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Domain	and	range	of	rational	function	graph

How	do	you	find	the	domain	and	range	of	a	rational	function	graph.		Find	the	domain	and	range	of	the	rational	function	graphed	below.		How	to	find	domain	and	range	of	rational	function	graph.		Domain	and
range	of	rational	functions.		Finding	the	intercepts	asymptotes	domain	and	range	from	the	graph	of	a	rational	function.		Finding	the	intercepts	asymptotes	domain	and	range	from	the	graph	of	a	rational	function

calculator.		

Learn	Rational	Function	with	tutors	mapped	to	your	child's	learning	needs.30-DAY	PROMISE	|	GET	100%	MONEY	BACK**T&C	ApplyMath	worksheets	and	visual	curriculum	In	order	to	continue	enjoying	our	site,	we	ask	that	you	confirm	your	identity	as	a	human.	Thank	you	very	much	for	your	cooperation.	In	order	to	continue	enjoying	our	site,	we	ask
that	you	confirm	your	identity	as	a	human.	Thank	you	very	much	for	your	cooperation.	A	vertical	asymptote	represents	a	value	at	which	a	rational	function	is	undefined,	so	that	value	is	not	in	the	domain	of	the	function.	A	reciprocal	function	cannot	have	values	in	its	domain	that	cause	the	denominator	to	equal	zero.	In	general,	to	find	the	domain	of	a
rational	function,	we	need	to	determine	which	inputs	would	cause	division	by	zero.	Definition:	DOMAIN	OF	A	RATIONAL	FUNCTION	The	domain	of	a	rational	function	includes	all	real	numbers	except	those	that	cause	the	denominator	to	equal	zero.		How	To:	Given	a	rational	function,	find	the	domain.	Set	the	denominator	equal	to	zero.	Solve	to	find
the	x-values	that	cause	the	denominator	to	equal	zero.	The	domain	is	all	real	numbers	except	those	found	in	Step	2.	Example	\(\PageIndex{1}\):	Finding	the	Domain	of	a	Rational	Function	Find	the	domain	of	\(f(x)=\dfrac{x+3}{x^2−9}\).	Solution	Begin	by	setting	the	denominator	equal	to	zero	and	solving.	\(x^2-9=0	\)	\(x^2=9	\)	\(x=\pm	3	\)	The
denominator	is	equal	to	zero	when	\(x=\pm	3\).	The	domain	of	the	function	is	all	real	numbers	except	\(x=\pm	3\).	Analysis	A	graph	of	this	function,	as	shown	in	Figure	\(\PageIndex{1}\),	confirms	that	the	function	is	not	defined	when	\(x=\pm	3\).	There	is	a	vertical	asymptote	at	\(x=3\)	and	a	hole	in	the	graph	at	\(x=−3\).	We	will	discuss	these	types	of
holes	in	greater	detail	later	in	this	section.	Figure	\(\PageIndex{1}\)	Try	It	\(\PageIndex{1}\)	Find	the	domain	of	\(f(x)=\dfrac{4x}{5(x−1)(x−5)}\).	Answer	The	domain	is	all	real	numbers	except	\(x=1\)	and	\(x=5\).	By	looking	at	the	graph	of	a	rational	function,	we	can	investigate	its	local	behavior	and	easily	see	whether	there	are	asymptotes.	We	may
even	be	able	to	approximate	their	location.	Even	without	the	graph,	however,	we	can	still	determine	whether	a	given	rational	function	has	any	asymptotes,	and	calculate	their	location.	The	vertical	asymptotes	of	a	rational	function	may	be	found	by	examining	the	factors	of	the	denominator	that	are	not	common	to	the	factors	in	the	numerator.	Vertical
asymptotes	occur	at	the	zeros	of	such	factors.		How	To:	Given	a	rational	function,	identify	any	vertical	asymptotes	of	its	graph	Factor	the	numerator	and	denominator.	Note	any	restrictions	in	the	domain	of	the	function.	Reduce	the	expression	by	canceling	common	factors	in	the	numerator	and	the	denominator.	Note	any	values	that	cause	the
denominator	to	be	zero	in	this	simplified	version.	These	are	where	the	vertical	asymptotes	occur.	

Note	any	restrictions	in	the	domain	where	asymptotes	do	not	occur.	These	are	removable	discontinuities,	or	“holes.”	Example	\(\PageIndex{2}\):	Identifying	Vertical	Asymptotes	Find	the	vertical	asymptotes	of	the	graph	of	\(k(x)=\dfrac{5+2x^2}{2−x−x^2}\).	Solution	First,	factor	the	numerator	and	denominator.	\[k(x)=\dfrac{5+2x^2}{2−x−x^2}	
onumber	\]	\[=\dfrac{5+2x^2}{(2+x)(1-x)}	onumber	\]	To	find	the	vertical	asymptotes,	we	determine	where	this	function	will	be	undefined	by	setting	the	denominator	equal	to	zero:	\[(2+x)(1−x)=0	onumber	\]	\[x=−2,	\;	x=1	onumber	\]	Neither	\(x=–2\)	nor	\(x=1\)	are	zeros	of	the	numerator,	so	the	two	values	indicate	two	vertical	asymptotes.	The
graph	in	Figure	\(\PageIndex{2}\)	confirms	the	location	of	the	two	vertical	asymptotes.	
Figure	\(\PageIndex{2}\).	Occasionally,	a	graph	will	contain	a	hole:	a	single	point	where	the	graph	is	not	defined,	indicated	by	an	open	circle.	We	call	such	a	hole	a	removable	discontinuity.	For	example,	the	function	\(f(x)=\dfrac{x^2−1}{x^2−2x−3}\)	may	be	re-written	by	factoring	the	numerator	and	the	denominator.	\[f(x)=\dfrac{(x+1)(x−1)}
{(x+1)(x−3)}	onumber	\]	Notice	that	\(x+1\)	is	a	common	factor	to	the	numerator	and	the	denominator.	The	zero	of	this	factor,	\(x=−1\),	is	the	location	of	the	removable	discontinuity.	Notice	also	that	\(	(x–3)	\)	is	not	a	factor	in	both	the	numerator	and	denominator.	The	zero	of	this	factor,	\(x=3\),	is	the	vertical	asymptote.	See	Figure	\
(\PageIndex{3.1}\).	[Note	that	removable	discontinuities	may	not	be	visible	when	we	use	a	graphing	calculator,	depending	upon	the	window	selected.]	Figure	\(\PageIndex{3.1}\).	REMOVABLE	DISCONTINUITIES	OF	RATIONAL	FUNCTIONS	A	removable	discontinuity	occurs	in	the	graph	of	a	rational	function	at	\(x=a\)	if	\(a\)	is	a	zero	for	a	factor	in
the	denominator	that	is	common	with	a	factor	in	the	numerator.	We	factor	the	numerator	and	denominator	and	check	for	common	factors.	If	we	find	any,	we	set	the	common	factor	equal	to	0	and	solve.	This	is	the	location	of	the	removable	discontinuity.	
This	is	true	if	the	multiplicity	of	this	factor	is	greater	than	or	equal	to	that	in	the	denominator.	If	the	multiplicity	of	this	factor	is	greater	in	the	denominator,	then	there	is	still	an	asymptote	at	that	value.	Example	\(\PageIndex{3}\):	Identifying	Vertical	Asymptotes	and	Removable	Discontinuities	for	a	Graph	Find	the	vertical	asymptotes	and	removable
discontinuities	of	the	graph	of	\(k(x)=\dfrac{x−2}{x^2−4}\).	Solution	Factor	the	numerator	and	the	denominator.	\[k(x)=\dfrac{x−2}{(x−2)(x+2)}	onumber	\]	Notice	that	there	is	a	common	factor	in	the	numerator	and	the	denominator,	\(x–2\).	The	zero	for	this	factor	is	\(x=2\).	This	is	the	location	of	the	removable	discontinuity.	Notice	that	there	is	a
factor	in	the	denominator	that	is	not	in	the	numerator,	\(x+2\).	The	zero	for	this	factor	is	\(x=−2\).	The	vertical	asymptote	is	\(x=−2\).	
See	Figure	\(\PageIndex{3.2}\).	The	graph	of	this	function	will	have	the	vertical	asymptote	at	\(x=−2\),	but	at	\(x=2\)	the	graph	will	have	a	hole.	Figure	\(\PageIndex{3.2}\).	Try	It	\(\PageIndex{3}\)	Find	the	vertical	asymptotes	and	removable	discontinuities	of	the	graph	of	\(f(x)=\dfrac{x^2−25}{x^3−6x^2+5x}\).	Answer	Removable	discontinuity	at	\
(x=5\).		Vertical	asymptotes:	\(x=0\),	\(x=1\).	While	vertical	asymptotes	describe	the	behavior	of	a	graph	as	the	output	gets	very	large	or	very	small,	horizontal	asymptotes	help	describe	the	behavior	of	a	graph	as	the	input	gets	very	large	or	very	small.	Recall	that	a	polynomial’s	end	behavior	will	mirror	that	of	the	leading	term.	

Likewise,	a	rational	function’s	end	behavior	will	mirror	that	of	the	ratio	of	the	function	that	is	the	ratio	of	the	leading	terms.	There	are	three	distinct	outcomes	when	checking	for	horizontal	asymptotes:	Case	1:	If	the	degree	of	the	denominator	>	degree	of	the	numerator,	there	is	a	horizontal	asymptote	at	\(y=0\).	Example:	\(f(x)=\dfrac{4x+2}
{x^2+4x−5}\)	In	this	case,	the	end	behavior	is	\(f(x)≈\dfrac{4x}{x^2}=\dfrac{4}{x}\).	This	tells	us	that,	as	the	inputs	increase	or	decrease	without	bound,	this	function	will	behave	similarly	to	the	function	\(g(x)=\dfrac{4}{x}\),	and	the	outputs	will	approach	zero,	resulting	in	a	horizontal	asymptote	at	\(y=0\).	See	Figure	\(\PageIndex{4a}\).	Note
that	this	graph	crosses	the	horizontal	asymptote.	Figure	\(\PageIndex{4a}\):	Horizontal	asymptote	\(y=0\)	occurs	when	the	degree	of	the	numerator	is	<	degree	of	the	denominator.	Case	2:	If	the	degree	of	the	denominator	<	degree	of	the	numerator	by	one,	we	get	a	slant	asymptote.	
Example:	\(f(x)=\dfrac{3x^2−2x+1}{x−1}\)	In	this	case,	the	end	behavior	is	\(f(x)≈\dfrac{3x^2}{x}=3x\).	This	tells	us	that	as	the	inputs	increase	or	decrease	without	bound,	this	function	will	behave	similarly	to	the	function	\(g(x)=3x\).	
As	the	inputs	grow	large,	the	outputs	will	grow	and	not	level	off,	so	this	graph	has	no	horizontal	asymptote.	However,	the	graph	of	\(g(x)=3x\)	looks	like	a	diagonal	line,	and	since	\(f\)	will	behave	similarly	to	\(g\),	it	will	approach	a	line	close	to	\(y=3x\).	This	line	is	a	slant	asymptote.	To	find	the	equation	of	the	slant	asymptote,	divide	\
(\dfrac{3x^2−2x+1}{x−1}\).	The	quotient	is	\(3x+1\),	and	the	remainder	is	2.	The	slant	asymptote	is	the	graph	of	the	line	\(g(x)=3x+1\).	See	Figure	\(\PageIndex{4b}\).	
Figure	\(\PageIndex{4b}\):	Slant	asymptote	occurs	when		the	degree	of	the	numerator	=	1+	degree	of	the	denominator.	Case	3:	If	the	degree	of	the	denominator	=	degree	of	the	numerator,	there	is	a	horizontal	asymptote	at	\(y=\frac{a_n}{b_n}\),	where	\(a_n\)	and	\(b_n\)	are	respectively	the	leading	coefficients	of	the	numerator	and	denominator	of
the	rational	function.	Example:	\(f(x)=\dfrac{3x^2+2}{x^2+4x−5}\)	In	this	case,	the	end	behavior	is	\(f(x)≈\dfrac{3x^2}{x^2}=3\).	This	tells	us	that	as	the	inputs	grow	large,	this	function	will	behave	like	the	function	\(g(x)=3\),	which	is	a	horizontal	line.	As	\(x\rightarrow	\pm	\infty\),	\(f(x)\rightarrow	3\),	resulting	in	a	horizontal	asymptote	at	\
(y=3\).	See	Figure	\(\PageIndex{4c}\).	Note	that	this	graph	crosses	the	horizontal	asymptote.	Figure	\(\PageIndex{4c}\):	Horizontal	asymptote	\(y=a/b\)	occurs	when	the	degree	of	the	numerator	=	degree	of	the	denominator.	Notice	that,	while	the	graph	of	a	rational	function	will	never	cross	a	vertical	asymptote,	the	graph	may	or	may	not	cross	a
horizontal	or	slant	asymptote.	Also,	although	the	graph	of	a	rational	function	may	have	many	vertical	asymptotes,	the	graph	will	have	at	most	one	horizontal	(or	slant)	asymptote.	It	should	be	noted	that,	if	the	degree	of	the	numerator	is	larger	than	the	degree	of	the	denominator	by	more	than	one,	the	end	behavior	of	the	graph	will	mimic	the	behavior
of	the	reduced	end	behavior	fraction.	For	instance,	if	we	had	the	function	\[f(x)=\dfrac{3x^5−x^2}{x+3}	onumber	\]	with	end	behavior	\[f(x)≈\dfrac{3x^5}{x}=3x^4	onumber	\]	the	end	behavior	of	the	graph	would	look	similar	to	that	of	an	even	polynomial	with	a	positive	leading	coefficient.	\(x\rightarrow	\pm	\infty,	f(x)\rightarrow	\infty\)
HORIZONTAL	ASYMPTOTES	OF	RATIONAL	FUNCTIONS	The	horizontal	asymptote	of	a	rational	function	can	be	determined	by	looking	at	the	degrees	of	the	numerator	and	denominator.	Degree	of	numerator	is	less	than	degree	of	denominator:	horizontal	asymptote	at	\(y=0\).	Degree	of	numerator	is	greater	than	degree	of	denominator	by	one:	no
horizontal	asymptote;	slant	asymptote.	Degree	of	numerator	is	equal	to	degree	of	denominator:	horizontal	asymptote	at	ratio	of	leading	coefficients.	Example	\(\PageIndex{4.1}\):	Identifying	Horizontal	and	Slant	Asymptotes	For	the	functions	listed,	identify	the	horizontal	or	slant	asymptote.	\(g(x)=\dfrac{6x^3−10x}{2x^3+5x^2}\)	\
(h(x)=\dfrac{x^2−4x+1}{x+2}\)	\(k(x)=\dfrac{x^2+4x}{x^3−8}\)	Solution	For	these	solutions,	we	will	use	\(f(x)=\dfrac{p(x)}{q(x)},\space	q(x)≠0\).	\(g(x)=\dfrac{6x^3−10x}{2x^3+5x^2}\):	The	degree	of	\(p	=	\)	degree	of	\(q=3\),	so	we	can	find	the	horizontal	asymptote	by	taking	the	ratio	of	the	leading	terms.	There	is	a	horizontal	asymptote	at	\
(y	=\frac{6}{2}\)	or	\(y=3\).	\(h(x)=\dfrac{x^2−4x+1}{x+2}\):	The	degree	of	\(p=2\)	and	degree	of	\(q=1\).	Since	\(p>q\)	by	1,	there	is	a	slant	asymptote	found	at	\(\dfrac{x^2−4x+1}{x+2}\).	\(k(x)=\dfrac{x^2+4x}{x^3−8}\)	:	The	degree	of	\(p=2\)	<	degree	of	\(q=3\),	so	there	is	a	horizontal	asymptote	\(y=0\).	Example	\(\PageIndex{4.2}\)
Identifying	Horizontal	Asymptotes	In	the	sugar	concentration	problem	earlier,	we	created	the	equation	\(C(t)=\dfrac{5+t}{100+10t}\).	Find	the	horizontal	asymptote	and	interpret	it	in	context	of	the	problem.	Solution	Both	the	numerator	and	denominator	are	linear	(degree	1).	Because	the	degrees	are	equal,	there	will	be	a	horizontal	asymptote	at	the
ratio	of	the	leading	coefficients.	In	the	numerator,	the	leading	term	is	\(t\),	with	coefficient	1.	
In	the	denominator,	the	leading	term	is	10t,	with	coefficient	10.	The	horizontal	asymptote	will	be	at	the	ratio	of	these	values:	\(t\rightarrow	\infty,\space	C(t)\rightarrow	\frac{1}{10}\)	This	function	will	have	a	horizontal	asymptote	at	\(y=\frac{1}{10}\).	This	tells	us	that	as	the	values	of	\(t\)	increase,	the	values	of	\(C\)	will	approach	\(\frac{1}{10}\).	In
context,	this	means	that,	as	more	time	goes	by,	the	concentration	of	sugar	in	the	tank	will	approach	one-tenth	of	a	pound	of	sugar	per	gallon	of	water	or	\(\frac{1}{10}\)	pounds	per	gallon.	Example	\(\PageIndex{4.3}\):	Identifying	Horizontal	and	Vertical	Asymptotes	Find	the	horizontal	and	vertical	asymptotes	of	the	function	\(f(x)=\dfrac{(x−2)(x+3)}
{(x−1)(x+2)(x−5)}\)	Solution	First,	note	that	this	function	has	no	common	factors,	so	there	are	no	potential	removable	discontinuities.	The	function	will	have	vertical	asymptotes	when	the	denominator	is	zero,	causing	the	function	to	be	undefined.	The	denominator	will	be	zero	at	\(x=1,–2,\)and	\(5\),	indicating	vertical	asymptotes	at	these	values.	The
numerator	has	degree	\(2\),	while	the	denominator	has	degree	3.	Since	the	degree	of	the	denominator	is	greater	than	the	degree	of	the	numerator,	the	denominator	will	grow	faster	than	the	numerator,	causing	the	outputs	to	tend	towards	zero	as	the	inputs	get	large,	and	so	as	\(x\rightarrow	\pm	\infty\),	\(f(x)\rightarrow	0\).	This	function	will	have	a
horizontal	asymptote	at	\(y	=0.\)	See	Figure	\(\PageIndex{4.3}\).	Figure	\(\PageIndex{4.3}\).	
Try	It	\(\PageIndex{4}\)	Find	the	vertical	and	horizontal	asymptotes	of	the	function:	\(f(x)=\dfrac{(2x−1)(2x+1)}{(x−2)(x+3)}\)	Answer	Vertical	asymptotes	at	\(x=2\)	and	\(x=–3\)	horizontal	asymptote	at	\(y	=4\).	INTERCEPTS	OF	RATIONAL	FUNCTIONS	A	rational	function	will	have	a	\(y\)-intercept	at	\(f(0),\)	if	the	function	is	defined	at	zero.	A
rational	function	will	not	have	a	\(y\)-intercept	if	the	function	is	not	defined	at	zero.	Likewise,	a	rational	function	will	have	\(x\)-intercepts	at	the	inputs	that	cause	the	output	to	be	zero.	
Since	a	fraction	is	only	equal	to	zero	when	the	numerator	is	zero,	x-intercepts	can	only	occur	when	the	numerator	of	the	rational	function	is	equal	to	zero.	Example	\(\PageIndex{5}\):	Finding	the	Intercepts	of	a	Rational	Function	Find	the	intercepts	of	\(f(x)=\dfrac{(x−2)(x+3)}{(x−1)(x+2)(x−5)}\).	Solution	We	can	find	the	y-intercept	by	evaluating	the
function	at	zero	\(f(0)=\dfrac{(0−2)(0+3)}{(0−1)(0+2)(0−5)}\)	\(=−\dfrac{6}{10}\)	\(=−\dfrac{3}{5}\)	\(=−0.6\)	The	x-intercepts	will	occur	when	the	function	is	equal	to	zero.	Notice	the	function	is	zero	when	the	numerator	is	zero.	\(	0=\dfrac{(x−2)(x+3)}{(x−1)(x+2)(x−5)}		\)	\(	0=(x−2)(x+3)	\)	\(		x=2,	x=−3	\)			The	y-intercept	is	\((0,–0.6)\),	the	x-
intercepts	are	\((2,0)\)	and	\((–3,0)\).	See	Figure	\(\PageIndex{5}\).	Figure	\(\PageIndex{5}\).	Try	It	\(\PageIndex{5}\)	Given	the	reciprocal	squared	function	that	is	shifted	right	3	units	and	down	4	units,	write	this	as	a	rational	function.	Then,	find	the	x-	and	y-intercepts	and	the	horizontal	and	vertical	asymptotes.	

Answer	For	the	transformed	reciprocal	squared	function,	we	find	the	rational	form.	\(f(x)=\dfrac{1}{{(x−3)}^2}−4=\dfrac{1−4{(x−3)}^2}{{(x−3)}^2}=\dfrac{1−4(x^2−6x+9)}{(x−3)(x−3)}=\dfrac{−4x^2+24x−35}{x^2−6x+9}\)	Because	the	numerator	is	the	same	degree	as	the	denominator	we	know	that	as	\(x\rightarrow	\pm	\infty\),	\
(f(x)\rightarrow	−4\);	so	\(y=–4\)	is	the	horizontal	asymptote.	

Next,	we	set	the	denominator	equal	to	zero,	and	find	that	the	vertical	asymptote	is	\(x=3\),	because	as	\(x\rightarrow	3\),	\(f(x)\rightarrow	\infty\).	We	then	set	the	numerator	equal	to	\(0\)	and	find	the	x-intercepts	are	at	\((2.5,0)\)	and	\((3.5,0)\).	Finally,	we	evaluate	the	function	at	0	and	find	the	y-intercept	to	be	at	\((0,−\frac{35}{9})\).	
In	Example	\(\PageIndex{10}\),	we	see	that	the	numerator	of	a	rational	function	reveals	the	x-intercepts	of	the	graph,	whereas	the	denominator	reveals	the	vertical	asymptotes	of	the	graph.	As	with	polynomials,	factors	of	the	numerator	may	have	integer	powers	greater	than	one.	Fortunately,	the	effect	on	the	shape	of	the	graph	at	those	intercepts	is
the	same	as	we	saw	with	polynomials.	The	vertical	asymptotes	associated	with	the	factors	of	the	denominator	will	mirror	one	of	the	two	toolkit	reciprocal	functions.	When	the	degree	of	the	factor	in	the	denominator	is	odd,	the	distinguishing	characteristic	is	that	on	one	side	of	the	vertical	asymptote	the	graph	heads	towards	positive	infinity,	and	on	the
other	side	the	graph	heads	towards	negative	infinity.	See	Figure	\(\PageIndex{6a}\).	In	contrast,	when	the	degree	of	the	factor	in	the	denominator	is	even,	the	distinguishing	characteristic	is	that	the	graph	either	heads	toward	positive	infinity	on	both	sides	of	the	vertical	asymptote	or	heads	toward	negative	infinity	on	both	sides.	See	Figure	\
(\PageIndex{6b}\).	Figure	\(\PageIndex{6a}\):	Odd	multiplicity	Figure	\(\PageIndex{6b}\):	Even	multiplicity	For	example,	the	graph	of	\(f(x)=\dfrac{{(x+1)}^2(x−3)}{{(x+3)}^2(x−2)}\)	is	shown	in	Figure	\(\PageIndex{6c}\).	

At	the	x-intercept	\(x=−1\)	corresponding	to	the	\({(x+1)}^2\)	factor	of	the	numerator,	the	graph	"bounces",	consistent	with	the	quadratic	nature	of	the	factor.	At	the	x-intercept	\(x=3\)	corresponding	to	the	\((x−3)\)	factor	of	the	numerator,	the	graph	passes	through	the	axis	as	we	would	expect	from	a	linear	factor.	At	the	vertical	asymptote	\(x=−3\)
corresponding	to	the	\({(x+3)}^2\)	factor	of	the	denominator,	the	graph	heads	towards	positive	infinity	on	both	sides	of	the	asymptote,	consistent	with	the	behavior	of	the	function	\(f(x)=\dfrac{1}{x^2}\).	At	the	vertical	asymptote	\(x=2\),	corresponding	to	the	\((x−2)\)	factor	of	the	denominator,	the	graph	heads	towards	positive	infinity	on	the	left
side	of	the	asymptote	and	towards	negative	infinity	on	the	right	side,	consistent	with	the	behavior	of	the	function	\(f(x)=\dfrac{1}{x}\).	Figure	\(\PageIndex{6c}\).		Howto:	Given	a	rational	function,	sketch	a	graph.	Evaluate	the	function	at	0	to	find	the	y-intercept.	
Factor	the	numerator	and	denominator.	For	factors	in	the	numerator	not	common	to	the	denominator,	determine	where	each	factor	of	the	numerator	is	zero	to	find	the	x-intercepts.	Find	the	multiplicities	of	the	x-intercepts	to	determine	the	behavior	of	the	graph	at	those	points.	For	factors	in	the	denominator,	note	the	multiplicities	of	the	zeros	to
determine	the	local	behavior.	For	those	factors	not	common	to	the	numerator,	find	the	vertical	asymptotes	by	setting	those	factors	equal	to	zero	and	then	solve.	For	factors	in	the	denominator	common	to	factors	in	the	numerator,	find	the	removable	discontinuities	by	setting	those	factors	equal	to	0	and	then	solve.	Compare	the	degrees	of	the
numerator	and	the	denominator	to	determine	the	horizontal	or	slant	asymptotes.	Sketch	the	graph.	Example	\(\PageIndex{6}\):	Graphing	a	Rational	Function	Sketch	a	graph	of	\(f(x)=\frac{(x+2)(x−3)}{{(x+1)}^2(x−2)}\).	Solution	We	can	start	by	noting	that	the	function	is	already	factored,	saving	us	a	step.	Next,	we	will	find	the	intercepts.
Evaluating	the	function	at	zero	gives	the	y-intercept:	\(f(0)=\dfrac{(0+2)(0−3)}{{(0+1)}^2(0−2)}=3\)	To	find	the	x-intercepts,	we	determine	when	the	numerator	of	the	function	is	zero.	Setting	each	factor	equal	to	zero,	we	find	x-intercepts	at	\(x=–2\)	and	\(x=3\).	At	each,	the	behavior	will	be	linear	(multiplicity	1),	with	the	graph	passing	through	the
intercept.	We	have	a	y-intercept	at	\((0,3)\)	and	x-intercepts	at	\((–2,0)\)	and	\((3,0)\).	To	find	the	vertical	asymptotes,	we	determine	when	the	denominator	is	equal	to	zero.	This	occurs	when	\(x+1=0\)	and	when	\(x–2=0\),	giving	us	vertical	asymptotes	at	\(x=–1\)	and	\(x=2\).	There	are	no	common	factors	in	the	numerator	and	denominator.	This	means
there	are	no	removable	discontinuities.	Finally,	the	degree	of	denominator	is	larger	than	the	degree	of	the	numerator,	telling	us	this	graph	has	a	horizontal	asymptote	at	\(y	=0\).	To	sketch	the	graph,	we	might	start	by	plotting	the	three	intercepts.	
Since	the	graph	has	no	x-intercepts	between	the	vertical	asymptotes,	and	the	y-intercept	is	positive,	we	know	the	function	must	remain	positive	between	the	asymptotes,	letting	us	fill	in	the	middle	portion	of	the	graph	as	shown	in	Figure	\(\PageIndex{6a}\).	Figure	\(\PageIndex{6a}\).	The	factor	associated	with	the	vertical	asymptote	at	\(x=−1\)	was
squared,	so	we	know	the	behavior	will	be	the	same	on	both	sides	of	the	asymptote.	The	graph	heads	toward	positive	infinity	as	the	inputs	approach	the	asymptote	on	the	right,	so	the	graph	will	head	toward	positive	infinity	on	the	left	as	well.	For	the	vertical	asymptote	at	\(x=2\),	the	factor	was	not	squared,	so	the	graph	will	have	opposite	behavior	on
either	side	of	the	asymptote.	See	Figure	\(\PageIndex{6b}\).	After	passing	through	the	x-intercepts,	the	graph	will	then	level	off	toward	an	output	of	zero,	as	indicated	by	the	horizontal	asymptote.	Figure	\(\PageIndex{6b}\).	Try	It	\(\PageIndex{6}\)	Given	the	function	\(f(x)=\dfrac{{(x+2)}^2(x−2)}{2{(x−1)}^2(x−3)}\),	use	the	characteristics	of
polynomials	and	rational	functions	to	describe	its	behavior	and	sketch	the	function.	
Answer	Horizontal	asymptote	at	\(y=\frac{1}{2}\).	
Vertical	asymptotes	at	\(x=1\)	and	\(x=3\).	
y-intercept	at	\((0,\frac{4}{3})\).	
x-intercepts	at	\((2,0)\)	and	\((–2,0)\).	\((–2,0)\)	is	a	zero	with	multiplicity	\(2\),	and	the	graph	bounces	off	the	x-axis	at	this	point.	\((2,0)\)	is	a	single	zero	and	the	graph	crosses	the	axis	at	this	point.	Figure	\(\PageIndex{6}\).	Now	that	we	have	analyzed	the	equations	for	rational	functions	and	how	they	relate	to	a	graph	of	the	function,	we	can	use
information	given	by	a	graph	to	write	the	function.	A	rational	function	written	in	factored	form	will	have	an	x-intercept	where	each	factor	of	the	numerator	is	equal	to	zero.	(An	exception	occurs	in	the	case	of	a	removable	discontinuity.)	As	a	result,	we	can	form	a	numerator	of	a	function	whose	graph	will	pass	through	a	set	of	x-intercepts	by	introducing
a	corresponding	set	of	factors.	Likewise,	because	the	function	will	have	a	vertical	asymptote	where	each	factor	of	the	denominator	is	equal	to	zero,	we	can	form	a	denominator	that	will	produce	the	vertical	asymptotes	by	introducing	a	corresponding	set	of	factors.	WRITING	RATIONAL	FUNCTIONS	FROM	INTERCEPTS	AND	ASYMPTOTES	If	a
rational	function	has	x-intercepts	at	\(x=x_1,x_2,...,x_n\),	vertical	asymptotes	at	\(x=v_1,v_2,…,v_m\),	and	no	\(x_i=\)	any	\(v_j\),	then	the	function	can	be	written	in	the	form:	\(f(x)=a\dfrac{	{(x−x_1)}^{p_1}	{(x−x_2)}^{p_2}⋯{(x−x_n)}^{p_n}	}{	{(x−v_1)}^{q_1}	{(x−v_2)}^{q_2}⋯{(x−v_m)}^{q_n}}\)	where	the	powers	\(p_i\)	or	\(q_i\)	on	each
factor	can	be	determined	by	the	behavior	of	the	graph	at	the	corresponding	intercept	or	asymptote,	and	the	stretch	factor	\(a\)	can	be	determined	given	a	value	of	the	function	other	than	the	x-intercept	or	by	the	horizontal	asymptote	if	it	is	nonzero.	Given	a	graph	of	a	rational	function,	write	the	function.	
Determine	the	factors	of	the	numerator.	Examine	the	behavior	of	the	graph	at	the	x-intercepts	to	determine	the	zeroes	and	their	multiplicities.	(This	is	easy	to	do	when	finding	the	“simplest”	function	with	small	multiplicities—such	as	1	or	3—but	may	be	difficult	for	larger	multiplicities—such	as	5	or	7,	for	example.)	Determine	the	factors	of	the
denominator.	Examine	the	behavior	on	both	sides	of	each	vertical	asymptote	to	determine	the	factors	and	their	powers.	Use	any	clear	point	on	the	graph	to	find	the	stretch	factor.	Example	\(\PageIndex{7}\):	Writing	a	Rational	Function	from	Intercepts	and	Asymptotes	Write	an	equation	for	the	rational	function	shown	in	Figure	\(\PageIndex{7e}\).	
Figure	\(\PageIndex{7e}\).	Solution	The	graph	appears	to	have	x-intercepts	at	\(x=–2\)	and	\(x=3\).	At	both,	the	graph	passes	through	the	intercept,	suggesting	linear	factors.	The	graph	has	two	vertical	asymptotes.	The	one	at	\(x=–1\)	seems	to	exhibit	the	basic	behavior	similar	to	\(\dfrac{1}{x}\),	with	the	graph	heading	toward	positive	infinity	on	one
side	and	heading	toward	negative	infinity	on	the	other.	The	asymptote	at	\(x=2\)	is	exhibiting	a	behavior	similar	to	\(\dfrac{1}{x^2}\),	with	the	graph	heading	toward	negative	infinity	on	both	sides	of	the	asymptote.	See	Figure	\(\PageIndex{7s}\).	We	can	use	this	information	to	write	a	function	of	the	form	\(f(x)=a\dfrac{(x+2)(x−3)}{(x+1)
{(x−2)}^2}\)	To	find	the	stretch	factor,	we	can	use	another	clear	point	on	the	graph,	such	as	the	y-intercept	\((0,–2)\).	\(−2=a\dfrac{(0+2)(0−3)}{(0+1){(0−2)}^2}\)	\(-2=a\dfrac{−6}{4}\)	\(a=\dfrac{−8}{−6}=\dfrac{4}{3}\)	This	gives	us	a	final	function	of	\(f(x)=\dfrac{4(x+2)(x−3)}{3(x+1){(x−2)}^2}\).	Figure	\(\PageIndex{7s}\).		Rational
Function	\(	\qquad	\)	\(f(x)=\dfrac{P(x)}{Q(x)}=\dfrac{a_px^p+a_{p−1}x^{p−1}+...+a_1x+a_0}{b_qx^q+b_{q−1}x^{q−1}+...+b_1x+b_0},\space	Q(x)≠0\)	Key	Concepts	We	can	use	arrow	notation	to	describe	local	behavior	and	end	behavior	of	the	toolkit	functions	\(f(x)=\frac{1}{x}\)	and	\(f(x)=\frac{1}{x^2}\).	See	Example	\(\PageIndex{1}\).	A
function	that	levels	off	at	a	horizontal	value	has	a	horizontal	asymptote.	A	function	can	have	more	than	one	vertical	asymptote.	See	Example.	Application	problems	involving	rates	and	concentrations	often	involve	rational	functions.	See	Example.	
The	domain	of	a	rational	function	includes	all	real	numbers	except	those	that	cause	the	denominator	to	equal	zero.	See	Example.	The	vertical	asymptotes	of	a	rational	function	will	occur	where	the	denominator	of	the	function	is	equal	to	zero	and	the	numerator	is	not	zero.	See	Example.	A	removable	discontinuity	might	occur	in	the	graph	of	a	rational
function	if	an	input	causes	both	numerator	and	denominator	to	be	zero.	See	Example.	A	rational	function’s	end	behavior	will	mirror	that	of	the	ratio	of	the	leading	terms	of	the	numerator	and	denominator	functions.	See	Example,	Example,	Example,	and	Example.	Graph	rational	functions	by	finding	the	intercepts,	behavior	at	the	intercepts	and
asymptotes,	and	end	behavior.	See	Example.	If	a	rational	function	has	x-intercepts	at	\(x=x_1,x_2,…,x_n\),	vertical	asymptotes	at	\(x=v_1,v_2,…,v_m\),	and	no	\(x_i=\)	any	\(v_j\),	then	the	function	can	be	written	in	the	form	Contributor	The		domain		of	a		function	f	x	is	the	set	of	all	values	for	which	the	function	is	defined,	and	the		range		of	the	function	is
the	set	of	all	values	that	f	takes.	A	rational	function	is	a	function	of	the	form	f	x	=	p	x	q	x	,	where	p	x	and		q	x	are	polynomials	and	q	x	≠	0	.	The	domain	of	a	rational	function	consists	of	all	the	real	numbers	x	except	those	for	which	the	denominator	is	0	.	To	find	these	x	values	to	be	excluded	from	the	domain	of	a	rational	function,	equate	the
denominator	to	zero	and	solve	for	x	.	For	example,	the	domain	of	the	parent	function	f	x	=	1	x		is	the	set	of	all	real	numbers	except	x	=	0	.	Or	the	domain	of	the	function	f	x	=	1	x	−	4		is	the	set	of	all	real	numbers	except	x	=	4	.	Now,	consider	the	function	f	x	=	x	+	1	x	−	2	x	−	2	.	On	simplification,	when	x	≠	2	it	becomes	a	linear	function	f	x	=	x	+	1	.	But
the	original	function	is	not	defined	at	x	=	2	.	
This	leaves	the	graph	with	a	hole	when	x	=	2	.	
One	way	of	finding	the	range	of	a	rational	function	is	by	finding	the	domain	of	the	inverse	function.	Another	way	is	to	sketch	the	graph	and	identify	the	range.	Let	us	again	consider	the	parent	function	f	x	=	1	x	.	We	know	that	the	function	is	not	defined	when	x	=	0	.	As	x	→	0		from	either	side	of	zero,	f	x	→	∞	.	
Similarly,	as	x	→	±	∞	,	f	x	→	0	.	The	graph	approaches	x	-axis	as	x	tends	to	positive	or	negative	infinity,	but	never	touches	the	x	-axis.	That	is,	the	function	can	take	all	the	real	values	except	0	.	So,	the	range	of	the	function	is	the	set	of	real	numbers	except	0	.	Example	1:	Find	the	domain	and	range	of	the	function	y	=	1	x	+	3	−	5	.	
To	find	the	excluded	value	in	the	domain	of	the	function,	equate	the	denominator	to	zero	and	solve	for	x	.	x	+	3	=	0	⇒	x	=	−	3	So,	the	domain	of	the	function	is	set	of	real	numbers	except	−	3	.	The	range	of	the	function	is	same	as	the	domain	of	the	inverse	function.	So,	to	find	the	range	define	the	inverse	of	the	function.	Interchange	the	x	and	y	.	x	=	1	y



+	3	−	5	Solving	for	y	you	get,	x	+	5	=	1	y	+	3	⇒	y	+	3	=	1	x	+	5	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	⇒	y	=	1	x	+	5	−	3	So,	the	inverse	function	is	f	−	1	x	=	1	x	+	5	−	3	.	The	excluded	value	in	the	domain	of	the	inverse	function	can	be	determined	byequating	the	denominator	to	zero	and	solving	for	x	.	x	+	5	=	0	⇒	x	=	−	5	So,	the	domain	of	the	inverse	function	is
the	set	of	real	numbers	except	−	5	.	That	is,	the	range	of	given	function	is	the	set	of	real	numbers	except	−	5	.	Therefore,	the	domain	of	the	given	function	is	{	x	∈	ℝ	 	 	|	 	 	x	≠	−	3	}		and	the	range	is	{	y	∈	ℝ	 	 	|	 	 	y	≠	−	5	}	.	Example	2:	Find	the	domain	and	range	of	the	function	y	=	x	2	−	3	x	−	4	x	+	1	.	Use	a	graphing	calculator	to	graph	the	function.
When	you	factor	the	numerator	and	cancel	the	non-zero	common	factors,	the	function	gets	reduced	to	a	linear	function	as	shown.	y	=	x	+	1	x	−	4	x	+	1	 	 	 	 	=	x	+	1	x	−	4	x	+	1	 	 	 	 	=	x	−	4	So,	the	graph	is	a	linear	one	with	a	hole	at	x	=	−	1	.	Use	the	graph	to	identify	the	domain	and	the	range.	The	function	is	not	defined	for	x	=	−	1	.	So,	the	domain	is	{
x	∈	ℝ	 	 	|	 	 	x	≠	−	1	}		or	−	∞	,	−	1	∪	−	1	,	∞	.	
The	range	of	the	function	is	{	y	∈	ℝ	 	 	|	 	 	y	≠	k		where		y	−	1	=	k	}	.	For	x	≠	−	1	,	the	function	simplifies	to	y	=	x	−	4	.	The	function	is	not	defined	at	x	=	−	1		or	the	function	does	not	take	the	value	−	1	−	4	=	−	5	.	That	is,	k	=	−	5	.	Therefore,	the	range	of	the	function	is	{	y	∈	ℝ	 	 	|	 	 	y	≠	−	5	}		or	−	∞	,	−	5	∪	−	5	,	∞	.	Asymptotes	of	a	rational	function:
An	asymptote	is	a	line	that	the	graph	of	a	function	approaches,	but	never	touches.	
In	the	parent	function	f	x	=	1	x	,	both	the		x	-	and		y	-axes	are	asymptotes.	The	graph	of	the	parent	function	will	get	closer	and	closer	to	but	never	touches	the	asymptotes.	To	find	the	vertical	asymptote	of	a	rational	function,	equate	the	denominator	to	zero	and	solve	for	x	.	If	the	degree	of	the	polynomial	in	the	numerator	is	less	than	that	of	the
denominator,	then	the	horizontal	asymptote	is	the	x	-axis	or	y	=	0	.	
The	function	f	x	=	a	x	,	a	≠	0		has	the	same	domain,	range	and	asymptotes	as	f	x	=	1	x	.	Now,	the	graph	of	the	function	f	x	=	a	x	−	b	+	c	,	a	≠	0		is	a	hyperbola,	symmetric	about	the	point	b	,	c	.	
The	vertical	asymptote	of	the	function	is	x	=	b	and	the	horizontal	asymptote	is	y	=	c	.	Considering	a	more	general	form,	the	function	f	x	=	a	x	+	b	c	x	+	d		has	the	vertical	asymptote	at	x	=	−	d	c	and	the	horizontal	asymptote	at	y	=	a	c	.	More	generally,	if	both	the	numerator	and	the	denominator	have	the	same	degree,	then	horizontal	asymptote	would
be	y	=	k	where	k	is	the	ratio	of	the	leading	coefficient	of	the	numerator	to	that	of	the	denominator.	If	the	degree	of	the	denominator	is	one	less	than	that	of	the	numerator,	then	the	function	has	a	slanting	asymptote.	Example	3:	Find	the	vertical	and	horizontal	asymptotes	of	the	function	f	x	=	5	x	−	1	.	To	find	the	vertical	asymptote,	equate	the
denominator	to	zero	and	solve	for	x	.	x	−	1	=	0	⇒	x	=	1	So,	the	vertical	asymptote	is	x	=	1	Since	the	degree	of	the	polynomial	in	the	numerator	is	less	than	that	of	the	denominator,	the	horizontal	asymptote	is	y	=	0	.


