command line you can call ros2 topic list
Or ros2 topic list -t

To show an active call out of what a topic is seeing you can echo it. When doing so, all
data published from nodes to this topic will be displayed here as they go to their
subscribing nodes

ros2 topic echo <topic_name>

Looking back at the rqt_graph we can see that this echo call (/ros2cli…) is seeing the
data published to the cmd_vel topic and is acting as a visual subscriber

- Nodes send data over topics using messages. Publishers and subscribers must
send and receive the same type of message to communicate.

The topic types we saw earlier after running ros2 topic list -t let us know what message
type is used on each topic. Recall that the cmd_vel topic has the type:

- geometry_msgs/msg/Twist
- This means that in the package geometry_msgs there is a msg called Twist.

Find the structure of a msg (what the system expects using:

ros2 interface show geometry_msgs/msg/Twist

- Where you can replace the message with whatever your trying to inspect

Understanding Services

Services are another method of communication for nodes in the ROS graph. Services
are based on a call-and-response model versus the publisher-subscriber model of
topics.

- With a service a response is conditional
- Many nodes (clients) can use a service, but only one node can act as the server
-

ros2 service list

Brings up the list of available services when multiple nodes are running.
The services seen here are command line versions of what was seen when opening rqt

To call a service from the command line we need its type and to understand what
arguments it takes.

ros2 service type <service_name>

Gives us the type.

ros2 interface show <type_name>

Gives us the structure of arguments for this type

ros2 service call <service_name> <service_type> <arguments>

When calling a service, its type, and the correct structure of arguments the subscribing

or client nodes will respond as such. For the running example of turtlesim,

ros2 service call /clear std_srvs/srv/Empty

Clears the turtlesim board. As shown, we call the /clear service, state its type, and in
this example clear requires no arguments so this was left blank

Remember! To find available services you can call ros2 service list, then from there find
a services type, list its arguments and then call the whole from the command line (or
save some sanity and use rqt if doing it by hand!)

- When you get your list of arguments you must structure them with “{ type: arg}”

-
- So to call the spawn service I would use the following:

ros2 service call /spawn turtlesim/srv/Spawn "{x: 2, y: 2, theta:

0.2, name: ''}"

Note here how the arguments are formatted. Even the name is left blank!
The exact structure of this service call can be derived using the commands
above, again: list, type, interface, call

You generally don’t want to use a service for continuous calls; topics or even
actions would be better suited.

Understanding Parameters

A parameter is a configuration value of a node. You can think of parameters as node
settings. A node can store parameters as integers, floats, booleans, strings, and lists. In
ROS 2, each node maintains its own parameters.

To see the parameters of open nodes you can run the command

ros2 param list

Once you see a list of params you can see the values of params using:

ros2 param get <node_name> <parameter_name>

In turtle sim, I see that the param for background_g is up (along with red and blue) so to
see the green value

To change a parameter value right away you use the command:

ros2 param set <node_name> <parameter_name> <value>

Doing this change will only affect the node param during these sessions and does not
keep the change permanently. To make the change non-volatile:

To first see all the set params for a node use ros2 param dump <node name>

Here is an example of saving my set params to a file in my working directory of ros,
then loading it to the turtlesim. To do this on launch of a node, use the following:

ros2 run <package_name> <executable_name> --ros-args --params-file

<file_name>

To continue with the running example this would be the command line run for ts:

ros2 run turtlesim turtlesim_node --ros-args --params-file

turtlesim.yaml

“Nodes have parameters to define their default configuration values. You can get and set

parameter values from the command line. You can also save the parameter settings to a

file to reload them in a future session.”

[This space is left intentionally blank]

Understanding Actions

Actions are one of the communication types in ROS 2 and are intended for long
running tasks. They consist of three parts: a goal, feedback, and a result.

Actions are a framework of Services and topics, and can be canceled. The topic
provides feedback on the action and the service manages the requests and responses
of the nodes.

Actions can be canceled on the server side or by the client. Cancelation by the
client is “stopping the goal” or “canceling the goal”. Cancelation on the server side is
“aborting the goal”

Using the running example of turtlesim, node and telop_key, the node is the client and
the telop_key is the server. Using the GBVC.. keys that form a box around f are setting
“goals” from the server side to send to the client, which provides feedback in the form of
messages on the goal topic!

- Dont assume that when 2 goals are given in a server (one given after the other
but before the first has a chance to complete) that the server will choose to abort
the old goal and execute the new one, this is just how this server was set up)

You can display a package nodes action servers using the following command:

ros2 node info /<package name>

Using turtlesim as the example (/turtlesim), the previous information in the image
appears

Note: the rotate_absolute action is under a server for the turtlesim node, which
means that the node responds to and provides feedback for the
/turtle1/rotate_absolute action.

To list just the actions available in a ROS2 system and grab command line format:

ros2 action list -t

- You can take the action this returns and run ros2 action info <action> to see its

clients and servers

As before you can call from the command line. Once the action is fully grabbed with
ros2 action list -ta run what was in the [brackets] ros2 interface show <[]>

Now that we have the structure we can send goals to actions via:

ros2 action send_goal <action_name> <action_type> <values>

For example:

ros2 action send_goal /turtle1/rotate_absolute

turtlesim/action/RotateAbsolute "{theta: 1.57}"

Which puts the little turtle pointing straight up (this makes sense since the top of the unit
circle is at pi/2 or 3.1415/2 which = 1.57 rad!

- Delta shows the change from the original position, here I ran the command two
timers and thus the second had a delta of 0 since we were moving to exactly
where we were.

- All goals get a unique ID, and return with a goal status

“A robot system would likely use actions for navigation. An action goal could tell a robot
to travel to a position. While the robot navigates to the position, it can send updates
along the way (i.e. feedback), and then a final result message once it’s reached its
destination.”

Using rqt_console to view logs

Rqt_console is the rqt graphical tool that you can use to view logs collected over time.
Much like the section before on rqt, you interact with it not through commands but the
pop up interface (hence GUI)

● Fatal messages indicate the system is going to terminate to try to protect itself

from detriment.

● Error messages indicate significant issues that won’t necessarily damage the

system, but are preventing it from functioning properly.

● Warn messages indicate unexpected activity or non-ideal results that might

represent a deeper issue, but don’t harm functionality outright.

● Info messages indicate event and status updates that serve as a visual

verification that the system is running as expected.

● Debug messages detail the entire step-by-step process of the system

execution.

Rqt console can be helpful in determining where something went wrong, or the events

that led up to it. There are a number of good reasons to examine the log messages.

Launching a system of nodes together

By now, every node has been launched in its own shell. This of course becomes
cumbersome in complex robotics systems. That's why we use “launch files,” and the
ros2 launch command.

Using the running example we can launch 2 turtlesims at once using the following:

ros2 launch turtlesim multisim.launch.py

Where multisim.launch.py is our starter script, in python: (more on how to write this
later) (note that turtlesim is the demo package where the file is)

from launch import LaunchDescription
import launch_ros.actions

def generate_launch_description():
 return LaunchDescription([
 launch_ros.actions.Node(
 namespace='turtlesim1', package='turtlesim',
 executable='turtlesim_node', output='screen'),
 launch_ros.actions.Node(
 namespace='turtlesim2', package='turtlesim',
 executable='turtlesim_node', output='screen'),
])

http://multisim.launch.py

Data Logging

Sometimes we want to record our data to check experiments or share our topics with
others. This can be done with a built in ros feature. Recorded data can also be played
back to enhance reproducibility. Use:

ros2 bag

Best practice is to make a dedicated folder to store data. This can be done in command
line as expected:

mkdir bag_files
cd bag_files

You want to be inside the folder where you plan to record your logged data.

The ros2 bag only records data that is being published from topics. Note again that to
see the topics available for us to listen to we can use ros2 topic list

The ros2 bag can record a single or multiple topics:

- Single topic

ros2 bag record <topic_name>

- Multi topic

ros2 bag record <topic_name> <topic_name2> <topic_name3>

You may pause recording with space and stop with ctrl + c (remember to record in the
folder you want to store data in!) (use record -a to record all topics)

To grab the info on a bag and see some stats on it:

ros2 bag info <bag_file_name>

ros2 bag record -o subset /turtle1/cmd_vel /turtle1/pose

NOTE: from within a folder you can have many bags, name them with -o “name”
Here the bag was named subset.

You can play back bags which will communicate right to the same nodes as when
recorded:

ros2 bag play <”name”>

End of Beginner: CLI Tools tutorials!

