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Preface 

This book contains 56 problems although only 50 are promised. A 
couple of the problems prepare for later ones; since tastes differ, some 
others may not challenge you; finally, six are discussed rather than solved. 
If you feel your capacity for challenge has not been exhausted, try proving 
the final remark in the solution of Problem 48. One of these problems 
has enlivened great parts of the research lives of many excellent mathe­
maticians. Will you be the one who completes it? Probably not, but it 
hasn't been proved impossible. 

Much of what I have learned, as well as much of my intellectual en­
joyment, has come through problem solving. Through the years, I've found 
it more and more difficult to tell when I was working and when playing, 
for it has so often turned out that what I have learned playing with problems 
has been useful in my serious work. 

In a problem, the great thing is the challenge. A problem can be chal­
lenging for many reasons: because the subject matter is intriguing, because 
the answer defies unsophisticated intuition, because it illustrates an im­
portant principle, because of its vast generality, because of its difficulty, 
because of a clever solution, or even because of the simplicity or beauty 
of the answer. 

In this book, many of the problems are easy, some are hard. A very 
few require calculus, but a person without this equipment may enjoy the 
problem and its answer just the same. I have been more concerned about 
the challenge than about precisely limiting the mathematical level. In a few 
instances, where a special formula is needed that the reader may not have 
at his finger tips, or even in his repertoire, I have supplied it without ado. 
Stirling's approximation for the factorials (see Problem 18) and Euler's 
approximation for the partial sum of a harmonic series (see Problem 14) 
are two that stand out. 

Perhaps the reader will be as surprised as I was to find that the numbers 
11", which relates diameters of circles to their circumferences, and e, which 
is the base of the natural logarithms, arise so often in probability problems. 

In the Solutions section, the upper right corner of the odd-numbered 
pages carries the number of the last problem being discussed on that page. 
We hope that this may be of help in turning back and forth in the book. The 
pages are numbered at the bottom. 
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Anyone writing on problems in probability owes a great debt to the mathe­
matical profession as a whole and probably to W. A. Whitworth and his 
book Choice and chance (Hafner Publishing Co., 1959, Reprint of fifth edi­
tion much enlarged, issued in 1901) in particular. 

One of the pleasures of a preface is the opportunity it gives the author 
to acknowledge his debts to friends. To Robert E. K. Rourke goes the 
credit or blame for persuading me to assemble this booklet; and in many 
problems the wording has been improved by his advice. MyoId friends 
and critics Andrew Gleason, L. J. Savage, and John D. Williams helped 
lengthen the text by proposing additional problems for inclusion, by sug­
gesting enticing extensions for some of the solutions, and occasionally by 
offering to exchange right for wrong; fortunately, I was able to resist only a 
few of these suggestions. In addition, lowe direct personal debts for sug­
gestions, aid, and conversations to Kai Lai Chung, W. G. Cochran, Arthur 
P. Dempster, Bernard Friedman, John Garraty, John P. Gilbert, Leo Good­
man, Theodore Harris, Olaf Helmer, J. L. Hodges, Jr., John G. Kemeny, 
Thomas Lehrer, Jess I. Marcum, Howard Raiffa, Herbert Scarf, George B. 
Thomas, Jr., John W. Tukey, Lester E. Dubins, and Cleo Youtz. 

Readers who wish a systematic elementary development of probability 
may find helpful material in F. Mosteller, R. E. K. Rourke, G. B. Thomas, 
Jr., Probability with statistical applications, Addison-Wesley, Reading, Mass., 
1961. In referring to this book in the text I have used the abbreviation 
PWSA. A shorter version is entitled Probability and statistics, and a still 
shorter one, Probability: A first course. 

More advanced material can be found in the following: W. Feller, An 
introduction to probability theory and its applications, Wiley, New York; 
E. Parzen, Modern probability theory and its applications, Wiley, New York. 

West Falmouth, Massachusetts 
August, 1964 
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Fifty Challenging Problems 
in Probability 

1. The Sock Drawer 

A drawer contains red socks and black socks. When two socks are drawn 
at random, the probability that both are red is t. (a) How small can the 
number of socks in the drawer be? (b) How small if the number of black 
socks is even? 

2. Successive Wins 

To encourage Elmer's promising tennis career, his father offers him a 
prize if he wins (at least) two tennis sets in a row in a three-set series to be 
played with his father and the club champion alternately: father-champion­
father or champion-father-champion, according to Elmer's choice. The 
champion is a better player than Elmer's father. Which series should Elmer 
choose? 

3. The Flippant Juror 

A threo-man jury has two members each of whom independently has 
probability p of making the correct decision and a third member who flips 
a coin for each decision (majority rules). A one-man jury has probability p 
of making the correct decision. Which jury has the better probability of 
making the correct decision? 

4. Trials until First Success 

On the average, how many times must a die be thrown until one gets a 6? 



5. Coin in Square 
In a common carnival game a player tosses a penny from a distance of 

about 5 feet onto the surface of a table ruled in I-inch squares. If the penny 
(i inch in diameter) falls entirely inside a square, the player receives 5 cents 
but does not get his penny back; otherwise he loses his penny. If the penny 
lands on the table, what is his chance to win? 

6. Chuck-a-Luck 
Chuck-a-Luck is a gambling game often played at carnivals and gambling 

houses. A player may bet on anyone of the numbers I, 2, 3, 4, 5, 6. Three 
dice are rolled. If the player's number appears on one, two, or three of the 
dice, he receives respectively one, two, or three times his original stake plus 
his own money back; otherwise he loses his stake. What is the player's 
expected loss per unit stake? (Actually the player may distribute stakes on 
several numbers, but each such stake can be regarded as a separate bet.) 

7. Curing the Compulsive Gambler 
Mr. Brown always bets a dollar on the number 13 at roulette against the 

advice of Kind Friend. To help cure Mr. Brown of playing roulette, Kind 
Friend always bets Brown $20 at even money that Brown will be behind at 
the end of 36 plays. How is the cure working? 

(Most American roulette wheels have 38 equally likely numbers. If the 
player's number comes up, he is paid 35 times his stake and gets his original 
stake back; otherwise he loses his stake.) 

8. Perfect Bridge Hand 
We often read of someone who has been dealt 13 spades at bridge. With 

a well-shuffled pack of cards, what is the chance that you are dealt a perfect 
hand (13 of one suit)? (Bridge is played with an ordinary pack of 52 cards, 
13 in each of 4 suits, and each of 4 players is dealt 13.) 

9. Craps 
The game of craps, played with two dice, is one of America's fastest and 

most popular gambling games. Calculating the odds associated with it is an 
instructive exercise. 
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The rules are these. Only totals for the two dice count. The player throws 
the dice and wins at once if the total for the first throw is 7 or II, loses at 
once if it is 2, 3, or 12. Any other throw is called his "point. "* If the first 
throw is a point, the player throws the dice repeatedly until he either wins 
by throwing his point again or loses by throwing 7. What is the player's 
chance to win? 

1 O. An Experiment in 
Personal Taste for Money 

(a) An urn contains \0 black balls and \0 white balls, identical except 
for color. You choose "black" or "white." One ball is drawn at random, 
and if its color matches your choice, you get $\0, otherwise nothing. Write 
down the maximum amount you are willing to pay to play the game. The 
game will be played just once. 

(b) A friend of yours has available many black and many white balls, 
and he puts black and white balls into the urn to suit himself. You choose 
"black" or "white." A ball is drawn randomly from this urn. Write down 
the maximum amount you are willing to pay to play this game. The game 
will be played just once. 

Problems without Structure (11 and 12) 

Olaf Helmer and John Williams of The RAND Corporation have called 
my attention to a class of problems that they call "problems without 
structure," which nevertheless seem to have probabilistic features, though 
not in the usual sense. 

11. Silent Cooperation 

Two strangers are separately asked to choose one of the positive whole 
numbers and advised that if they both choose the same number, they both 
get a prize. If you were one of these people, what number would you choose? 

·The throws have catchy names: for e)(ample, a total of 2 is Snake eyes, of 8, Eighter 
from Decatur, of 12, Bo)(cars. When an even point is made by throwing a pair, it is made 
"the hard way." 
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12. Quo Vadis? 
Two strangers who have a private recognition signal agree to meet on a 

certain Thursday at 12 noon in New York City, a town familiar to neither, 
to discuss an important business deal, but later they discover that they have 
not chosen a meeting place, and neither can reach the other because both 
have embarked on trips. If they try nevertheless to meet, where should they 
go? 

13. The Prisoner's Dilemma 
Three prisoners, A, B, and C, with apparently equally good records have 

applied for parole. The parole board has decided to release two of the 
three, and the prisoners know this but not which two. A warder friend of 
prisoner A knows who are to be released. Prisoner A realizes that it would 
be unethical to ask the warder if he, A, is to be released, but thinks of asking 
for the name of one prisoner other than himself who is to be released. He 
thinks that before he asks, his chances of release are i. He thinks that if 
the warder says "B will be released," his own chances have now gone down 
to t, because either A and B or Band C are to be released. And so A decides 
not to reduce his chances by asking. However, A is mistaken in his calcula­
tions. Explain. 

14. Collecting Coupons 
Coupons in cereal boxes are numbered I to 5, and a set of one of each is 

required for a prize. With one coupon per box, how many boxes on the 
average are required to make a complete set? 

15. The Theater Row 
Eight eligible bachelors and seven beautiful models happen randomly to 

have purchased single seats in the same 15-seat row of a theater. On the 
average, how many pairs of adjacent seats are ticketed for marriageable 
couples? 

16. Will Second-Best Be Runner-Up? 
A tennis tournament has 8 players. The number a player draws from a 

hat decides his first-round rung in the tournament ladder. See diagram. 
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First round 

2 

3 --------... 

4 

5 

6 -----/' 

7 -------.... 

8 

Second round Finals 

Winner 

Tennis tournament ladder of 8. 

Suppose that the best player always defeats the next best and that the 
latter always defeats all the rest. The loser of the finals gets the runner-up 
cup. What is the chance that the second-best player wins the runner-up cup? 

17. Twin Knights 
(a) Suppose King Arthur holds a jousting tournament where the jousts 

are in pairs as in a tennis tournament. See Problem 16 for tournament ladder. 
The 8 knights in the tournament are evenly matched, and they include the 
twin knights Balin and Balan.* What is the chance that the twins meet in a 
match during the tournament? 

(b) Replace 8 by 2B in the above problem. Now what is the chance that 
they meet? 

18. An Even Split at Coin Tossing 

When 100 coins are tossed, what is the probability that exactly 50 are 
heads? 

-According to Arthurian legend, they were so evenly matched that on another occasion 
they slew each other. 
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19. Isaac Newton Helps Samuel Pepys 
Pepys wrote Newton to ask which of three events is more likely: that a 

person get (a) at least 1 six when 6 dice are rolled, (b) at least 2 sixes when 
12 dice are rolled, or (c) at least 3 sixes when 18 dice are rolled. What is the 
answer? 

20. The Three-Cornered Duel 
A, B, and C are to fight a three-cornered pistol duel. All know that A's 

chance of hitting his target is 0.3, C's is 0.5, and B never misses. They are to 
fire at their choice of target in succession in the order A, B, C, cyclically 
(but a hit man loses further turns and is no longer shot at) until only one 
man is left unhit. What should A's strategy be? 

21. Should You Sample with or 
without Replacement? 

Two urns contain red and black balls, all alike except for color. Urn A 
has 2 reds and 1 black, and Urn B has 101 reds and 100 blacks. An urn is 
chosen at random, and you win a prize if you correctly name the urn on the 
basis of the evidence of two balls drawn from it. After the first ball is drawn 
and its color reported, you can decide whether or not the ball shall be 
replaced before the second drawing. How do you order the second drawing, 
and how do you decide on the urn? 

22. The Ballot Box 
In an election, two candidates, Albert and Benjamin, have in a ballot box 

a and b votes respectively, a > b, for example, 3 and 2. If ballots are ran­
domly drawn and tallied, what is the chance that at least once after the first 
tally the candidates have the same number of tallies? 

23. Ties in Matching Pennies 
Players A and B match pennies N times. They keep a tally of their gains 

and losses. After the first toss, what is the chance that at no time during the 
game will they be even? 
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24. The Unfair Subway 

Marvin gets off work at random times between 3 and 5 P.M. His mother 
lives uptown, his girl friend downtown. He takes the first subway that 
comes in either direction and eats dinner with the one he is first delivered to. 
His mother complains that he never comes to see her, but he says she has a 
50-50 chance. He has had dinner with her twice in the last 20 working days. 
Explain. 

25. Lengths of Random Chords 

If a chord is selected at random on a fixed circle, what is the probability 
that its length exceeds the radius of the circle? 

26. The Hurried Duelers 

Duels in the town of Discretion are rarely fatal. There, each contestant 
comes at a random moment between 5 A.M. and 6 A.M. on the appointed 
day and leaves exactly 5 minutes later, honor served, unless his opponent 
arrives within the time interval and then they fight. What fraction of duels 
!:ad to violence? 

27. Catching the Cautious 
Counterfeiter 

(a) The king's minter boxes his coins 100 to a box. In each box he puts 1 
false coin. The king suspects the minter and from each of 100 boxes draws a 
random coin and has it tested. What is the chance the minter's peculations go 
undetected? 

(b) What if both 100's are replaced by n? 
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28. Catching the Greedy Counterfeiter 
The king's minter boxes his coins n to a box. Each box contains m false 

coins. The king suspects the minter and randomly draws 1 coin from each 
of n boxes and has these tested. What is the chance that the sample of n 
coins contains exactly r false ones? 

29. Moldy Gelatin 

Airborne spores produce tiny mold colonies on gelatin plates in a labora­
tory. The many plates average 3 colonies per plate. What fraction of plates 
has exactly 3 colonies? If the average is a large integer m, what fraction of 
plates has exactly m colonies? 

30. Evening the Sales 
A bread salesman sells on the average 20 cakes on a round of his route. 

What is the chance that he sells an even number of cakes? (We assume the 
sales follow the Poisson distribution.) 

Birthday Problems (31, 32, 33, 34) 

31. Birthday Pairings 

What is the least number of persons required if the probability exceeds t 
that two or more of them have the same birthday? (Year of birth need not 
match.) 

32. Finding Your Birthmate 

You want to find someone whose birthday matches yours. What is the 
least number of strangers whose birthdays you need to ask about to have a 
50-50 chance? 

8 



33. Relating the Birthday Pairings 
and Birthmate Problems 

If r persons compare birthdays in the pairing problem, the probability is 
PR that at least 2 have the same birthday. What should n be in the personal 
birthmate problem to make your probability of success approximately PR ? 

34. Birthday Holidays 

Labor laws in Erewhon require factory owners to give every worker a 
holiday whenever one of them has a birthday and to hire without discrimina­
tion on grounds of birthdays. Except for these holidays they work a 365-day 
year. The owners want to maximize the expected total number of man­
days worked per year in a factory. How many workers do factories have in 
Erewhon? 

35. The Cliff-Hanger 

From where he stands, one step toward the cliff would send the drunken 
man over the edge. He takes random steps, either toward or away from the 
cliff. At any step his probability of taking a step away is t, of a step toward 
the cliff!. What is his chance of escaping the cliff? 

36. Gambler's Ruin 

Player M has $1, and Player N has $2. Each play gives one of the players 
$1 from the other. Player M is enough better than Player N that he wins 
t of the plays. They play until one is bankrupt. What is the chance that 
Player M wins? 

37. Bold Play vs. Cautious Play 

At Las Vegas, a man with $20 needs $40, but he is too embarrassed to 
wire his wife for more money. He decides to invest in roulette (which he 
doesn't enjoy playing) and is considering two strategies: bet the $20 on 
"evens" all at once and quit if he wins or loses, or bet on "evens" one dollar 
at a time until he has won or lost $20. Compare the merits of the strategies. 
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38. The Thick Coin 
How thick should a coin be to have a ! chance of landing on edge? 

The next few problems depend on the Principle of Symmetry. See pages 
59-60. 

39. The Clumsy Chemist 
In a laboratory, each of a handful of thin 9-inch glass rods had one tip 

marked with a blue dot and the other with a red. When the laboratory 
assistant tripped and dropped them onto the concrete floor, many broke into 
three pieces. For these, what was the average length of the fragment with 
the blue dot? 

40. The First Ace 
Shuffle an ordinary deck of 52 playing cards containing four aces. 

Then turn up cards from the top until the first ace appears. On the average, 
how many cards are required to produce the first ace? 

41. The Locomotive Problem 
(a) A railroad numbers its locomotives in order, 1,2, ... ,N. One day you 

see a locomotive and its number is 60. Guess how many locomotives the 
company has. 

(b) You have looked at 5 locomotives and the largest number observed 
is 60. Again guess how many locomotives the company has. 

42. The Little End of the Stick 
(a) If a stick is broken in two at random, what is the average length of the 

smaller piece? 
(b) (For calculus students.) What is the average ratio of the smaller 

length to the larger? 
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43. The Broken Bar 
A bar is broken at random in two places. Find the average size of the 

smallest, of the middle-sized, and of the largest pieces. 

44. Winning an Unfair Game 
A game consists of a sequence of plays; on each play either you or your 

opponent scores a point, you with probability p (less than ~), he with 
probability I - p. The number of plays is to be even-2 or 4 or 6 and so 
on. To win the game you must get more than half the points. You know p, 
say 0.45, and you get a prize if you win. You get to choose in advance the 
number of plays. How many do you choose? 

Matching Problems (45 and 46) 

45. Average Number of Matches lJIJIJFf 
The following are two versions of the matching problem: 

(a) From a shuffled deck, cards are laid out on a table one at a time, face 
up from left to right, and then another deck is laid out so that each of its 
cards is beneath a card of the first deck. What is the average number of 
matches of the card above and the card below in repetitions of this experi­
ment? 

~. . 
c:J I m ~. • • • • · .~ . ~ • .~ 

, ... Lt.. 

~m 
~ .. • • • •• • •• • • • • ••• $ •• ! + +; • ~ · .~ 

(b) A typist types letters and envelopes to n different persons. The letters 
are randomly put into the envelopes. On the average, how many letters are 
put into their own envelopes? 
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46. Probabilities of Matches 
Under the conditions of the previous matching problem, what is the 

probability of exactly r matches? 

47. Choosing the Largest Dowry 
The king, to test a candidate for the position of wise man, offers him a 

chance to marry the young lady in the court with the largest dowry. The 
amounts of the dowries are written on slips of paper and mixed. A slip is 
drawn at random and the wise man must decide whether that is the largest 
dowry or not. If he decides it is, he gets the lady and her dowry if he is 
correct; otherwise he gets nothing. If he decides against the amount written 
on the first slip, he must choose or refuse the next slip, and so on until he 
chooses one or else the slips are exhausted. In all, 100 attractive young 
ladies participate, each with a different dowry. How should the wise man 
make his decision? 

In the previous problem the wise man has no information about the 
distribution of the numbers. In the next he knows exactly. 

48. Choosing the Largest Random Number 
As a second task, the king wants the wise man to choose the largest number 

from among 100, by the same rules, but this time the numbers on the slips 
are randomly drawn from the numbers from 0 to I (random numbers, 
uniformly distributed). Now what should the wise man's strategy be? 

49. Doubling Your Accuracy 
An unbiased instrument for measuring distances makes random errors 

whose distribution has standard deviation (T. You are allowed two measure­
ments all told to estimate the lengths of two cylindrical rods, one clearly 
longer than the other. Can you do better than to take one measurement on 
each rod? (An unbiased instrument is one that on the average gives the 
true measure.) 

50. Random Quadratic Equations 
What is the probability that the quadratic equation 

x 2 + 2bx + c = 0 
has real roots? 
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.Random Walk in Two and Three Dimensions 

51. Two-Dimensional 
Random Walk 

•.... j 

r·;' 
03···1 t-... ( 

•.. , ". ··it 
~ ... -~ ~ .....• 

Starting from an origin 0, a particle has a 5O-SO chance of moving I step 
north or I step south, and also a 5O-SO chance of moving I step east or I 
step west. After the step is taken, the move is repeated from the new position 
and so on indefinitely. What is the chance that the particle returns to the 
origin? •••• 3 

• • • 2 

• 

X 
• 1 

• • o y 

• • -1 • • 
• • • -2 

• • • • -3 
-3 -2 -1 0 1 2 3 

)C 

Part of lattice of points traveled by particles in the two-dimeDsional 
random walk problem. At each move the particle goes one step north­
east, northwest, southeast, or southwest from its current position, the 
directions being equally likely. 

52. Three-Dimensional 
Random Walk 

As in the two-dimensional walk, a particle starts at an origin 0 in three­
space. Think of the origin as centered in a cube 2 units on a side. One 
move in this walk sends the particle with equal likelihood to one of the 
eight comers of the cube. Thus, at every move the particle has a 5O-SO 
chance of moving one unit up or down, one unit east or west, and one unit 
north or south. If the walk continues forever, find the fraction of particles 
that return to the origin. 
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53. Butfon's Needle 
A table of infinite expanse has inscribed on it a set of parallel lines spaced 

2a units apart. A needle of length 21 (smaller than 2a) is twirled and tossed 
on the table. What is the probability that when it comes to rest it crosses a 
line? 

54. Butfon's Needle with Horizontal 
and Vertical Rulings 

Suppose we toss a needle of length 21 (less than I) on a grid with both 
horizontal and vertical rulings spaced one unit apart. What is the mean 
number of lines the needle crosses? (I have dropped the 2a for the spacing 
because we might as well think of the length of the needle as measured in 
units of spacing.) 

55. Long Needles 
In the previous problem let the needle be of arbitrary length, then what is 

the mean number of crosses? 

56. Molina's Urns 
Two urns contain the same total numbers of balls, some blacks and some 

whites in each. From each urn are drawn n (~3) balls with replacement. 
Find the number of drawings and the composition of the two urns so that 
the probability that all white balls are drawn from the first urn is equal to 
the probability that the drawing from the second is either all whites or all 
blacks. 

14 



Solutions for 
Fifty Challenging Problems 

in Probability 

1. The Sock Drawer 

A drawer contains red socks and black socks. When two socks are drawn at 
random, the probability that both are red is l (a) How small can the number 
of socks in the drawer be? (b) How small if the number of black socks is even? 

Solution for The Sock Drawer 

Just to set the pattern, let us do a numerical example first. Suppose there 
were 5 red and 2 black socks; then the probability of the first sock's being 
red would be 5/(5 + 2). If the first were red, the probability of the second's 
being red would be 4/(4 + 2), because one red sock has already been 
removed. The product of these two numbers is the probability that both 
socks are red: 

5 4 5(4) 10 
5 + 2 X 4 + 2 = 7(6) = 21 . 

This result is close to t, but we need exactly t. Now let us go at the problem 
algebraically. 

Let there be r red and b black socks. The probability of the first sock's 
being red is r/(r + b); and if the first sock is red, the probability of the 
second's being red now that a red has been removed is (r - 1)/(r + b - 1). 
Then we require the probability that both are red to be t, or 

r r - 1 1 
r+bXr+b- =2' 

One could just start with b = 1 and try successive values of r, then go to 
b = 2 and try again, and so on. That would get the answers quickly. Or 
we could play along with a little more mathematics. Notice that 

r r - 1 
--> ' r+b r+b-l 

for b > O. 

Therefore we can create the inequalities 

( r)2 1 (f _ 1 )2 
r + b > 2 > r + b-=-f . 
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Taking square roots, we have, for r > I, 

r I r - I -->-> . 
r+b Vi r+b-I 

From the first inequality we get 

1 
r> -(r + b) o 

or 

r > 0 I b = (0 + l)b. 
2 - 1 

From the second we get 

(0 + l)b > r - I 
or all told 

(0 + l)b + I > r > (0 + l)b. 

For b = I, r must be greater than 2.414 and less than 3.414, and so the 
candidate is r = 3. For r = 3, b = I, we get 

P(2 red socks) = i . ! = !. 

And so the smallest number of socks is 4. 
Beyond this we investigate even values of b. 

b r is between eligible r P(2 red socks) 

2 5.8, 4.8 5 
5(4) I 
7(6) ,,& 2 

4 10.7, 9.7 10 
10(9) 1 
14(13) ,,& 2 

6 15.5, 14.5 15 
15(14) = _ 

21(20) 2 

And so 21 socks is the smallest number when b is even. If we were to go on 
and ask for further values of rand b so that the probability of two red socks 
is !, we would be wise to appreciate that this is a problem in the theory of 
numbers. It happens to lead to a famous result in Diophantine Analysis 
obtained from PeWs equation.· Try r = 85, b = 35. 

-See for example, W. J. LeVeque, Elementary theory of numbers, Addison-Wesley, 
Reading, Mass., 1962, p. II J. 
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2. Successive Wins 

To encourage Elmer's promising tennis career, his father offers him a prize 
if he wins (at least) two tennis sets in a row in a three-set series to be played 
with his father and the club champion alternately: father-champion-father or 
champion-father-champion, according to Elmer's choice. The champion is a 
better player than Elmer's father. Which series should Elmer choose? 

Solution for Successive Wins 

Since the champion plays better than the father, it seems reasonable that 
fewer sets should be played with the champion. On the other hand, the 
middle set is the key one, because Elmer cannot have two wins in a row 
without winning the middle one. Let C stand for champion, F for father, 
and Wand L for a win and a loss by Elmer. Let I be the probability of 
Elmer's winning any set from his father, c the corresponding probability 
of winning from the champion. The table shows the only possible prize-win­
ning sequences together with their probabilities, given independence between 
sets, for the two choices. 

Father first Champion first 
Set with: F C F Probability C F C Probability 

W W W Icl W W W clc 
W W L Ic(l - f) W W L cf(1 - c) 
L W W (I - I)CI L W W (I - c)fc 

Totals Ic(2 - f) Ic(2 - c) 

Since Elmer is more likely to best his father than to best the champion, I 
is larger than c, and 2 - I is smaller than 2 - c, and so Elmer should 
choose CFC. For example, for I = 0.8, c = 0.4, the chance of winning 
the prize with FCF is 0.384, that for CFC is 0.512. Thus the importance of 
winning the middle game outweighs the disadvantage of playing the champion 
twice. 

Many of us have a tendency to suppose that the higher the expected number 
of successeS, the higher the probability of winning a prize, and often this 
supposition is useful. But occasionally a problem has special conditions 
that destroy this reasoning by analogy. In our problem the expected number 
of wins under CFC is 2c + f, which is less than the expected number of 
wins for FCF, 21 + c. In our example with I = 0.8 and c = 0.4, these 
means are 1.6 and 2.0 in that order. This opposition of answers gives the 
problem its flavor. The idea of independent events is explained in PWSA, 
pp.81-84. 
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3. The Flippant Juror 

A three-man jury has two members each of whom independently has proba­
bility p of making the correct decision and a third member who flips a coin 
for each decision (majority rules) A one-man jury has probability p of making 
the correct decision. Which jury has the better probability of making the correct 
decision? 

Solution for The Flippant Juror 

The two juries have the same chance of a correct decision. In the three­
man jury, the two serious jurors agree on the correct decision in the fraction 
p X P = p2 of the cases, and for these cases the vote of the joker with the 
coin does not matter. In the other correct decisions by the three-man jury, 
the serious jurors vote oppositely, and the joker votes with the "correct" 
juror. The chance that the serious jurors split is p(1 - p) + (I - p)p or 
2p(\ - p). Halve this because the coin favors the correct side half the time. 
Finally, the total probability of a correct decision by the three-man jury is 
p2 + p(\ _ p) = p2 + p _ p2 = p, which is identical with the prob­
ability given for the one-man jury. 

4. Trials until First Success 

On the average, how many times must a die be thrown until one gets a 6? 

Solutions for Trials until First Success 

It seems obvious that it must be 6. To check, let p be the probability of a 
6 on a given trial. Then the probabilities of success for the first time on each 
trial are (let q = I - p): 

Trial 

I 
2 
3 

The sum of the probabilities is 

p + pq + pq2 + 
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Probability of 
success on trial 

= p(l + q + q2 + .. -) 
= p/(I - q) = p/p = I. 



The mean number of trials, m, is by definition, 

m = p + 2pq + 3pq2 + 4pq 3 + 
Note that our usual trick for summing a geometric series works: 

qm = pq + 2pq2 + 3pq3 + .... 
Subtracting the second expression from the first gives 

m - qm = p + pq + pq2 + 
or 

m(I - q) = I. 
Conseauently, 

mp = I, and m = lip. 

In our example, p = -t, and so m = 6, as seemed obvious. 
I wanted to do the above algebra in detail because we come up against 

geometric distributions repeatedly. But a beautiful way to do this problem 
is to notice that when the first toss is a failure, the mean number of tosses 
required is I + m, and when the first toss is a success, the mean number is I. 
Then m = p(l) + q(I + m), or m = I + qm, and 

m = lip. 

5. Coin in Square 

In a common carnival game a player tosses a penny from a distance of about 
5 feet onto the surface of a table ruled in I-inch squares. If the penny (i inch 
in diameter) falls entirely inside a square, the player receives 5 cents but does 
not get his penny back; otherwise he loses his penny. If the penny lands on the 
table, what is his chance to win? 

Solution for Coin in Square 

When we toss the coin onto the 
table, some positions for the center of 
the coin are more likely than others, 
but over a very small square we can 
regard the probability distribution as 
uniform. This means that the proba­
bility that the center falls into any 
region of a square is proportional to the 
area of the region, indeed, is the area 

Shaded area shows where center 
of coin must fall for player to win. 
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of the region divided by the area of the square. Since the coin is i inch in 
radius, its center must not land within i inch of any edge if the player is to 
win. This restriction generates a square of side ! inch within which the 
center of the coin must lie for the coin to be in the square. Since the proba­
bilities are proportional to areas, the probability of winning is (!)2 = -h. 
Of course, since there is a chance that the coin falls off the table altogether, 
the total probability of winning is smaller still. Also the squares can 
be made smaller by merely thickening the lines. If the lines are -h inch 
wide, the winning central area reduces the probability to (-&-)2 = "2"h or 
less than-fi. 

6. Chuck-a-Luck 

Chuck-a-Luck is a gambling game often played at carnivals and gambling 
houses. A player may bet on anyone of the numbers 1,2,3,4,5,6. Three dice 
are rolled. If the player's number appears on one, two, or three of the dice, he 
receives respectively one, two, or three times his original stake plus his own 
money back; otherwise he loses his stake. What is the player's expected loss 
per unit stake? (Actually the player may distribute stakes on several numbers, 
but each such stake can be regarded as a separate bet.) 

Solution for Chuck-a-Luck 

Let us compute the losses incurred (a) when the numbers on the three dice 
are different, (b) when exactly two are alike, and (c) when all three are alike. 
An easy attack is to suppose that you place a unit stake on each of the six 
numbers, thus betting six units in all. Suppose the roll produces three 
different numbers, say I, 2, 3. Then the house takes the three unit stakes on 
the losing numbers 4, 5, 6 and pays off the three winning numbers I, 2, 3. 
The house won nothing, and you won nothing. That result would be the 
same for any roll of three different numbers. 

Next suppose the roll of the dice results in two of one number and one of 
a second, say I, 1,2. Then the house can use the stakes on numbers 3 and 4 
to payoff the stake on number I, and the stake on number 5 to payoff that 
on number 2. This leaves the stake on number 6 for the house. The house 
won one unit, you lost one unit, or per unit stake you lost t. 

Suppose the three dice roll the same number, for example, I, I, I. Then 
the house can pay the triple odds from the stakes placed on 2, 3, 4 leaving 
those on 5 and 6 as house winnings. The loss per unit stake then is i. Note 
that when a roll produces a multiple payoff the players are losing the most 
on the average. 

To find the expected loss per unit stake in the whole game, we need to 
weight the three kinds of outcomes by their probabilities. If we regard the 
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three dice as distinguishable-say red, green, and blue-there are 6 X 6 X 6 7 
= 216 ways for them to fall. 

In how many ways do we get three different numbers? If we take them in 
order, 6 possibilities for the red, then for each of these, 5 for the green since 
it must not match the red, and for each red-green pair, 4 ways for the blue 
since it must not match either of the others, we get 6 X 5 X 4 = 120 ways. 

For a moment skip the case where exactly two dice are alike and go on to 
three alike. There are just 6 ways because there are 6 ways for the red to 
fall and only I way for each of the others since they must match the red. 

This means that there are 216 - 126 = 90 ways for them to fall two alike 
and one different. Let us check that directly. There are three main patterns 
that give two alike: red-green alike, red-blue alike, or green-blue alike. Count 
the number of ways for one of these, say red-green alike, and then multiply 
by three. The red can be thrown 6 ways, then the green I way to match, 
and the blue 5 ways to fail to match, or 30 ways. All told then we have 
3 X 30 = 90 ways, checking the result we got by subtraction. 

We get the expected loss by weighting each loss by its probability and 
summing as follows: 

none 2 3 
alike alike alike 

ill X 0 + M X t + ili X * = its "'" 0.079.* 

Thus you lose about 8% per play. Considering that a play might take half a 
minute and that government bonds pay you less than 4% interest for a year, 
the attrition can be regarded as fierce. 

This calculation is for regular dice. Sometimes a spinning wheel with a 
pointer is used with sets of three numbers painted in segments around the 
edge of the wheel. The sets do not correspond perfectly to the frequencies 
given by the dice. In such wheels I have observed that the multiple payoffs 
are more frequent than for the dice, and therefore the expected loss to the 
bettor greater. 

7. Curing the Compulsive Gambler 

Mr. Brown always bets a dollar on the number 13 at roulette against the 
advice of Kind Friend To help cure Mr Brown of playing roulette, Kind Frien(f 
always bets Brown 520 at even money that Brown will be behind at the end of 
36 plays. How is the cure working? 

(Most American roulette wheels have 38 equally likely numbers. If the 
player's number comes up, he is paid 35 times his stake and gets his original 
stake back; otherwise he loses his stake) 

·The sign "'" means "approximately equals .. 
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Solution for Curing the Compulsive Gambler 

If Mr. Brown wins once in 36 turns, he is even with the casino. His 
probability of losing all 36 times is (H)36 '-<: 0.383. In a single turn his 
expectation is 

35(*) - IGt) = - -h (dollars), 

and in 36 turns 
2(36) 

- ~ ~ - 1.89 (dollars). 

Against Kind Friend, Mr. Brown has an expectation of 

+20(0.617) - 20(0.383) ~ + 4.68 (dollars). 

And so all told Mr. Brown gains +4.68 - 1.89 = +2.79 dollars per 36 
trials; he is finally making money at roulette. Possibly Kind Friend will be 
cured first. Of course, when Brown loses all 36, he is out $56, which may 
jolt him a bit. 

8. Perfect Bridge Hand 

We often read of someone who has been dealt 13 spades at bridge. With a 
well-shuffled pack of cards, what is the chance that you are dealt a perfect hand 
(13 of one suit)? (Bridge is played with an ordinary pack of 52 cards, 13 in each 
of 4 suits, and each of 4 players is dealt 13 ) 

Solution for Perfect Bridge Hand 

The chances are mighty slim. Since the cards are well shuffled, we might 
as well deal your I3 off the top. To get 13 of one suit you can start with any 
card, and thereafter you are restricted to the same suit. So the number of 
ways to be dealt 13 of one suit is 

52 X 12 X II X 10 X 9 X 8 X 7 X 6 X 5 X 4 X 3 X 2 X I 

= 52 X 12!. 

The total number of ways to get a bridge hand is 

52 X 51 X 50 X 49 X 48 X 47 X 46 X 45 

X 44 X 43 X 42 X 41 X 40 = 52!/39!. 

The desired probability is 52 X 12!/(52!/39!) = 12!39!/51!. The reciprocal 
gives odds to I against. From 5-place tables of logarithms of factorials 
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(PWSA, p. 431) we have 

log 12! 8.68034 log 51! = 66.19065 
log 39! = 46.30959 log (12!39!) 54.98993 
log(l2!39!) = 54.98993 log(12!39!/51!) = 11.20072 

antilog: 1.588 X 1011 

In calculations of this kind, people sometimes get lost in the maze of exact 
figures. What matters here is that there is about one chance in 160 billion 
of a particular person's being dealt a perfect hand on a single deal. How 
often should we hear of it? Let's be generous and say that 10 million people 
play bridge in the United States of America and that each plays 10 hands a 
day every day of the year (equivalent to about two long sessions each week). 
That would give 36, billion hands a year, and so we expect about one 
perfect hand every 4 years, some of which would not be publicly reported. 
Even twice as many people playing twice as much would give only one such 
hand a year. 

How does one account for the much higher frequency with which perfect 
hands are reported? Several things contribute. New decks have cards 
grouped by suits, and inadequate shuffling could account for some perfect 
hands. (A widely reported hand where all four players received perfect 
hands was the first hand dealt from a new deck.) 

When we discuss very rare events, we have to worry about outrageous 
occurrences. No doubt quite a few reports owe their origin to pranks. 
Wouldn't grandma be surprised if she had 13 hearts for Valentine's Day? 
Let's arrange it, but we'll tell her later it was all a joke. Grandma takes her 
bridge seriously. When it turns out that grandma is overwhelmed, has called 
her relatives, bridge friends, and the reporters, news of a joke would be most 
unwelcome, and the easy course for the prankster is silence. Perhaps a few 
reports are made up out of whole cloth. It seems unlikely that this sort of 
hand would arise from accomplished cheating because it draws too much 
attention to the recipient and his partner. 

N. T. Gridgeman discusses reports of perfect deals where all four players 
get 13 cards of one suit in "The mystery of the missing deal," American 
Statistician, Vol. 18, No. I, Feb. 1964, pp. 15-16, and there is further cor­
respondence in "Letters to the Editor," pp. 30-31, in the April, 1964 issue 
of that journal. 

A slightly different way to compute this probability is to use binomial co­
efficients. They count the number of different ways to arrange a elements 
of one kind and b elements of another in a row. For example, 3 a's and 2 b's 
can be arranged in 10 ways, as the reader can verify on his fingers starting 
with aaabb and ending with bbaaa. The binomial coefficient is written 

(;) , meaning the number of ways to arrange 5 things, 2 of one kind, 3 of 
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another. Its numerical value is given in terms of factorials: 

(
5) 5! 5 X 4 X 3 X 2 X I 
2 = 2!31 = 2X I X 3 X 2 X I = 10. 

More generally with n things, a of one kind and n - a of another, the 
number of arrangements is 

~) = a!(n ~ a)! . 

In our problem the number of ways to choose 13 cards is 

(
52) 52! 
13 = 13!39!' 

. (13) 13! The number of ways to get 13 spades IS 13 = 13!Oi = I, because O! = l. 

We multiply by 4 because of the 4 suits, and the final probability is 4 X 
13!39!/52!, as we already found. 

Binomial coefficients are discussed in PWSA, pp. 33-39. 

9. Craps 

The game of craps, played with two dice, is one of America's fastest and 
most popular gambling games. Calculating the odds associated with it is an 
instructive exercise. 

The rules are these. Only totals for the two dice count The player throws the 
dice and wins at once if the total for the first throw is 7 or II, loses at once if it 
is 2, 3, or 12. Any other throw is called his "point." If the first throw is a 
point, the player throws the dice repeatedly until he either wins by throwing his 
point again or loses by throwing 7. What is the player's chance to win? 

Solution for Craps 

The game is surprisingly close to even, as we shall see, but slightly to the 
player's disadvantage. 

Let us first get the probabilities for the totals on the two dice. Regard 
the dice as distinguishable, say red and green. Then there are 6 X 6 = 36 
possible equally likely throws whose totals are shown in the table (next 
page). 

By counting the cells in the table we get the probability distribution of 
the totals: 

Total 

P(total) 

2 3 4 5 6 7 8 9 10 II 12 

isisls-A--h*-h-A-Isisis 
Here P means "probability of." 
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Cell entries give totals for game of craps 
Throw of green die 

Throw of 
red die 

2 

3 

4 

5 

6 

2 
--

3 
--

4 
--

5 
--

6 
--

7 

2 

3 
--

4 
--

5 
--

6 
--

7 
--

8 

3 4 

4 5 
----

5 6 
----

6 7 
----

7 8 
----

8 9 
----

9 10 

Thus the probability of a win on the first throw is 

5 

6 
--

7 
--

8 
--

9 
--

10 
--

11 

P(7) + P(li) = /s + -h = is· 

The probability of a loss on the first throw is 

6 

7 
--

8 
--

9 
--

10 
--

II 
--

12 

P(2) + P(3) + P(12) = is + -h + is = -no 
For later throws we need the probability of making the point. Since no 

throws except either the point or 7 matter, we can compute for each of these 
the conditional probability of making the point given that it has been thrown 
initially. Sometimes such an approach is called the method of reduced 
sample spaces because, although the actual tosses produce the totals 2 through 
12, we ignore all but the point and 7. 

For example, for four as the point, there are 3 ways to make the point 
and 6 ways to make a seven, and so the probability of making the point is 
3/(3 + 6) = 3/9. 

Similarly, we get the conditional probabilities for the other points and 
summarize: 

4: 
3 3 8: 5 5 

3+6=9 5+6=n 

5: 
4 4 

9: 
4 4 

4+6=10 4+6=10 

6: 5 5 
10: 

3 3 
5+6=n 3+6=9 

Each probability of winning must be weighted by the probability of 
throwing the point on the initial throw to give the unconditional probability 
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of winning for that point. Then we sum to get for the probability of winning 
by throwing a point 

ftm + n(lb-) + -h(fr) + is(fr) + n(i~) + "3\W"" 0.27071. 

To this we add the probability of winning on the first throw, /s "" 0.22222, 
to get 0.49293 as the player's probability of winning. His expected loss per 
unit stake is 0.50707 - 0.49293 = 0.01414, or 1.41%. I believe that this 
is the most nearly even of house gambling games that have no strategy. 
And 1.4% doesn't sound like much, but as I write, the stock of General 
Motors is selling at 71, and their dividend for the year (before extras) is 
quoted as $2, or about 2.8%. So per two plays at craps your loss is at a 
rate equal to the yearly dividend payout by America's largest corporation. 

Some readers may not be satisfied with the conditional probability ap­
proach used for points and may wish to see the series summed. 

Let the probability of throwing the point be P and let the probability of a 
toss that does not count be R( = 1 - P - i). The t is the probability of 
throwing 7. The player can win by throwing a number of tosses that do not 
count and then throwing his point. The probability that he makes his point 
in the (r + l)st throw (after the initial throw) is Rrp, r = 0, 1,2, .... To 
get the total probability, we sum over the values of r: 

P + RP + R2p + ... = PO + R + R2 + ... ). 
Summing this infinite geometric series gives 

Probability of making point = P/(I - R). 

For example, if the point is 4, P = /S, R = 1 - is - /s = H, 
I - R = -h, P(making the point 4) = (3/36)/(9/36) = 3/9, as we got by 
the simpler approach of reduced sample spaces. 

The first time I met this problem, I summed the series and was quite 
pleased with myself until a few days later the reduced sample space approach 
occurred to me and left me deflated. 
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10. An Experiment in Personal Taste for Money 

(a) An urn contains 10 black balls and 10 white balls. identical except for 
color. You choose "black" or "white." One ball is drawn at random. and if its 
color matches your choice. you get $10. otherwise nothing. Write down the 
maximum amount you are willing to pay to play the game. The game will be 
played just once. 

(b) A friend of yours has available many black and many white balls. and he 
puts black and white balls into the urn to suit himself. You choose "black" or 
"white." A ball is drawn randomly from this urn. Write down the maximum 
amount you are willing to pay to play this game. The game will be played 
just once. 



Discussion for An Experiment in 
Personal Taste for Money 

No Clie can say what amount is appropriate for you to pay for either game. 
Even though your expected value in the first game is $5, you may not be 
willing to pay anything near $5 to play it. The loss of $3 or $4 may mean 
too much to you. Let us suppose you decided to offer 75¢. 

What we can say is that you should be willing to pay at least as much to 
play the second game as the first. You can always choose your own color 
at random by the toss of a coin and thus assure that you have a fifty-fifty 
chance of being right and therefore an expectation of $5. Furthermore, if 
you have any information about your friend's preferences, you can take 
advantage of that to improve your chances. 

Most people feel that they would rather play the first game because the 
conditions of the second seem more vague. I am indebted to Howard Raiffa 
for this problem, and he tells me that the idea was suggested to him by 
Daniel Ellsberg. 

11. Silent Cooperation 

Two strangers are separately asked to choose one of the positive whole numbers 
and advised that if they both choose the same number, they both get a prIZe. 
If you were one of these people, what number would you choose? 

Discussion for Silent Cooperation 

I have not met anyone yet who would choose more than a one-digit num­
ber; and of these only I, 3, and 7 have been chosen. Most of my informants 
choose I, which seems on the face of it to be the natural choice. But 3 and 7 
are popular choices. 

12. Quo Vadis? 

Two strangers who have a private recognition signal agree to meet on a certain 
Thursday at 12 noon in New York City, a town familiar to neither, to discuss 
an important business deal, but later they discover that they have not chosen a 
meeting place, and neither can reach the other because both have embarked on 
trips. If they try nevertheless to meet, where should they go? 

Discussion for Quo Vadis? 

My daughter when asked this question said enthusiastically "Why, they 
should meet in the most famous place in New York!" "Fine," I said, 
"where?" "How would I know that?" she said, "I'm only 9 years old." 
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Places that come to mind in 1964 are top of the Empire State Building, 
airports, information desks at railroad stations, Statue of Liberty, Times 
Square. The Statue of Liberty will be eliminated the moment the strangers 
find out how hard it is to get there. Airports suffer from distance from 
town and numerosity. That there are two important railroad stations seems 
to me to remove them from the competition. That leaves the Empire State 
Building or Times Square. I would opt for the Empire State Building, 
because Times Square is getting vaguely large these days. I think their 
problem would have been easier if they had been meeting in San Francisco 
or Paris, don't you? 

13. The Prisoner's Dilemma 

Three prisoners, A, B, and C, with apparently equally good records have 
applied for parole. The parole board has decided to release two of the three, and 
the prisoners know this but not which two. A warder friend of prisoner A 
knows who are to be released. Prisoner A realizes that it would be unethical to 
ask the warder if he, A, is to be released, but thinks of asking for the name of 
one prisoner other than himself who is to be released He thinks that before he 
asks, his chances of release are 1. He thinks that if the warder says "B will be 
released," his own chances have now gone down to t, because either A and B 
or Band C are to be released. And so A decides not to reduce his chances by 
asking. However, A is mistaken in his calculations Explain. 

Solution for The Prisoner's Dilemma 

Of all the problems people write me about, this one brings in the most 
letters. 

The trouble with A's argument is that he has not listed the possible events 
properly. In technical jargon he does not have the correct sample space. 
He thinks his experiment has three possible outcomes: the released pairs 
AB, AC, BC with equal probabilities of!. From his point of view, that is 
the correct sample space for the experiment conducted by the parole board 
given that they are to release two of the three. But A's own experiment adds 
an event-the response of the warder. The outcomes of his proposed 
experiment and reasonable probabilities for them are: 

1. A and B released and warder says B, probability!. 
2. A and C released and warder says C, probability!. 
3. Band C released and warder says B, probability i. 
4. Band C released and warder says C, probability i. 
If, in response to A's question, the warder says "B will be released," then 

the probability for A's release is the probability from outcome 1 divided by 
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the sum of the probabilities from outcomes I and 3. Thus the final probability 15 
of A's release is !/(! + t), or !, and mathematics comes round to common 
sense after all. 

14. Collecting Coupons 

Coupons in cereal boxes are numbered I to 5, and a set of one of each is 
required for a prize. With one coupon per box, how many boxes on the average 
are required to make a complete set? 

Solution for Collecting Coupons 

We get one of the numbers in the first box. Now the chance of getting a 
new number from the next box is t. Using the result of Problem 4, the 
second new number requires 1/(4/5) = ! boxes. The third new number 
requires an additional 1/(3/5) = !: the fourth ~, the fifth j-. 

Thus the average number of boxes required is 

5(! + i + ! + t + I) ~ 11.42. 

Euler's Approximation for Harmonic Sums 

Though it is easy to add up the reciprocals here, had there been a large 
number of coupons in a set. it might be convenient to know Euler's approxi­
mation for the partial sum of the harmonic series: 

I I 1 I 
I + 2 + "3 + ... + Ii ~ log,n + 2ii + 0.57721 .... 

(The 0.57721 ... is known as Euler's constant.) For n coupons in a set, 
the average number of boxes is approximately 

n log.n + 0.577 n + t. 

Since loge5 ~ 1.6094, Euler's approximation for n = 5 yields 11.43, very 
close to 11.42. Often we omit the term 1/2n in Euler's approximation. 

15. The Theater Row 

Eight eligible bachelors and seven beautiful models happen randomly to have 
purchased single seats in the same 15-seat row of a theater. On the average, how 
many pairs of adjacent seats are ticketed for marriageable couples? 
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Solution to The Theater Row 

The sequence might be (B for bachelor, M for model) 

B B M M B B M B M B M B B M M, 

and then 9 BM or MB pairs occur. We want the average number of unlike 
adjacent pairs. To be unlike, we must have BM or MB. Look at the first 
two positions. If they are unlike, we score one marriageable couple, if 
alike, we score zero. The chance of a marriageable couple in the first two 
seats is 

Furthermore -h is also the expected number of marriageable couples in the 
first two seats because -h(l) + 15-(0) = -h. This same calculation applies 
to any adjacent pair. To get the average number of marriageable adjacent 
pairs, we mUltiply by the number of adjacent pairs, 14, and get 715- as the 
expected number. 

More generally, with b elements of one kind and m of another, randomly 
arranged in a line, the expected number of unlike adjacent elements is 

[ 
bm mb] 

(m + b - I) (m + b)(m + b - -I) + (m + b)(m + ~I) 
2mb 

= m+b' 
In our example b = 8, m = 7, giving 71

7r;. 

The key theorem used here is that the average of a sum is the sum of the 
averages. We found the average number of marriageable pairs in each 
position, -h in the example, and added them up for every adjacent pair. A 
derivation of this theorem is given in PWSA pp. 214-216. 

16. Will Second-Best Be Runner-Up? 

A tennis tournament has 8 players. The number a player draws from a hat 
decides his first-round rung in the tournament ladder See diagram. 

Suppose tltat the best player always defeats the next best and that the latter 
always defeat~ all the rest. The loser of the finals gets the runner-up cup. What is 
the chance that the second-best player wins the runner-up cup? 

Solution for Will Second-Best Be Runner-Up? 

t. The second-best player can only get the runner-up cup if he is in the 
half of the ladder not occupied by the best player. 
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First round Second round Finals 

2 ____ _F 

3 --------..,. 

4 ------/ 

5 

Winner 

6 ____ _F 

7 ----___.... 

8 

Tennis tournament ladder of 8. 

In a tournament of 2n players, there are 2n
-

1 rungs in the half (top or 
bottom) of the ladder not occupied by the best player, and 2n - 1 rungs in 
the whole ladder not occupied by the best player. Therefore in a tournament 
of 2n players, the second-best man has probability 2n

-
1

/ (2n - 1) of winning 
the runner-up cup. 

17. Twin Knights 

(a) Suppose King Arthur holds a jousting tournament where the 
jousts are in pairs as in a tennis tournament. See Problem 16 for 
tournament ladder. The 8 knights in the tournament are evenly 
matched, and they include the twin knights Balin and Balan. What 
is the chance that the twins meet in a match during the tournament? 

(b) Replace 8 by 2" in the above problem. Now what is the 
chance that they meet? 

Solution for Twin Knights 

(a) Designate the twins as A and B. Put A in the top bracket (first line of 
the ladder). Then B is in the same bracket (pair of lines), or in the next 
bracket, or in the bottom half. The chance that B is adjacent to A is t, and 
then the chance they meet is I. The chance that B is in the next pair from A 
is " and then the chance they meet is t, because, to meet, each must win 
his first match. Finally, the chance that B is in the bottom half is t, and then 
their chance to meet is 1/24 = is because both must win 2 matches. Thus 
the total probability of their meeting is 

t'l +'·t+t·-h=!. 
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(b) Note that for a tournament of size 2 they are sure to meet. For 
22 = 4 entries, their chance of meeting is 1/2; for 23 = 8 entries, we have 
computed their chance to be 1/4 = 1/22. Thus a reasonable conjecture is 
that for a tournament of size 2n , their chance of meeting is 1/2n- 1• 

Let us prove this conjecture by induction. We consider first the case where 
the knights are in opposite halves of the ladder, then the case where they 
are in the same half. The chance that both A and B are in opposite halves 
of the ladder is 2n - 1/(2n - I), as we know from the tennis problem im­
mediately above. If they are in opposite halves, A and B can meet only in 
the finals. A knight has chance 1/2n

-
1 of getting to the finals because he 

must win n - I jousts. The chance that both A and B make the finals is 
(1/2n-l)2 = 1/2 2n- 2. Therefore the chance of their being in opposite halves 
and meeting is 

To this probability must be added the chance of their being in the same half 
and meeting. Their chance of being in the same half is (2n- 1 

- 1)/(2n - I), 
and according to the induction hypothesis, their chance of meeting in a 
tournament of n - I rounds is 1/2n- 2• If the induction hypothesis is true, 
their total probability of meeting is 

2n - 1 I 2n - 1 _ I 
2n - I . 22n-2 + 2n - I . 2n- 2 

(2n _ \)2n- 2 (! + 2n
-

1 
- I) = 1/2

n-1, 

which was the induction hypothesis we hoped to verify. That completes the 
induction. 

18. An Even Split at Coin Tossing 

When 100 coins are tossed, what is the probability that exactly 50 are heads? 

Solution for An Even Split at Coin Tossing 

Let us order the 100 coins from left to right, and then toss each one. 
The probability of any particular sequence of 100 tosses, a sequence of 100 
heads and tails, is (!)IOO because the coins are fair and the tosses independent. 
For example, the probability that the first 50 are heads and the second 50 are 
tails is (!) I 00. How many ways are there to arrange 50 heads and 50 tails in 
a row? In the Solution to the Perfect Bridge Hand (Problem 8) we found we 

I . ffi . k (100) 100! cou d use bmomial coe clents to rna e the count. We get 50 = 50!50! . 
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Consequently, the probability of an even split is 

. 100! (1)100 
P(even spltt) = 50! 50! 2: . 

Evaluating this with logarithms, I get 0.07959 or about 0.08. 

Stirling's Approximation 

Sometimes, to work theoretically with large factorials, we use Stirling's 
approximation 

where e is the base of the natural logarithms. The percentage error in the 
approximation is about 100/12n. Let us use Stirling's approximation on 
the probability of an even split 

100 100+1 

Vh50 

Since 1/V2i is about 0.4, the approximation gives about 0.08 as we got 
before. More precisely the approximation gives to four decimals 0.0798 
instead of 0.0796. 

Stirling'S approximation is discussed in advanced calculus books. For 
one nice treatment see R. Courant, Differential and integral calculus, Vol. I, 
Translated by E. J. McShane, Interscience Publishers, Inc., New York, 
1937, pp. 361-364. 

19. Isaac Newlon Helps Samuel Pepys 

Pepys wrote Newton to ask which of three events is more likely: that a person 
get (a) at least I six when 6 dice are rolled, (b) at least 2 sixes when 12 dice are 
rolled, or (c) at least 3 sixes when 18 dice are rolled What is the answer? 

Solution for Isaac Newton Helps Samuel Pepys 

Yes, Samuel Pepys wrote Isaac Newton a long, complicated letter about 
a wager he planned to make. To decide which option was the favorable 
one, Pepys needed the answer to the above question. You may wish to 
read the correspondence in American Statistician, Vol. 14, No.4, Oct., 1960, 
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pp. 27-30, "Samuel Pepys, Isaac Newton, and Probability," discussion by 
Emil D. ScheIl in "Questions and Answers," edited by Ernest Rubin; and 
further comment in the issue of Feb., 1961, Vol. 15, No. I, p. 29. As far as I 
know this is Newton's only venture into probability. 

Since I is the average or mean number of sixes when 6 dice are thrown, 
2 the average number for 12 dice, and 3 the average number for 18, one might 
think that the probabilities of the three events must be equal. And many 
would think it equal to!. That thought would be another instance of 
confusion between averages and probabilities. When the number of dice 
thrown is very large, then the probability that the number of sixes equals 
or exceeds the expected number is slightly larger than!. Thus for large 
numbers of dice, the supposition is nearly true, but not for smaIl numbers. 
For large numbers of dice, the distribution of the number of sixes is approxi­
mately symmetrical about the mean, and the term at the mean is smaIl, but 
for smaIl numbers of dice, the distribution is asymmetrical and the probabil­
ity of roIling exactly the mean number is substantial. 

Let us begin by computing the probability of getting exactly I six when 6 
dice are roIled. The chance of getting I six and 5 other outcomes in a par­
ticular order is (t)(i)5. We need to multiply by the number of orders for I 
six and 5 non-sixes. In An Even Split at Coin Tossing, Problem 18, we 

learned to count the number of orders and we get (~). Therefore the 

probability of exactly I six is 

Similarly. the probability of exactly x sixes when 6 dice are thrown is 

x = 0, I, 2, 3, 4, 5, 6. 

The probability of x sixes for n dice is 

x = 0, I, ... ,no 

This formula gives the terms of what is caIled a binomial distribution. 
The probability of I or more sixes with 6 dice is the complement of the 

probability of 0 sixes: 

When 6n dice are roIled, the probability of n or more sixes is 
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Unfortunately, Newton had to work the probabilities out by hand, but we 20 
can use the Tables of the cumulative binomial distribution, Harvard Univer-
sity Press, 1955. Fortunately, this table gives the cumulative binomial for 
various values of p (the probability of success on a single trial), and one 
of the tabled values is p = t. Our short table shows the probabilities, 
rounded to three decimals, of obtaining the mean number or more sixes 
when 6n dice are tossed. 

____ ~n ______ n __ 1 P(n or more sixes) 

6 I 0.665 
12 2 I 0.619 
IS 3 0.597 
24 4 0.5S4 
30 5 0.576 
96 16 0.542 

600 100 0.517 
900 150 0.514 

Clearly Pepys will do better with the 6-dice wager than with 12 or IS. 
When he found that out, he decided to welch on his original bet. 

The binomial distribution is treated extensively in PWSA, Chapter 7, 
see especially pp. 241-257. 

20. The Three-Cornered Duel 

A, B, and C are to fight a three-cornered pistol duel. All know that A's chance 
of hitting his target is 0.3, C's is 0.5, and B never misses. They are to fire at their 
choice of target in succession in the order A, B, C, cyclically (but a hit man loses 
further turns and is no longer shot at) until only one man is left unhit. What 
should A's ~trategy be? 

Solution for The Three-Cornered Duel 

A naturally is not feeling cheery about this enterprise. Having the first 
shot he sees that, if he hits C, B will then surely hit him, and so he is not 
going to shoot at C. If he shoots at B and misses him, then B clearly 
shoots the more dangerous C first, and A gets one shot at B with probability 
0.3 of succeeding. If he misses this time, the less said the better. On the 
other hand, suppose A hits B. Then C and A shoot alternately until one 
hits. A's chance of winning is 

(.5)(.3) + (.5)2(.7)(.3) + (.5)Y7)2(.3) + .... 
Each term corresponds to a sequence of misses by both C and A ending 
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with a final hit by A. Summing the geometric series, we get 

(.5)(.3}{1 + (.5)(.7) + [(.5)(.7)]2 + ... ) 
_ (.5)(.3) _ .15 3 3 
- r=-r.5)(.7) - .65 = 13 < To' 

Thus hitting B and finishing off with C has less probability of winning for 
A than just missing the first shot. So A fires his first shot into the ground 
and then tries to hit B with his next shot. C is out of luck. 

In discussing this with Thomas Lehrer, I raised the question whether 
that was an honorable solution under the code duello. Lehrer replied that 
the honor involved in three-cornered duels has never been established, 
and so we are on safe ground to allow A a deliberate miss. 

21. Should You Sample with or without Replacement? 

Two urns contain red and black balls, all alike except for color Urn A has 2 
reds and I black, and Urn B has lOl reds and 100 blacks. An urn is chosen at 
random, and you win a prize if you correctly name the urn on the basis of the 
evidence of two balls drawn from it. After the first ball is drawn and its color 
reported, you can decide whether or not the ball shall be replaced before the 
second drawing. How do you order the second drawing, and how do you 
decide on the urn? 

Solution for Slwuld You Sample with or 
witlwut Replacement? 

If the first ball drawn is a red, then no matter which urn is being drawn 
from, it now has half red and half black balls, and the second ball provides 
no discrimination. Therefore if red is drawn first, replace it before drawing 
again. If black is drawn, do not replace it. When this strategy is followed, 
the probabilities associated with the outcomes are 

Urn A Urn B decide 

2 reds !.!.! !'lli'lli~ 1 Urn A 

red, then black !'!'k !·lli·rn ~ 1 Urn B 

black, then red !' k· 1 !'rn'lli~ 1 Urn A 

2 black !·k·O !'m'N~~ 1 Urn B 

The total probability of deciding correctly is approximately (replacing ill 
by!, etc.) 

!It + t + k + H = H ~ 0.64. 
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Drawing both balls without replacement gives about 5/8, drawing both 22 
with replacement gives about 21.5/36. 

22. The Ballot Box 

In an election, two candidates, Albert and Benjamin, have in a ballot box a 
and b votes respectively, a > b, for example, 3 and 2 If ballots are randomly 
drawn and tallied, what is the chance that at least once after the first tally the 
candidates have the same number of tallies? 

Solution for The Ballot Box 

For a = 3 and b = 2, the equally likely sequences of drawings are 

AAABB 
AABAB 

*A B A A B 
*B A A A B 

*A A B B A 
*A B A B A 
*B A A B A 

*A B B A A 
*B A B A A 
*B B A A A 

where the starred sequences lead to ties, and thus the probability of a tie 
in this example is -h. 

More generally, we want the proportion of the possible taIlying sequences 
that produce at least one tie. Consider those sequences in which the first 
tie appears when exactly 2n baIlots have been counted n ~ b. For every 
sequence in which A (for Albert) is always ahead until the tie, there is a 
corresponding sequence in which B (for Benjamin) is always ahead until 
the tie. For example, if n = 4, corresponding to the sequence 

AABABABB 

in which A leads until the tie, there is the complementary sequence 

BBABABAA 

in which B always leads. This second sequence is obtained from the first 
by replacing each A by a B and each B by an A. 

Given a tie sometime, there is a first one. The number of sequences with A 
ahead until the first tie is the same as the number with B ahead until the 
first tie. The trick is to compute the probability of getting a first tie with B 
ahead until then. 

Since A has more votes than B, A must ultimately be ahead. If the first 
baIlot is a B, then there must be a tie sooner or later; and the only way to 
get a first tie with B leading at first is for B to receive the first taIly. The 

37 



probability that the first ballot is a B is just 

But there are just as many tie sequences resulting from the first ballot's 
being an A. Thus the probability of a tie is exactly 

where r = a/b. We note that when a is much larger than b, that is, when r 
gets large, the probability of a tie tends to zero (a result that is intuitively 
reasonable). And the formula holds when b = a, because we must have a 
tie and the formula gives unity as the probability. 

23. Ties in Matching Pennies 

Players A and B match pennies N times They keep a tally of their gains and 
losses. After the first toss, what is the chance that at no time during the game 
will they be even? 

Solution for Ties in Matching Pennies 

Below we extend the method described in the Solution for The Ballot 
Box, Problem 22, to show that the probability of not getting a tie is (for N 
odd and N even) 

P(no tie) = (N ~ 1) / 2\-1, 

P(no tie) = (:) / 2'\, 

N = 2n + 1, 

N = 2n. 

The formulas show that the probability is the same for an even N and for 
the following odd number N + 1. For example, when N = 4, the second 
formula applies. The 16 possible outcomes are 

*A A A A 
*A A A B 
*A A B A 
ABAA 

BAAA 
AABB 
ABA B 
BAAB 

ABBA 
BA BA 
BBAA 
ABBB 

BABB 
*BBA B 
*BB BA 
*BB BB 

where the star indicat.:s that no tie occurs Since the number of combinations 
of 4 things taken 2 at a time is 6, the formula checks. 
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For N = 2n, the probability of x wins for A is (:) / 2N. If x ~ n, 

the probability of a tie is 2x/ N, based on the ballot box result, and for x ~ n 
it is 2(N - x)/ N. To get the unconditional probability of a tie, we weight 
the probability of the outcome x by the probability of a tie with x wins and 
sum to get 

(I) 2(2-N) [~ (~) + ~ (~) + " . + n 7v I C ~ I) + N (:) 
n - I ( N ) I ( N) 0 (N)] 

+--w- n+1 +"'+N N-I +N N . 

When the binomial coefficients are converted to factorials and their 
coefficients canceled, we find that, except for a missing term which is 

(N- I)!/n!(n _ I)! = (N~ l).thesuminbracketswoUldbeL(N,:-I) 

over the possible values of x. Consequently, we can rewrite expression (I) 
as 

The complement of expression (2) gives at last the probability of no tie 

(N ~ I) / 2N-\ which a little algebra shows can be written (:) / 2N 

as suggested earlier. 

24. The Unfair Subw'lY 

I ~ 
Marvin gets off work at random times between 3 and 5 P.M. His 

~ _ I mother lives uptown, his girl friend downtown. He takes the 
SK~ '. - ' first subway that comes in either direction and eats dinner with the 
... _ one he is first delivered to. His mother complains that he never 

(;2) • - ~ comes to see her, but he says she has a 50-50 chance. He has had 
. _ y Y _ dinner with her twice in the last 20 working days. Explain. 

Solution for The Unfair Subway 

Downtown trains run past Marvin's stop at, say, 3 :00,3: 10, 3 :20, ... , etc., 
and uptown trains at 3:01, 3:11, 3:21, .... To go uptown Marvin must 
arrive in the I-minute interval between a downtown and an uptown train. 

25. Lengths of Random Chords 

If a chord is selected at random on a fixed circle what is the probability that 
its length exceeds the radius of the circle? 
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Some Plausible Solutions for 
Lengths of Random Clwrds 

Until the expression "at random" is made more specific, the question 
does not have a definite answer. The three following plausible assumptions, 
together with their three different probabilities, 
illustrate the uncertainty in the notion of "at 
random" often encountered in geometrical prob­
ability problems. 

We cannot guarantee that any of these results 
would agree with those obtained from some 
physical process which the reader might use to 
pick random chords, indeed, the reader may 
enjoy studying empirically whether any do agree. 

Let the radius of the circle be r. 

B 

(a) Assume that the distance of the chord from the center of the circle 
i., evenly (uniformly) distributed from 0 to r. Since a regular hexagon of 
side r can be inscribed in a circle, to get the probability, merely find the 
distance d from the center and divide by the radius. Note that d is the 
altitude of an equilateral triangle of side r. Therefore from plane geometry 
we get d = v'r2 - r 2/4 = rYJ/2. Consequently, the desired probability 
is 

r YJ /2r = YJ /2 "'" 0.866. 

(b) Assume that the midpoint of the chord is evenly distributed over the 
interior of the circle. Consulting the figure again, we see that the chord is 
longer than the radius when the midpoint of the chord is within d of the 
center. Thus all points in the circle of radius d, concentric with the original 
circle, can serve as midpoints of the chord. Their fraction, relative to the 
area of the original circle, is 7rd2/7rr2 = d 2/r2 = t = 0.75. This proba­
bility is the square of the result we got from assumption (a) above. 

(c) Assume that the chord is determined by two points chosen so that 
their positions are independently evenly distributed over the circumference 
of the original circle. Suppose the first point falls at A in the figure. Then 
for the chord to be shorter than the radius, the second point must fall on the 
arc BAC, whose length is ! the circumference. Consequently, the probability 
that the chord is longer than the radius is I - k = !. 
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26. The Hurried Duelers 

Duels in the town of Discretion are rarely fatal. There, each contestant comes 
at a random moment between 5 A.M. and 6 A M on the appointed day and leaves 
exactly 5 minutes later, honor served, unless his opponent arrives within the time 
interval and then they fight. What fraction of duds lead to violence? 



Solution for 
The Hurried Duelers 

Let X and y be the times of arrivals 
measured in parts of an hour from 5 .... M. 

The shaded region of the figure shows the 
arrival times for which the duelists meet. 

The probability that they do not meet 
is (H)2, and so the fraction of duels in 
which they meet is M "'" i. 

No meeting 

v 

I 
i2 
°O~I~----~X~------~ 

i2 

27. Catching the Cautious Counterfeiter 

I 
If 

(a) The king's minter boxes his coins 100 to a box. In each box he puts I false 
coin. The king suspects the minter and from each of 100 boxes draws a random 
coin and has it tested. What is the chance the minter's peculations go undetected? 

(b) What if both 100's are replaced by n? 

Solution for Catching the Cautious Counterfeiter 

(a) P(O false coins) = (I - Iio) 1 00 "'" 0.366. 
(b) Let there be n boxes and n coins per box. 
For any box the chance that the coin drawn is good is I - lin, and since 

there are n boxes, 

P (0 false coins) = (I - !y . n, 

Let us look at this probability for a few values of n. 

n P(O false coins) 

I 0 
2 0.250 
3 0.296 
4 0.316 
5 0.328 

10 0.349 
20 0.358 

100 0.366 
1000 0.3677 

00 0.367879 . . . = 1 Ie 
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Two things stand out. First, the tabled numbers increase; and second, they 
may be approaching some number. The number they are approaching is 
well known, and it is e- I or lie, where e is the base of the natural logarithms, 
2.71828 .... 

If we expand (I - ~r in powers of lin, we get 

or 

(I) I _ !!. + n(n - I) _ n(n -=---!)(n -=-~ + .... 
n 2!n2 3!n l 

If we take one of these terms, say the fourth, and study its behavior as n 
becomes very large, we find that it approaches -1/3! because 

(2) n(n - I ~(n - 2) = I (I _ !)(I _ ~) = 1 _ ~ + }_ . 
n3 n n n nl 

As n grows large, all terms on the right-hand side of eq. (2) except the 1 tend 
to zero. Similarly, for the rth term of expansion (I) the factors depending 
on n tend to I, and the term itself tends except for sign to I/(r - I)!. There-

fore, as n grows, the series for (I - ~r tends to 

1 I I 1 
I - 1 + - - -- + - - -- + .... 

2! 3! 4! 5! 

This series is one way of writing e- I . 

Had we investigated the case of 2 false coins in every box, we would have 

found that (I - ~r tends to e- 2 as n grows large, and in general that 

( m)n ( m)n . . 1 - -;; tends to e-m• Also 1 + -;; tends to em whether m IS an in-

teger or not. These facts are important for us. They can be studied at more 
leisure and more rigorously in calculus books, for example, Thomas, G. B., 
Jr., Elements of calculus and analytic geometry, Addison-Wesley, Reading, 
Mass., 1959, pp. 384-399. 
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28. Catching the Greedy Counterfeiter 

The king's minter boxes his coins n to a box. Each box contains m false coins. 
The king suspects the minter and randomly draws I coin from each of n boxes 
and has these tested. What is the chance that the sample of n coins contains 
exactly r false ones? 



Solution for Catching the Greedy Counterfeiter 

Each of the coins in the king's sample is drawn from a new box and has 
probability min of being counterfeit. The drawings are independent, and 
so we get the binomial probability for r false (and n - r true) to be 

P(r false coins) = (;)(~y(1 - ~r-T. 
Let us see what happens when n grows large while rand m are fixed. We 

write P(r false coins) as 

_1_ n(n - I)··· (n - r +~ . mT(1 _ ~)n(1 _ ~)-T. 
r! nr n n 

As n grows, I/r! is unchanged, mT is unchanged, 

n(n - I)··· (n - r + 1)lnT 

tends to I, (I - ~y tends to e-m
, as explained In Problem 27, and 

(I - ~) -T tends to (again because m and r are fixed). Therefore for 

large n 

P(r false coins) ~ e-~mT. 
r. 

These terms add up to I, that is, 

The series in parentheses is an expansion of em. 

Poisson Distribution 

The distribution whose probabilities are 

e-mm T 

P(r) = ---, 
r! 

r = 0, 1,2, ... , 

is called the Poisson distribution, and it approximately represents the 
probabilistic behavior of many physical processes. 

You might read about the Poisson distribution in M. 1. Moroney, Facts 
from figures, 3rd ed., Penguin Books, Ltd., Baltimore, Maryland, 1956, 
pp.96-\07. 
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29. Moldy Gelatin 

Airborne spores produce tiny mold colonies on gelatin plates in a laboratory. 
The many plates average 3 colonies per plate. What fraction of plates has 
exactly 3 colonies? If the average is a large integer m, what fraction of plates 
has exactly m colonies? 

Solution for Moldy Gelatin 

Regard the surface of a plate as broken into n small equal areas. For 
each area the probability of a colony is p, but the mean number is np = 3. 
We want tiny areas. As n grows, p becomes small, because the area of a 
subregion tends to zero. Instead of fixing on a mean number of 3, let us keep 
a general mean, m = np. You may be worrying that in some areas 2 or more 
colonies can occur, but relax, because the little regions will be so small they 
can barely hold one colony. Then the probability of exactly r colonies in n 
small areas is the binomial 

where p = m/ n. Replace p by m/ n. Then, the formula is our old friend from 
the Greedy Counterfeiter, Problem 28. Let n tend to infinity, and we again 
get the Poisson distribution 

e-mmr 

P(r) = --, 
r! 

r = 0, 1,2, .... 

For m = 3, and r = 3, this yields 0.224. 
You might verify from the definition that m is the mean of the distribution 

as follows: 
'" '" mean = L xP(x) = m L e-mm,,-I/(x - I)! m. 

%-0 x_I 

Several good tables of the Poisson are now available: 
T. C. Fry, Probability and its engineering uses, D. Van Nostrand Company, 

Inc., Princeton, New Jersey, 1928, pp. 458-467. 
T. Kitagawa, Tables of Poisson distribution, Baifukan, Tokyo, Japan, 

1952. 
E. C. Molina, Poisson's exponential binomial limit, D. Van Nostrand 

Company, Inc., Princeton, New Jersey, 1942. 
To get the results for a large value of m, where r = m, we could use the 

tables or apply Stirling's approximation. Stirling's approximation gives 
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Numerical examples: 

m 
4 
9 

16 

30. Evening the Sales 

P(m) 
0.1954 
0.1318 
0.0992 

O.4/vm 
0.200 
0.133 
0.100 

A bread salesman sells on the average 20 cakes on a round of his route. What 
is the chance that he sells an even number of cakes? (We assume the sales follow 
the Poisson distribution.) 

Solution for Evening the Sales 

Why assume a Poisson? Partly because the problem is nice that way. 
Partly because the distribution may be close to Poisson because the salesman 
has many customers, each with a small chance of buying a cake. You may 
be worried about variation from day to day during the week-good for 
you-I'm thinking only of summer Tuesdays. 

Most of us would guess about t. 
The probability of his selling exactly r cakes is e-2020 rlr!, as we know 

from Problem 28. Working with the general mean m instead of 20 will 
clarify the structure of the problem. Then, the sum of the Poisson probabil­
ities is L:e-mmr Ir!, or 

(A) I = e-mem = e-m I + !!!. + .!!!...- + .!!!...- + .!!!...- + . .. . ( 

2 3 4 ) 

I! 2! 3! 4 

We want to eliminate the terms corresponding to odd numbers of cakes. 
Recall that 

-2m -m -m -m( m m
2 

m
3 

m
4 

) (B) e = e e = e I - IT + 2f - 3f + 4f - ... . 

The sum of expressions (A) and (B) would give us twice the probability of 
an even number of loaves because the terms with odd powers of m would 
add to zero and the terms with even powers would have a coefficient of 2. 
COl'sequently, after dividing by 2, we get for the probability of an even 
number (I + e-2m)/2. For m = 20 the result is extremely close to 0.5 
because e-40 is negligible. 

On the other hand, if he sold on the average one special birthday cake 
per trip over the route, the probability that he sells an even number of special 
birthday cakes is about 0.568. 
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31. Birthday Pairings 

What is the least number of persons required if the probability exceeds! 
that two or more of them have the same birthday? (Year of birth need not 
match.) 

Solution for Birthday Pairings 

The usual simplifications are that February 29 is ignored as a possible 
birthday and that the other 365 days are regarded as equally likely birth 
dates. 

Let us solve a somewhat more general problem. Let N be the number of 
equally likely days, r the number of individuals, and let us compute the 
probability of no like birthdays. Then we can get the probability of at 
least one pair of like birthdays by taking the complement. 

There are N days for the first person to have a birthday, N - I for the 
second so that he does not match the first, N - 2 for the third so that he 
matches neither of the first two, and so on down to N - r + I for the rth 
person. Then apply the multiplication principle and find the number of 
ways for no matching birthdays to be 

(I) N(N - 1)" . (N - r + 1), r factors. 

To get the probability of no matching birthdays we also need the number 
of ways r people can have birthdays without restriction. There are N ways 
for each person. Then the multiplication principle says that the total number 
of different ways the birthdays can be assigned to r people is 

(2) Nr. 

The number in expressil)n (I) divided by that in expression (2) is the 
probability of no like birthdays, because we assume that all birthdays and 
therefore all ways of assigning birthdays are equally likely. The complement 
of this ratio is the probability of at least one pair of like birthdays. 

Thus 
P (at least I matching pair) 

(3) 1 - N(N - 1)'" (N - r + I)jNr
• 

To evaluate expression (3) for large values of N such as 365 requires some 
courage or, better, some good tables of logarithms. T. C. Fry in Probability 
and its engineering uses, D. Van Nostrand Company, Inc., Princeton, New 
Jersey, 1928, gives tables of logarithms of factorials, and so it is convenient 
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to evaluate the probability of no like birthdays in the form 

N! 
(N - r)!Nr 

The following data help: 

log 365! = 778.39975 log 365 = 2.56229286 

r = 20, log 345! = 727.38410 
r = 21, log 344! = 724.84628 
r = 22, log 343! = 722.30972 
r = 23, log 342! = 719.77442 
r = 24, log 341! = 717.24040 
r = 25, log 34O! = 714.70764 

A short bout with tables of logarithms shows that for r = 23 the probability 
of at least one success is 0.5073, but for r = 22 the probability is 0.4757. 
Thus r = 23 is the least number that gives a 50-50 chance of getting some 
like birthdays. Most persons are surprised that the number required is so 
small for they expected about 365/2. We discuss that notion in our next 
problem, but let us do a bit more with the current one. 

First, the table gives probabilities of at least one pair of like birthdays 
for various values of r: 

r 5 10 20 23 30 40 60 

PR 0.027 0.117 0.411 0.507 0.706 0.891 0.994 

Second, let us learn a tricky way to approximate the probability of failure. 
Recall that 

x 2 x 3 

e-z = 1 - x + -- - -- + .... 
2' 3! 

If x were very small, then the terms beyond 1 - x would not amount to 
much. Consequently, for small values of x we might approximate e-Z by 
1 - x or, as in what follows, 1 - x by e-z. Note that N(N - 1)·" 
(N - r + 1)/ N r is a product of factors (N - k)/ N, where k is much 
smaller than N. These factors can be written as 1 - k/ N, where 0 :::; k :::; r. 
Therefore 

N(N - \) ... (N - r + 1)/Nr ~ e-10+1+ ... +(r-l)J/N 

= e- r (r-1)/2N. 

To see the approximation in action, try it on r = 23 and get about 0.500 
instead of 0.507. Or set r(r - 1)/2(365) equal to -logeO.5 ~ 0.693 and 
solve for r. 
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Third, suppose the original problem were extended so that you wanted 
the least number to achieve at least one pair of either identical birthdays or 
adjacent birthdays (December 31 is adjacent to January I). Try this problem 
on your own. 

32. Finding Your Birthrnate 

You want to find someone whose brrthday matches yours. What is the least 
number of strangers whose birthdays you need to ask about to have a SO-SO 
chance? 

Solution for Finding Your Birthmate 

I think this personal birthmate problem is what most persons think of 
when they are asked about Birthday Pairings, Problem 31. From their 
notions about the personal birthmate problem stems their surprise at r = 23 
for the previous problem. In the current birth mate problem it is of no use 
to you if two other persons have the same birthday unless it matches yours. 
For this problem most people reason that the number should be about half 
of 365 or, say, 183. Since they have confused the pairings problem with this 
one, they regard 23 as very small. 

While good marks should be given for 183 for the birthmate problem to 
persons working it in their heads, even here that number is not close to the 
correct value because the sampling of births is done with replacement. If 
your first candidate is born on the Fourth of July, that does not use up the 
date, and later candidates may also be born on that date. Indeed, each 
candidate's chance to miss matching your birthday is (N - l)/N, where 
N = 365, the number of days in a year. When you examine n people, the 
probability that none of them have your birthday is [(N - i)/N]n, and so 
the probability that at least one matches is 

(4) 

We need to find the smallest n so that Ps is at least!. The logarithm of 
364 is 2.56110, of ~ is -0.30103. 

If we solve the resulting problem in logarithms, we find that n should be 
253, quite a bit more than 183. 

Alternatively, we could use again the approximation 

48 



Then we require approximately 

Ps "'" I - e-n /N 

Consequently, 

Taking natural logarithms gives us 

And for N = 365, n = 253. 

n/N"", 0.693, 

n "'" 0.693N. 

This birthmate problem is easier to solve than the pairings problem, and 
so it would be nice to have a relation between the two answers. 

33. Relating the Birthday Pairings and Birthmate 
Problems 

If r persons compare birthdays in the pairings problem, the probability is 
PR that at le.lSt 2 have the same birthday. What should n be in the personal 
birthmate problem to make your probability of success approximately PR? 

Solution for Relating the Birthday Pairings 
and Birthmate Problems 

Essentially, the issue is the number of opportunities for paired birthdays. 
In the birthmate problem, n persons offer n opportunities to find your own 
birthmate. In the birthday-pairings problem, each individual compares his 
own birthday with r - I others. The number of such pairs among r persons 
is r(r - I )/2, and that is the number of opportunities for like birthdays. 
To get approximately the same probability in the two problems, we should 
have 

(I) n"'" r(r - 1)/2. 

For example, when r = 23, n should be about 23(22)/2=253, which 
agrees exactly with our findings in the two previous problems. 

Those who wish to pursue this further might see "Understanding the 
birthday problem," Mathematics Teacher, Vol. 55, 1962, pp. 322-5. 

In the previous two problems we found that, for n much less than N, the 
probability of not finding one's own birthmate among n people is approxi­
mately e-n /N • Similarly, we found in the birthday-pairings problem that, 
for r small compared with N, the probability of not finding a pair with 
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identical birthdays is approximately e-rCr-1l/2N. For the two probabilities 
to be nearly equal, expression (I) must hold. This direct attack through the 
approximation gives us one way to understand the relation between the 
problems. The earlier discussion makes clear that r(r - 1)/2 has the 
physical interpretation "number of opportunities" which gave another 
explanation for comparing n with r(r - 1)/2. 

34. Birthday Holidays 

Labor laws in Erewhon require factory owners to give every worker a holiday 
whenever one of them has a birthday and to hire without discrimination on 
grounds of birthdays. Except for these holidays they work a 365-day year. 
The owners want to maximize the expected total number of man-days worked 
per year in a factory. How many workers do factories have in Erewhon? 

Solution for Birthday Holidays 

With I worker in the factory, the owner gets 364 man-days, with 2 he 
usually gets 2(363) = 726, and so we anticipate more than 2 workers to 
maximize working days in a factory. On the other hand, if the factory 
population is enormous, every day of the year is practically certain to be 
someone's birthday, and the factory never works. Consequently, there must 
be a finite maximum. 

If we can get the expected total number of days worked, we are a long 
step forward. Each day is either a working day or it isn't. Let's replace 
365 by N so that we solve the problem generally, and let n be the number 
of workers. Then the probability that the first day is a working day is 
(I - liNt, because then every worker has to have a birthday on one of 
the other N - I days. The expected number of man-days contributed by 
the first working day is 

Every day contributes this same number, and so the expected number of 
man-days worked by n workers is nN(1 - liNt. To maximize this function 
of n, we must find n so that increasing or decreasing n reduces the total, or 
in symbols: 

and 

( I)n-I ( I)n (n - I)N I - N :::; nN I - N . 
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The first inequality reduces to: The second inequality reduces to: 

(n + I) (I - {) ~ n, n - I ~ n(1 - *), 
N~n+1. n ~ N. 

Combining these results gives us n ~ N ~ n + I, and so either n = Nor 
n = N - 1. When these values are substituted for n in the formula for the 
expected man-days, we get N 2(1 - l/N)N and (N - I)N(1 - I/N)N-l, 
which are equal. Since the Nth man adds nothing, N - I must be the 
factory size. Since (1 - 1/ N)N "" e- 1, we get at last N 2e- 1 as the approxi­
mate expected number of days worked. If all N men worked every day, they 
would work N 2 days, and so e- 1 is the expected fraction that the actual man­
days worked is of the potential N 2 man-days. Thus the fraction is about 
0.37. The factory size is 364, and the man-days worked are roughly 49,000, 
assuming no other absenteeism. The 364th worker adds only 0.37 days to 
the total expectation! Labor must be very cheap in Erewhon. 

35. The Cliff-Hanger 

From where he stands, one step toward the cliff would send the drunken man 
over the edge. He takes random steps, either toward or away from the cliff. At 
any step his probability of taking a step away is !, of a step toward the cliff !­
What is his chance of escaping the cliff? 

Solution for The Cliff-Hanger 

Before trying to solve a problem, I find it a help to see what is happening. 
Let us see what could happen in the first few steps. The diagram illustrates 
that the man can go over the cliff only on an odd-numbered step. After 
one step, he had a k chance of being over the cliff. The path through the 
positions I --+ 2 --+ I --+ 0 adrlo another Ir to the probability of disaster 
for a total of H. At the end of 5 steps, the paths I --+ 2 --+ I --+ 2 --+ I --+ 0 
and I --+ 2 --+ 3 --+ 2 --+ I --+ 0 have together added 2h to the probability 
of disaster for a total of !H-. One could extend the table, and one might 
learn something from a further analysis of the probabilities. I turn now to a 
different attack. 

This famous random walk problem has many forms. Next, we shall treat 
it as a particle moving along an axis. 

Consider a particle initially at position x = I on the real line. The 
structure of the problem will be clearer if we let p, rather than 5. be the 
probability of a step to the right. The particle moves from position I either 
to position x = 2 with probability p or to position x = 0 with probability 
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Step 
number 

Position measured in steps 
from the edge of the cliff 

0123456 

Diagram for The Cliff-Hanger showing probabilities of the man's 
being at various distances from the edge. 

- p. More generally, if the particle is at position x = n, n > 0, n an 
integer, its next move is either to x = n + I with probability p or to x = 
n - I with probability I - p. If the particle ever arrives at x = 0, it is 
absorbed there (takes no further steps). We wish to know the probability, 
p 10 that the particle is absorbed at x = 0, given that it starts at x = I. 
Naturally, the value of PI depends upon p. It seems reasonable that if p 
is near I, PI is small, but if p is near 0, PI is close to 1. 

o 
I 

Start 

2 
I 

4 
I 

5 
I x 

Consider the situation after the first step: either the particle moved left 
to x = ° and was absorbed (this event has probability I - p) or it moved 
right to x = 2 (this event has probability p). Let P2 be the probability of 
the particle's being absorbed at x = ° when the particle starts from position 
x = 2. Then we can write 

(I) 

because I - p is the probability of absorption at the first step and PP2 is 
the probability of being absorbed later. 

Paths leading to absorption from x = 2 can be broken into two parts: 
(I) a path that goes from x = 2 to x = I for the first time (not necessarily 
in one step), and (2) a path from x = I to x = ° (again, not necessarily in 
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one step). The probability of a path from x = 2 to x = I is just P 10 because 35 
the structure here is identical with that of the original set-up for the particle 
except that the origin has been translated one step to the right. The probability 
of a path from x = I to x = 0 is also P 10 because this is exactly the original 
problem. The probability P 2 therefore is pi, because the events A = (par-
ticle takes path from x = 2 to x = I) and B = (particle takes path from 
x = I to x = 0) are independent, and P(A) = P(B) = PI. 

We can rewrite eq. (I) as 

(2) PI = 1 - P + ppi. 

Equation (2) is quadratic in P I with solutions 

(3) PI = I, PI = .!.....=....E. 
p 

In such problems one or both solutions may be appropriate, depending on 
the circumstances. 

We need to choose the solution that goes with each value of p. When 
p = " the solutions agree, and PI = I. When p = 0, clearly PI = I. 
And when p = I, PI = 0, because the particle always moves to the right. 
When p < " the second solution of (3) is impossible because then 
(I - p)/p > I, and we must have PI 5 I. Therefore, for 0 5 p 5 " 
we have PI = I. 

To prove that the second solution, PI = (I - p)/p, holds for p > , 
requires us to show that PI is a continuous function of p (roughly, that PI 
does not jump when p changes slightly). We assume this continuity but do 
not prove it. 

10 

0.8 

0.6 

02 

00 0.2 0.4 0.6 I 0 
p 

Probabilities of absorption, 
PI, for The Cliff-Hanger. 

The curve (see figure) starts at PI = 1 when p = " must decrease to 
PI = 0 at p = I, and must always have value either 1 or (I - p)/p. For 
it to avoid jumps, it must adopt (I - p)/p for p > ,. The proof of the 
continuity itself is beyond the scope of this book, but assuming the con-
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tinuity, for p > , we have PI = (I - p)/p. Therefore our cliff-hanging 
man has probability , of falling over the cliff. 

To give another interpretation, if a gambler starting with one unit of 
money (x = I) could and did play indefinitely against a casino with in­
finitely large resources a fair game (p = ,) in which he wins or loses one 
unit on each play, he would be certain to lose his money (PI = I). To have 
an even chance of not going bankrupt, he must have p = !. 

That bankruptcy is certain for p = , is surprising for most of us. We 
usually suppose that if the trials of a game are "fair" (average loss is zero), 
then the whole game is fair. Indeed, this supposition is ordinarily correct. 
If we imagine this game, with p = !, being played infinitely many times, 
then the average amount of money on hand after n plays is I, for every 
finite number n. So the unfairness is one of those paradoxes of the infinite. 
Another surprise for p = ,is that the average number of trials required for 
absorption is not finite. The case p = ! is indeed strange and deep. 

You may enjoy applying the technique given here to a particle that starts 
at x = m, rather than x = I, and generalizing the above results to show 
that the probability of absorption from position m is [(I - p)/pr or I 
depending on whether p is greater or less than ,. When p > ,and m is 
large, it is extremely plausible that the particle escapes and therefore we 
would reject I as the absorption probability. 

Had the particle started at 0 and been allowed to take its steps in either 
direction with p = " another classical random walk problem would ask 
whether the particle would ever return to the origin. We see it would because 
it is sure to return from x = I and from x = - I. More on this later. 

36. Gambler's Ruin 

Player M has $1, and Player N has $2. Each play gives one of the players $1 
from the other. Player M is enough better than Player N that he wins! of the 
plays. They play until one is bankrupt What is the chance that Player M wins? 

Solution for Gambler's Ruin 

Our problem is a special case of the general random walk problem with 
two absorbing barriers. Historically, the problem arose as a gambling 
problem, called "gambler's ruin," and many famous mathematicians have 
contributed to questions arising from it. Let us restate the problem generally. 

Player M has m units; Player N has n units. On each play of a game one 
player wins and the other loses I unit. On each play, the probability that 
Player M wins is p, that N wins is q = I - p. Play continues until one 
player is bankrupt. The figure represents the amount of money Player M 
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Schematic representation of Gambler's Ruin. 

has at any time. He starts at x = m. When x = 0, he is bankrupt; when 
x = m + n, Player N is bankrupt. 

With this representation, since p > " we can appeal to a result from 
The Cliff-Hanger, Problem 35. We know that, had Player M played against 
a bank with unlimited resources, he would have become bankrupt with 
probability (q/p)m. In the course of a trip to bankruptcy, either he attains an 
amount of money m + n (n is now finite), or he is never that well off. Let 
the probability that he loses to Player N be Q (that is equivalent to the 
infinite bank winning without Player M ever reaching m + n). Then 

(I) (q/p)m = Q + (I _ Q)(q/p)m+n, 

because Q is the fraction of the sequences that are absorbed before reaching 
m + n, and of the fraction 1 - Q that do reach m + n, the portion 
(q/p)m+n is also absorbed at 0 if the game is allowed to proceed indefinitely. 
Then P = 1 - Q is the probability that Player M wins. Making substitu­
tions into eq. (I) and solving for P gives 

(2) P= 
I _ (q/p)m . 

1 _ (q/p)m+n 

For our players p = !, q = !, m = I, n = 2, and P = t. So in this 
instance it is better to be twice as good a player rather than twice as wealthy. 

If q = p = " then P in eq. (2) takes the indeterminate form 0/0. When 
L'Hospital's rule is applied, we find 

(3) P=-~' 
m+n 

p = q = ,. 

Thus, had the players been evenly matched, Player M's chance would be ! 
and his expectation would be !(2) + !( -I) = O. Thus the game is fair, 
that is, has 0 expectation of gain for each player. 

37. Bold Play vs. Cautious Play 

At Las Vegas, a man with $20 needs $40, but he is too embarrassed to wire 
his wife for more money. He decides to invest in roulette (which he doesn't 
enjoy playing) and is considering two strategies: bet the $20 on "evens" all at 
once and quit if he wins or loses, or bet on "evens" one dollar at a time until 
he has won or lost $20. Compare the merits of the strategies. 

55 

37 



Solution for Bold Play vs. Cautious Play 

Bold play, as Lester E. Dubins and Leonard J. Savage call it in their 
How to gamble if you must·, that is, betting $20 at once, gives him a 
probability of H "" 0.474 of achieving his goa\. 

Cautious play, a dollar at a time, leads us to the gambler's ruin problem 
with 

m = 20, 

p = H, 
n = 20, 

q H· 
Substituting into the formula for M's chance to win obtained in Problem 36 
gives us 

p= 8.23 - I "" 0.11. 
67.7 - I 

Cautious play has reduced his chances of reaching the goal to less than one­
fourth of that for bold play. 

The intuitive explanation is that bold play is also fast play, and fast play 
reduces the exposure of the money to the house's percentage. We have 
several times seen that intuitions based on averages do not always lead to 
correct probabilities. Dubins and Savage warn that no known proof of the 
merits of bold play, in general, is based upon this intuitive argument. 
However, Dubins points out that for our special case of doubling one's 
money at Red-and-Black, the following exposition by Savage is so based. 
In preparing this discussion for us, Savage has deliberately glossed over a 
couple of mathematical fine points dealing with the attainability of bounds. 

The Golden Paradise 

At the Golden Paradise they sell any fair gamble that a gambler has the 
funds to stake on. A gambler who enters the Golden Paradise with x dollars 
bent on making an income of y additional dollars, if possible, can achieve 
his goal with probability x/(x + y) by staking his entire fortune x on a 
single chance of winning y with probability x/(x + y), which is plainly 
fair. As is well known, no strategy can give him a higher probability of 
achieving his goal, and the probability is this high if and only if he makes 
sure either to lose x or win y eventually. 

The Leeser Paradise 

The Lesser Paradise resembles the Golden Paradise with the imoortant 
difference that before leaving the haH the gambler must pay an income tax 

·First pUblished, 1965 Reprinted by Dover Publications. Inc in 1976 under the title 
Inequalities for stochastic processes 

56 



of t 100% (0 < t < 1) on any net positive income that he has won there. 37 
It is therefore no harder or easier for him to win y dollars with an initial 
fortune of x than it is for his brother in the Golden Paradise to win y/(I - t) 
dollars. The greatest probability with which he can achieve his goal is 
therefore 

(I) 
(I - t)x 

(1 - t)x + y 

The Paradise Lost 

Here, the croupier collects the tax of ! 100% on the positive income, if 
any, of each individual gamble. The gambler here is evidently in no way 
better off than his brother in the Lesser Paradise. In particular, (I) is an 
upper bound on the probability of winning y with an initial fortune of x 
in the Paradise Lost. This probability can be achieved by staking all on a 
single chance as before. However, it cannot be achieved by any strategy that 
has positive probability of employing some gamble that has positive proba­
bility of winning any positive amount less than y after taxes. To see this, 
consider that the Lesser Paradise brother can imitate any strategy of the 
Paradise Lost brother, setting aside for his own later use whatever the 
croupier takes from the Paradise Lost brother in taxes on small prizes. Thus, 
the former can have a higher expected income than the latter can have on 
any strategy in which he risks winning a small prize. 

Red-aDd-Black 

In Red-and-Black, the gambler can stake any amount in his possession 
against a chance of probability w (0 < w < !) of winning a prize equal 
to his stake. Put differently, he wins the fair prize of (I - w)/w times his 
stake subject to an immediate tax of t 100%, where 

1- 2w t = --_. 
l-w 

Therefore the probability for a gambler in Red-and-Black to win y with an 
initial fortune of x is at most (1), as it is for his brother in Paradise Lost. 
In terms of w, this is 

wx 
(2) wx + (1 - w)y· 

Moreover, the bound (2) can be achieved only if the gambler in Red-and 
Black can avoid any positive probability of ever winning a positive amount 
less than y on his individual gambles and be sure of either losing exactly x 
or winning exactly y. As is not hard to see, this can occur only if y = x, in 
which case he can win y with a single bold gamble with the probability w 
given by (2). 
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The problem of an exact upper bound and optimum strategies for the 
gambler in Red-and-Black who wants to win an amount different from x 
is more difficult and will not be entered into here. 

38. The Thick Coin 

How thick should a coin be to have a ! chance of landing on edge? 

Solution for The Thick Coin 

On first hearing this question, the late great mathematician, John von 
Neumann, was unkind enough to solve it-including a 3-decimal answer­
in his head in 20 seconds in the presence of some unfortunates who had 
labored much longer. 

~ '-J-Edge 

This problem has no definite answer without some simplifying con­
ditions. The elasticity of the coin, the intensity with which it is tossed, and 
the properties of the surface on which it lands combine to make the real­
life question an empirical one. 

Edge 

Coin falls on edj1;e Coin falls on face 

The simplifying conditions that spring to mind are those that correspond 
to inscribing the coin in a sphere, where the center of the coin is the center 
of the sphere. The coin itself is regarded as a right circular cylinder. Then 
a random point on the surface of the sphere is chosen. If the radius from 
that point to the center strikes the edge, the coin is said to have fallen on 
edge. 

To simulate this in reality, the coin might be 
tossed in such a way that it fell on a thick sticky 
substance that would grip the coin when it 
touched, and then the coin would slowly settle 
to its edge or its face. 
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A key theorem in solid geometry simplifies this problem. When parallel 38 
planes cut a sphere, the orange-peel-like band produced between them is 
called a zone. The surface area of a zone is proportional to the distance 
between ~lle planes, and so our coin should be k as thick as the sphere. How 
should the thickness compare with the diameter of the coin? 

Let R be the radius of the sphere and r that of 
the coin. 

or 

The Pythagorean theorem gives 

R2 = r2 + ! R2, 

2 r, 

Edp,e R2 r2 
9=8' 
I Y'2 
3 R = 4- r ~ 0.354 r. 

Cross section showing re­
lation betwee'l radius R of 
sphere and radius r of coin. 

And so the coin should be about 35% as thick as the diameter of the coin. 

Digression: A Note on the Principle of Symmetry when Points 
Are Dropped on a Line 

Suppose that several points are dropped at random on the unit interval 
from 0 to I. For example, suppose w, x, yare these points as shown in the 
figure. These three points divide the 
interval into four segments with lengths 
x, y - x, w - y, and I - w. When 
three points are dropped at random 
repeatedly, each drop of three produces 
four segments, and each segment (left-

o x y w 

Three points dropped on the 
unit interval. 

most, second, third, and rightmost) has a distribution across these drops. It is 
easy to find the cumulative distribution of the length of the leftmost interval. 
Consider some number I. What is the chance that all three points fall to the 
right of it? Since the three points are dropped independently and each has a 
chance of I - 1 of falling to the right of I, the answer is (I - 1)3. Thus 

P (leftmost point is to right of I) = (I - 1)3. 

Example. What is the median position of the leftmost point? The median 
is the position that is exceeded half the time. We want (I - 1)3 = 1. 
The appropriate root is given by 

I - 1 = V'1, and so 1 ~ 0.206. 
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While the calculation of the distribution for the length of the leftmost 
segment is easy, and you could get the rightmost one by symmetry, you 
might boggle at finding the distribution for the second or third segment. 
You may have guessed already that they are the same as that for the leftmost 
segment, but most people do not. It is the purpose of the next remarks to 
make that proposition reasonable. 

Instead of dropping points on a unit interval, let us drop them on a circle 
of unit circumference; instead of three points, let us drop four and call the 
fourth one z. 

Four points dropped on a circle of unit circumference. 

Thus, the points x, y, ware dropped at random on a unit interval as before, 
but it does not have a scale on it. We drop the fourth point z, also at random. 
The four points have all been treated alike, and the four segments of the 
circle, here (zx), (xy), (yw), and (wz), arise from a process equitable to all 
segments. Imagine dropping four points many times and each time getting 
the distance from z to the first counterclockwise point, from there to the next, 
and so on. Then we would generate four distributions of segment lengths, 
and these distributions would be alike across many drops of 4 points. 

Now for each drop, cut the circle at z, and straighten it into a unit interval 
labeling the ends 0 and 1 as implied by the figure. The drop of four points 
on a circle using z as a cut is equivalent to a drop of three points on the unit 
interval. 

Although you may still have lingering doubts, we shall not give a formal 
proof, but we do state the principle. 

PRINCIPLE OF SYMMETRY: When n points are dropped at random on an 
interval, the lengths of the n + 1 line segments have identical distributions. 
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39. The Clumsy Chemist 

In a laboratory, each of a handful of thin 9-inch glass rods had one tip marked 
with a blue dot and the other with a red. When the laboratory assistant tripped 
and dropped them onto the concrete floor, many broke into three pieces. For 
these, what was the average length of the fragment with the blue dot? 



Solution for The Clumsy Chemist 

Assuming these rods broke at random, the principle of symmetry says 
that each fragment-blue-dotted, middle, and red-dotted segment-would 
have the same distribution and the same mean. Since the means have to add 
to 9 inches, the blue-dotted segments average about 3 inches. 

40. The First Ace 

Shuffle an ordinary deck of 52 playing cards containing four aces. Then 
turn up cards from the top until the first ace appears. On the average, how 
many cards are required to produce the first ace? 

Solution for The First Ace 

Assume that the principle of symmetry holds for discrete as welI as con­
tinuous events. The four aces divide the pack into 5 segments of size from 
o to 48 cards. If two aces are side by side, we say the segment between them 
is of length O. If the first card is an ace, the segment before it is of length 
zero, and similarly for the segment folIowing an ace that is a last card. The 
principle of symmetry says the 5 segments should average ¥ = 9.6 cards. 
The next card is the ace itself, so it is the IO.6th card on the average. 

41. The Locomotive Prohlem 

(a) A railroad numbers its locomotives in order, I, 2, ... ,N. One day you 
see a locomotive and its number is 60. Guess how many locomotives the com­
pany has. 

(b) You have looked at 5 locomotives and the largest number observed is 60. 
Again guess how many locomotives the company has. 

Discussion for The Locomotive Problem 

While the questions as stated provide no "right" answers, still there are 
some reasonable things to do. For example, the symmetry principle discussed 
earlier suggests that when one point is dropped, on the average the two 
segments will be of equal size, and so you might estimate in part (a) that the 
number is 119, because the segment to the left of 60 has 59, 2(59) = 118, 
and 118 + I = 119. 

Similarly in part (b), you might estimate that the 5 observed numbers 
separate the complete series into 6 pieces. Since 60 - 5 = 55, the average 
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length of the first 5 pieces is II, and so you might estimate the total number 
as 60 + II or 71. Of course, you cannot expect your estimate to be exactly 
right very often. 

11 11 11 11 11 1 
I 11 

60 

The method just described makes sure that in many such estimates you 
average close to the correct value. That is, imagine many problems in which 
the unknown number N is to be guessed. Follow the estimation program 
described above each time (draw a sample, make an estimate). Then the 
set of estimates will average close to the true value in the long run. 

On the other hand, you might not be interested in being close in the long 
run, or in averaging up well. You might want to try to be exactly right this 
time, however faint the hope. Then a reasonable strategy is just to guess 
the largest number you have seen. If you've seen 2 locomotives, then the 

chance that a sample of 2 contains the largest is (N - I)/(~) or ~ . 
The method of confidence limits is often used to make an interval estimate. 

For a description, I will confine myself to the case of one observation. If 
the company has N locomotives and we draw a random one, then the 
probabilities of the numbers I, 2, ... , N are each liN. Therefore we can be 
sure that the chance that our locomotive is in some set is the size of the 
set divided by N. For example, let n be the random number to be drawn, 
then for even values of N, P(n > N /2) = !, and for odd values of N the 
probability is slightly more. Then we can read the statement n > N 12 and 
say that the probability is at least, that it is true when n is a random variable. 
If we have observed the value of n and do not know N, but wanted to say 
something about it, we could say 2n > N, and that would put an upper 
bound on N. The statement itself is either right or wrong in any particular 
instance, and it is right in more than half of experiments and statements 
made in this manner. If one wanted to be surer, then one could change the 
limits. For example, P(n ~ ~N) ~! The confidence statement would be 
3n ~ N, and we would be at least! sure it was correct. In our problem, if 
we wanted to be at least ! sure of making a statement that contains the 
correct value of N, we ~ay N is between 60 and 180. 

Another method of estimation that is much in vogue is maximum likeli­
hood. One would choose the value of N that makes our sample most likely. 
For example, if N = 100, our sample value of 60 would have probability 
Jio-; but if N = 60, its probability is -to. We can't go lower than 60 because 
if N = 59 or less we can't observe 60, and our sample would have probability 
O. Consequently, if n is the observed value, the maximum likelihood estimate 
of N is n. 
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In this discussion I have not tried to use casual information such as "it's 43 
a large company, and so it must have at least 100 locomotives, but it couldn't 
possibly have 100,000." Such information can be useful. 

42. The Little End of the Stick 

(a) If a stick is broken in two at random, what is the average length of the 
smaller piece? 

(b) (For calculus students.) What is the average ratio of the smaller length to 
the larger? 

Solution for The Little End of the Stick 

(a) Breaking "at random" means that all points of the stick are equally 
likely as a breaking point (uniform distribution). The breaking point is just 
as likely to be in the left half as the right half. If it is in the left half, the 
smaller piece is on the left; and its average size is half of that half, or one­
fourth the length of the stick. The same sort of argument applies when the 
break is in the right half of the stick, and so the answer is one-fourth of the 
length. 

(b) We might suppose that the point fell in the right-hand half. Then 
(I - x)/x is the fraction if the stick is of unit length. Since x is evenly distri­
buted from! to I, the average value, instead of the intuitive !, is 

2 hi I : x dx = 2 hi G - I) dx 

= 2 loge2 - I "'" 0.386. 

43. The Broken Bar 

A bar is broken at random in two places. Find the average size of the smallest, 
of the middle-sized, and of the largest pieces. 

Solution for The Broken Bar 

We might as well work with a bar of unit length. Let x and y be the 
positions of the two breaking points, x the leftmost one (Fig. I). We know 
from the principle of symmetry that each of the three segments (left, middle, 
and right) averages! of the length in repeated drops of two points. But we 
are asked about the smallest one, for example. If we drop two points at 

o ,. y 

Fig. 1. Interval with break points x and y. 
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random, let X stand for the position of the first point dropped and Y for the 
position of the second. Then the random pair (X, 1') is uniformly distributed 
over a unit square as in Fig. 2, and probabilities can be measured by areas. 
For example, the probability that X < 0.2 and Y < 0.3 is given by the 
area below and to the left of (0.2, 0.3), and it is 0.2 X 0.3 = 0.06. 

y 

0.3) 

x X 

Fig. 2. Unit square representing Fig. 3. Unshaded area shows where 
probability distribution for a pair of Y > X. 
points (X, Y) dropped on a unit interval. 

For convenience, let us suppose that X is to the left of Y, or that X < Y. 
Then the distribution is over the unshaded half-square in Fig. 3. Then 
probabilities are still proportional to areas, but the area must be multiplied 
by 2 to get the probability. If we want to get the average length for the 
segment of smallest length, then note that either X, Y - X, or I - Y is 
smallest. Let uS suppose X is smallest, so that 

X< Y- X or, equivalently, 2X < Y, 
and 

X < I - Y or, equivalently, X + Y <I. 

In Fig. 4, the triangular region meeting all these conditions is shown 
heavily outlined. Although X runs from 0 to !. it must be averaged over the 
triangular region. The key fact from plane geometry is that the centroid of 
a triangle is ! of the way from a base toward the opposite vertex. The base 
of interest in the heavily outlined triangle is the one on the Y-axis. The 
altitude parallel to the X-axis is !. Consequently, the mean of X is ! .! = i. 
Therefore the average value of the smallest segment is i. 

Let's see what happens if X is the largest. We want 

X> Y- X or, equivalently, 2X> Y, 
and 

X> 1- Y or, equivalently, X+Y>1. 

Figure 5 shows the appropriate quadrilateral region heavily outlined. To 
get its mean for X, we break the quadrilateral into two triangles along the 
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...--------..,....;...-----(1. I) 

y 

x 

Fig. 4. Triangular region where left- Fig. S. Region where X is greatest is 
most segment is smallest is heavily out- heavily outlined. 
lined. 

dotted line. Then we compute the mean for X for each triangle separately 
and weight the two means by the areas of the triangles to get the final answer. 

The mean of X for the right-hand triangle whose base is the dotted line is 
! + !(!). That for the left-hand triangle whose base is the dotted line is 
! - !fl). The weights are proportional to the altitudes! and 1, respectively, 
because the triangles have a common base. Finally, the mean of Xis 

!(! + 1) + l(! - h) II 
! + 1 = 18' 

Since the mean of the smallest is i or Is- and that for the largest it, the 
mean for the middle segment is 1 - H - h = h. You may want to 
check this by applying the method just used when, for example, 1 - Y > 
X>Y-X. 

So finally, the means of the smallest, middle-sized, and longest segments 
of the broken bar are proportional to 2,5, and II, respectively. 

When we break a bar in 2 pieces, the average lengths of the smaller and 
larger pieces are proportional to 

}, t, which can be written !(!), !(! + t). 

For 3 pieces we have, in order, the proportions 

i,h,H-, 
or 

!(!), !<! + i), !<! + ! + t). 
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In general, if there are n pieces the average lengths in order of size are pro­
portional to 

smallest: 

next largest: 

3rd: 

largest: 

But I have no easy proof of this. 

44. Winning an Unfair Game 

A game consists of a sequence of plays; on each play either you or your 
opponent scores a point, you with probability p (less than !), he with probability 
1 - p. The number of plays is to be even-2 or 4 or 6 and so on. To win the 
game you must get more than half the points. You know p, say 0.45, and you 
get a PrIze if you win. You get to choose in advance the number of plays. How 
many do you choose? 

Solution for Winning an Unfair Game 

Don't balk just because the game is unfair; after all you are the only one 
eligible for a prize. Let us call you player A and your opponent player B. 
Let the total number of plays be N = 2n. On a given play, your chance of 
winning a point is p, your opponent's q = 1 - p. 

At first blush, most people notice that the game is unfair and therefore 
that, as N increases, the expected value of the difference (A's points - B's 
points) grows more and more negative. They conclude that A should 
playas little as he can and still win-that is, two plays. 

Had an odd number of plays been allowed, this reasoning based on 
expected values would have led to the correct answer, and A should choose 
only one play. With an even number of plays, two opposing effects are at 
work: (l) the bias in favor of B, and (2) the redistribution of the probability 
in the middle term of the binomial distribution (the probability of a tie) 
as the number of plays increases. 

Consider, for a moment, a fair game (p = l). Then the larger N, the 
larger A's chance to win because as 2n increases, the probability of a tie tends 
to zero, and the limiting value of A's chance to win is l. For N = 2, 4, 6, 
his probabilities are t, f,;, U. Continuity suggests that for p slightly less 
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than!, A should choose a large but finite number of plays. But if p is small, 44 
N = 2 should be optimum for A. It turns out that for p < !, N = 2 is 
optimum. 

Your probability of winning in a game of 2n trials is the sum of the 
probabilities of getting n + I, n + 2, ... , 2n points, a sum given by 

P _ ~ (2n) x 2n-x 
2n-L.J x pq · 

r=n+l 

In a game of 2n + 2 plays, the probability of winning at least n + 2 points 
and the game is 

P _ 2~2 (2n + 2) x 2n+2-z 
2n+2 - 2.... x p q . 

x_n+2 

A game composed of 2n + 2 plays can be regarded as having been 
created by adding two plays to a game of2n plays. Unless player A has won 
either n or n + 1 times in the 2n game, his status as a winner or loser cannot 
differ in the 2n + 2 game from that in the 2n game. 

Except for these two possibilities, P2n+2 would be identical with P 2n. 
These exceptions are: (I) having n + I successes in the first 2n plays, A 
loses the next two, thus reducing his probability of winning in the 2n + 2 
game by 

or (2) having won n plays in the 2n game, he wins the next two, increasing 
his probability by 

2(2n) n n p n p q. 

If N = 2n is the optimuIr. value, then both P N _ 2 ~ P Nand P N ~ P N +2 

must hold. The results of the previous paragraph imply that these inequalities 
are equivalent to the following two inequalities: 

2 (2n - 2) n n-2 < 2 (2n - 2) n-l n-l 
q n pq -p n-I p q , 

(I) 
2 ( 2n ) n+1 n-l > 2 (2n) n n q n+1 p q -p n pq. 

After some simplifications, which you may wish to verify (we exclude the 
trivial case p = 0), we reduce inequalities (1) to 

(2) (n - I)q ~ np; nq ~ (n + I)p. 

67 



These inequalities yield, after a little algebra, the condition 

(3) 
I I 

1 - 2p - I ~ 2n ~ 1 _ 2p + 1. 

Thus unless 1/(1 - 2p) is an odd integer, N is uniquely determined as the 
nearest even integer to 1/(1 - 2p). When 1/(1 - 2p) is an odd integer, 
both adjacent even integers give the same optimum probability. And we 
can incidentally prove that when 1/(1 - 2p) = 2n + 1, P2n = P2n+2• 

Consequently for p = 0.45, we have 1/(1 - 0.9) = 10 as the optimum 
number of plays to choose. 

This material is abbreviated from "Optimal length of play for a binomial 
game," Mathematics Teacher, Vol. 54, 1961, pp. 411-412. 

P. G. Fox originally alluded to a result which gives rise to this game in 
"A primer for chumps," which appeared in the Saturday Evening Post, 
November 21, 1959, and discussed the idea further in private correspondence 
arising from that article in a note entitled "A curiosity in the binomial ex­
pansion-and a lesson in logic." I am indebted to Clayton Rawson and John 
Scarne for alerting me to Fox's paper and to Fox for helpful correspondence. 

45. Average Number of Matches 

The following are two versions of the matching problem: 
(a) From a shuffled deck, cards are laid out on a table one at a time, face up 

from left to right, and then another deck is laid out so that each of its cards is 
beneath a card of the first deck. What is the average number of matches of the 
card above and the card below in repetitions of this experiment? 

(b) A typist types letters and envelopes to n different persons. The letters are 
randomly put into the envelopes. On the average, how many letters are put into 
their own envelopes? 

Solution for Average Number of Matches 

Let us discuss this problem for a deck of cards. Given 52 cards in a deck, 
each card has 1 chance in 52 of matching its paired card. With 52 oppor­
tunities for a match, the expected number of matches is 52(-h) = 1; thus, 
on the average you get I match. Had the deck consisted of n distinct cards, 
the expected number of matches would still be I because n(1/n) = I. The 
result leans on the theorem that the mean of a sum is the sum of the means. 

More formally, each pair of cards can be thought of as having associated 
with it a random variable Xi that takes the value I when there is a match 
and the value 0 when there is not. Then 

E(Xi ) = I G) + 0 (I - ~) = ~. 
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Finally, the total number of matches is ~X;, and the expected value of a 46 
sum is the sum of the expected values, and so 

E L: X; = L: E(Xj) = L: - = - = I, 
(

n ) n n I n 

.=1 ;=1 ;=1 n n 
as before. 

46. Probabilities of Matches 

Under Ihe condilions of Ihe previous matching problem, what is the probability 
of exactly r matches? 

Solution for Probabilities of Matches 

This problem looks like a first cousin to the Poisson problem we discussed 
earlier (Problem 28). Whereas that counterfeit coin problem had independent 
chances of a bad coin (or a 1) in each position, in the current problem the 
chances of a match are not independent for each pair. For example, if we 
have n - 1 pairs of cards matching, the nth pair must surely match too, 
and so we do not have independence. Nevertheless, for large values of n, 
the degree of dependence is not great, and so we should anticipate that the 
probability of r matches in this problem may agree fairly closely with the 
probability of r counterfeit coins given by the Poisson, because in both cases 
we have many opportunities for events of small probability to occur. In the 
end then we want to compare the answer to the current problem with that 
for the Poisson with mean equal to 1. 

To get started on such problems, I like to see results for small values of n, 
because often they are suggestive. For n = I, a match is certain. For 
n = 2, the probability is t of 0 matches and t of 2 matches. For n = 3: 
let us number the cards I, 2, and 3 and layout in tabular form the 6 permu­
tations for the matching deck beneath the target deck, which might as well 
be in serial order. 

ARRANGEMENTS AND MATCHES, n = 3 

Target deck: 2 3 
Number of 

matches 

Permutations of 2 3 3 
matching deck 3 2 I 

2 1 3 I 
2 3 1 0 
3 I 2 0 
3 2 1 
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Summarizing the results of the listing gives us 

DISTRIBUTION OF NUMBER OF MATCHES, n = 3 

Number of matches o 2 3 
---------------------

Probability 2 
6" 

I also wrote out the 24 permutations for n = 4. Examine the Summary Table 
for n = 1,2,3, and 4. Observe that the probability of n matches is lin!, 
because only one among the n! permutations gives n matches. 

SUMMARY TABLE 

Number of matches: 0 2 3 4 

n = I, Probability 0 I 

n = 2, Probabilities t 0 t 
n = 3, Probabilities 2 3 0 6" 6" 

n = 4, Probabilities -14 A !:r ~4 o -h 

Note, too, that the mean for each distribution is I, as advertised in the 
previous problem-this gives a partial check on the counting. 

We need to break into the problem somehow-get a relation between 
some probability in the table and some other probability. Let P(rln) be the 
probability of exactly r matches in an arrangement of n things. We could grt 
exactly r matches by having a f>pecific r match and having the rest not match. 
For example, the probability that the first r match and the rest do not is 

I 
n(n - I)···(n - r+ 15 P(0!n - r). 

But there are (;) mutually exclusive choices of r positions in which to have 

exactly r matches. Therefore 

(I) 
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P(rln) = 
(;)n(n - I)"'\n - r + 

( n) ~=- _r)! P(Oln _ r) 
r n! 

-- P(Oln - r) 
1 ) 

n! (n - r)' 
,--( _-)' , P(Oln - r), r. n r. n. 

1 
P(rln) = ,P(Oln - r), r = 0, I, ... , n - I. 

r. 



For r = n we know P(nln) = lin!, and so we can extend our notation by 46 
assigning P(OIO) = I, if we wish, without doing violence to the other 
notation. 

Let us check the relation (I) for n = 4, r = 2. For n = 4, r = 2, it 
says 

P(214) = ~ P(OI2). 

The Summary Table gives 

P(214) = /:r, P(OI2) = i, 

and /:r = t, which checks expression (I) for this example. 
Since we deal with probability distributions, the sum of the probabilities 

over all the possible numbers of matches for a given value of n is I, or, in 
symbols, 

P(Oln) + P(lln) + ... + pen - lin) + P(nln) = I. 

We could rewrite this equation, using relation (I), as 

I I I 
(2) O! P(Oln) + If P(Oln - I) + 2f P(Oln - 2) 

I I + ... + 7"(n-_------I=)! P(OII) + nf = I. 

Since we know P(nln) = lin!, we could successively solve the equations 
for P(Oln) for higher and higher values of n. For example, for n = I we get 

P(OII) + ~ = I 

or 
P(OII) = O. 

For n = 2 

I I 
P(OI2) + If P(OII) + 2f = 

or 
P(OI2) = i· 

For n = 3 
I I I 

P(OI3) + If P(OI2) + 2! P(OII) + 3! = I 

or 
P(OI3) = l 

The foregoing examples show that in principle we can get P(Oln) for any 
n, but they do not yet suggest a general formula for P(Oln). Sometimes taking 
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differences helps. Let's look at P(Oln) - P(Oln - I) for the values of n 
up to 4 (given in the Summary Table): 

I 
P(OII) - P(OIQ) = 0 - I = - I = - IT ' 

I I I 
P(012) - P(OII) = 2 - 0 = + "2 = + 2l' 

P(013) - P(012) = ~ - ~ = - ~ = - ~, 
9 2 I I 

P(014) - P(013) = 24 - 6 = + 24 = + 41· 

These results suggest that the differences have the form (-I)' /r!. That is, 

P(Oln - r) - P(Oln - r - I) = (-It-T /(n - r)!. 

When we sum the differences, we get on the left-hand side 

I I (-It-r 

P(Oln - r) - P(OIO) = -- If + 2T - ... + (n - r)!· 

Writing P(OIO) in the form I/O! and transposing it, we get, if the differences 
have the conjectured form, 

(3) P(Oln - r) = 1._1. + 1._1. + ... + (_I)n-r I 
O! I! 2! 3! (n-r)! 

AU we need to do now is to check that this guess works. We get 

I n (_I)i I n-l (-Ii I n-2 (_I)i 
Of L:o I!-· + If L:o -i! - + 2T L:o -;!-(4) 

1_ I=- ,_ 

Courage, brother! 
This looks like a mess, but it just needs a little petting and patting. The 

sum in expression (4) is made up of terms of the form 

(_I)i 
j! i! ' 

where the j's come from the multipliers ahead of the summation signs and 
the i's from the terms behind. Let us regroup the terms so that i + j is a 
constant. For example, when i + j = 3 (assuming n ~ 3), we get only 
the terms 
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If we multiply this by 3!, it becomes the more familiar 

3! 3! 3! 3! 
- O! 3! + l! 2! - 2! l! + 3! O! ' 

which can be written in binomial coefficient notation: 

- (~) + G) - G) + G) . 
And the latter is just an expansion of (x + y)3 when x = -I and y = I, 
another way of saying that the sum is zero because (-I + 1)3 = 0 3 = O. 

This binomial-expansion trick can be applied for each i + j = r for 
r = I, 2, ... , n, and for each r we get a sum of zero. For r = 0, we get 
just one term (-I)o/(O!O!) = 1. Consequently, we have verified that the 
conjectured solution (3) satisfies eq. (2). 

Could other solutions satisfy eq. (2)? No. Our technique was just an 
easy way to check eq. (2). We could with a bit more bother have solved for 
P(Oln), after setting in our guess for P(OII), ... , P(Oln - I), thus achieving 
a more formal induction proof. 

Finally, substituting the result (3) into result (I), we can write 

I (I I I ( _l)n-r) 
P(rln) = rr Of - TI + 2f - ... + (n - r)! . 

When n - r is large, the parentheses contain many terms in the series 
expansion of e -I, and so 

P(rln) "" ~ e-I, for n - r large. r. 

We foresaw initially a close relation between the probability of r matches in 
the matching problem and that for a count of r in the Poisson problem with 
mean equal to 1. For close agreement, we have found that n - r needs to 
be large, not just n as we originally conjectured. 

The probability of 0 matches then is about e- I "" 0.368 for large n. 

47. Choosing the Largest Dowry 

The king, to test a candidate for the position of wise man, offers him a chance 
to marry the young lady in the court with the largest dowry. The amounts of the 
dowries are written on slips of paper and mixed. A slip is drawn at random and 
the wise man must decide whethC'r that is the largest dowry or not. If he decides 
it is, he gets the lady and her dowry if he is correct; otherwise he gets nothing. 
If he decides against the amount written on the first slip, he must choose or 
refuse the next slip, and so on until he chooses one or else the slips are exhausted. 
In all, 100 attractive young ladies participate, each with a different dowry. How 
should the wise man make his decision? 
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Solution for Clwosing the Largest Dowry 

The great question is whether or not his chances are much larger than rbo. 
Many people suggest the strategy of passing the first half of the slips and 
then choosing the first one that is better than all previous draws if such a 
one should present itself. That is quite sensible, though not best. Few have 
any idea of the size of the probability of winning. 

Let us begin by looking at some small problems. Since we know nothing 
about the numbers on the slips, we might as well replace them by their 
ranks. If we had 3 slips, their ranks would be I, 2, 3, and let us say that rank 
3 is the largest. Had there been but I or 2 slips, there is no problem for he 
wins against one slip, and he has a 50-50 chance of winning against 2 slips. 
With 3 slips the 6 possible orders of drawing slips are: 

123 
132* 
2 I 3* 

231* 
312 
32 1 

One strategy passes the first slip and then chooses the first slip that later 
exceeds it, if any do. This strategy wins in the 3 starred orders, or half the 
time-an improvement over a random guess, like taking the first one. 

Suppose there are four slips. The 24 orders are 

1234 2134 3124*t 4123 
1243t 2143*t 3142*t 4132 
1324t 2314t 3214*t 4213 
1342t 2341t 3241*t 4231 
1423* 2413* 3412* 4312 
1432* 2431* 3421* 4321 

We certainly should pass the first one. We could take the first higher that 
appears after it, if any do. Call this plan Strategy 1. The starred items on the 
list show when this strategy wins. Its probability of winning is tt, a good 
deal larger than the! a guess would give. 

In Strategy 2, pass the first 2 items and take the first higher one after that. 
The 10 orders in which this strategy succeeds have a dagger beside them. 
Strategy 1 wins more often. 

It we continue to study all the permutations by listing them, the future 
looks quite dreary, because for even 8 slips there are 40,320 orders. Further­
more, there might be good strategies that we are missing, though it seems 
unlikely. Perhaps mathematics can come to our aid. 

I must emphasize that the wise man knows nothing about the distribution 
of the dowries. To make sure of it, let the king draw the slips and report to 
the wise man only the rank of a slip among those drawn thus far. Only a 

74 



slip that has the largest dowry thus far is worth considering; call such a 47 
dowry a candidate. 

I plan now an indifference argurnent to show that the form of the optimum 
strategy is to pass s - I slips and choose the first candidate thereafter. We 
would choose a candidate at draw i if its probability of winning exceeds the 
probability of winning with the best strategy at a later date; formally choose 
draw i if 

(I) P(win with draw i) > P(win with best strategy from i + Ion). 

We shall show that the probability on the right decreases as i increases, 
that the probability on the left increases as i increases, and therefore that a 
draw arrives after which it is preferable to keep a candidate rather than to 
go on. Then we compute the probability of winning with such a strategy 
and finally find its optimum value. 

Being young in the game loses us no strategies that are available later, 
because we can always pass slips until we get to the position where we want 
to be. Consequently, the probability on the right-hand side of the inequality 
must decrease or stay constant as i increases. At i = 0 its probability is 
the one we are looking for, the optimum probability, and at i = n - I its 
probability is lin, because that is the chance of winning with the final draw. 

The probability at draw i of a candidate's being the largest in the entire 
sample is the probability that the maximum is among the first i draws, 
namely iln, which strictly increases with i from lin to I. Somewhere along 
the line iln exceeds the probability of winning achievable by going on. The 
form of the optimum strategy can thus be expressed by the rule: let the first 
s - I go by and then choose the first candidate thereafter. Let us compute 
the probability of winning with strategies of this form. The probability of a 
win is the probability of there being only one candidate from draw s through 
draw n. The probability that the maximum slip is at draw k is lin. The 
probability that the maximum of the first k - I draws appears in the first 
s - I is (s - 1)/(k - I). The product (s - 1)/[n(k - I)] gives the proba­
bility of a win at draw k, s ~ k ~ n. Summing these numbers gives us the 
probability 1I"(s. n) of picking the true maximum of n by the optimum 
strategy as 

If--s-I _s-I~_I 
(2) 1I"(s, n) = Ii L....J k _ I = L....J 

k=. n k_B-l k 

=~(_I_+~+ ... +_I_), 
n s-I s n-I 1 < s ~ n; 

since the first draw is always a candidate, 11"(1, n) = lin. Note for n = 4, 
s = 2, that 11"(2, 4) = tt, as we got in our example. 
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The optimum value of s, say s·, is the smallest s for which our initial in­
equality holds. That is the smallest s for which 

(3) s s (I I I ) - > 1r(s + I n) = - - + -- + ... + -- , 
n 'n s s+ I n- I 

or equivalently that s for which 

I I I I I I 
(4) - + -- + ... + -- < I < -- + - + --

s s+1 n-I s-I s s+1 
I + ... +-_. 

n - I 

OPTIMUM VALUES OF SAND PROBABILmES OF WINNING FOR THE 

DOWRY PROBLEM 

n s 1I"(s, n) n s 1I"(s, n) 

I 1.000 10 4 0.399 
2 0.500 20 8 0.384 
3 2 0.500 50 19 0.374 
4 2 0.458 100 38 0.371 
5 3 0.433 00 nle lie"" 0.368 

The table gives optimum values of s and their probabilities for a few values 
of n. For n = 100, pass 37 and take the first candidate thereafter. 

Large Values of n 

For large n, we can approximate r::_ll/i by C + log.n, where C is 
Euler's constant. Using this approximation in formula (2), we get, if sand n 
are large, 

(5) 
s-I n-I s n 

1r(s n) "" --log. -- "" -log. - . , n s-I n s 

Similarly, approximating the left- or right-hand sum in inequality (4) shows 
us that log.(nl s) "" I, and so s "" nl e. Substituting these results into the 
final line of eq. (5) gives us the result 

(6) lim 1I"(s, n) = ! "" 0.368, 
n_oo e 

To sum up, for large values of n, the optimum strategy passes approximately 
the fraction lie of the slips and chooses the first candidate thereafter, and 
then the probability of winning is approximately lie. 

Is it not remarkable in this game which at first blush offers a chance of 
about lin of winning that a simple strategy yields a probability of over k, 
even for enormous values of n? 
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And, of course, for either sex, the implications of these results for the 48 
choice of a marriage partner may repay careful study for those who are 
still single. 

In the previous problem the wise man has no information about the dis­
tribution of the numbers. In the next he knows exactly. 

48. Choosing the Largest Random Number 

As a second task, the king wants the wise man to choose the largest number 
from among 100, by the same rules, but this time the numbers on the slips are 
randomly drawn from the numbers from 0 to 1 (random numbers, uniformly 
distributed). Now what should the wise man's strategy be? 

Solution for Clwosing the Largest Random Number 

The very first number could be chosen ifit were large enough, for example, 
0.99900, because the chance of getting a number larger than this later, let 
alone choosing it, is only I - (0.999)99"", 0.1. 

As before, we have to choose between a candidate on hand and the chance 
that a later number will be larger and we will choose it. We work back from 
the end. If we have not chosen before the last draw, we choose it, and it 
wins or loses. If we have not chosen before the next-to-Iast draw and it is a 
candidate (largest so far), we choose it if it is larger than !, reject it if it 
is less, and are indifferent to ! itself. If it were less than !, we have a better 
chance of winning if we go on. 

If we have gotten to the third draw from the end and if we have a candidate 
x as the value on the slip, the probabilities of 0, I, or 2 larger numbers later 
are x 2, 2x(1 - x), and (I - X)2, respectively. Ifwe choose the next number 
larger than x, the probability of winning later is 

because if there are 0 later, we cannot win by going on; if I, we are sure to 
win; and if 2 are larger than x, the chance is only ! that we choose the 
larger. If I am indifferent to a number at some draw, I would not be in­
different to it at a later draw; instead, I would want to choose it because I 
do not have as many opportunities to improve my holdings as I did earlier. 
Consequently, when two numbers larger than the indifference number x are 
present later in the sequence, we can be sure I would choose the first one. 
It has only a 50-50 chance of being the larger of the two. Thus, in com­
puting what would happen if we decline to choose an indifference number 
that has been drawn, we can be sure, in general, that the best strategy chooses 
the next drawing whose value exceeds the indifference number in hand. 
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We want to determine the value of x to which we are indifferent. For the 
third position from the end, it is the value that satisfies 

Here x 2 is the chance of winning with the number x, and the right-hand side 
gives the chance of winning if we pass the x in hand. The indifference number 
works out to be 

1+ V6 
x = --5- "" 0.6899. 

So we choose a candidate third from last if its value exceeds 0.6899. 
More generally, if there are r draws to go and we have a candidate in 

hand, we choose the draw if it exceeds the indifference value x computed 
from 

(I) xr = (~) xr
-

1(1 - x) + ~ (;) xr
-

2(1 _ X)2 

+ ... + ~ ~) (I - x)'. 

We can solve this equation numerically using binomial tables or other 
devices to find values of x for modest values of r. The table of indifference 
numbers shows some of these. 

TABLE OF INDIFFERENCE NUMBERS AND THEIR APPROXIMATIONS 

Number Solution of r 
left Eq. (1) r+a 

1 0.5000 0.5542 
2 0.6899 0.7132 
1 0.7758 0.7886 
4 0.8246 0.8326 
5 0.8559 0.8614 
6 0.8778 0.8818 
7 0.8939 0.8969 
8 0.9063 0.9086 
9 0.9160 0.9180 

\0 0.9240 0.9256 
11 0.9305 0.9319 
12 0.9361 0.9372 
13 0.9408 0.9417 
14 0.9448 0.9457 
15 0.9484 0.9491 
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To go at it more approximately, we might note that as r increases, I - x 49 
gets small, and a major contribution to the right-hand side of eq. (I) comes 
from the lead term. So 

or 
r 

x""--· 
r + I 

Alternatively, we could divide eq. (I) through by xr. Then let z = 

(I - x)/x to get 

(2) I = (~) z + ~ (;) Z2 + ... + ~ (~) zr. 
Finally use eq. (2) for solutions. 

Since approximately z = I/r, let us set z = a(r)/r, where a(r) is a 
function that does not change much with r. For example, 

a(l) = I 

a(2) = 0.8990 

a(3) = 0.8668 

a(4) = 0.8509 

a(5) = 0.8415 

When we set z = a(r)/r in eq. (2) and let r grow, we have in the limit 

(3) 
a 2 a 3 

I=a+-+-+···· 2! 2 3! 3 

Here a is the limiting value of a(r) as r grows large. We find a "" 0.8043. 
Though we could get an excellent approximation for a(r) now, let us settle 
for the limiting value and compute 

r r 
x = r + a "" r + 0.8043 ' 

to get the results shown in the 3rd column of the table. 
Since the present game provides more information than the one in the 

immediately preceding problem, the chance of winning it should be larger. 
If the number of slips is 2, the player chooses the first if it is greater than !, 
otherwise he goes on. His chance of winning is!. Increasing the number of 
slips from I to 2 has reduced his chance of winning considerably. Some 
geometry which I do not give shows for n = 3 that the probability of a win 
is about 0.684. For n very large, the probability of winning reduces to about 
0.580. 

49. Doubling Your Accuracy 

An unbiased instrument for measuring distances makes random errors whose 
distribution has standard deviation u. You are allowed two measurements all 
told to estimate the lengths of two cylindrical rods, one clearly longer than the 
other. Can you do better than to take one measurement on each rod? (An 
unbiased instrument is one that on the average gives the true measure) 
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Solution for Doubling Your Accuracy 
Yes. Let A be the true length of the longer one, B that for the shorter. 

You could lay them side by side and measure their difference in length, 
A - B, and then lay them end to end and measure the sum of their lengths, 
A + B. 

Let D be your measurement of A - B, S of A + B. Then an estimate of 
A is !(D + S), and of B is !(S - D). Now D = A - B + d, where d 
is a random error, and S = A + B + s, where s is a random error. 
Conseq lIently, 

!(D + S) = !(A - B + A + B + d + s) = A + !(d + s). 
On the average, the error !(d + s) is zero because both d and s have mean 
zero. The variance of the estimate of A is the variance of !(d + s), which is 
!(O'~ + O'~) = 1(0'2 + 0'2) = !u2. This value is identical with the variance 
for the average of a sample of two independent measurements. Thus both 
our measurements have contributed their full value to measuring A. In the 
same manner you can show that the variance of the estimate of B is also !u 2• 

Consequently, taking two measurements, one on the difference and one on 
the sum, gives estimates whose precision is equivalent to that where 4 
measurements are used, two on each rod separately. 

To achieve such good results, we must be able to align the ends of the 
rods perfectly. If we cannot, instead of two alignments for each measure­
ment, we have three. If each alignment contributes an independent error with 
standard deviation 0'/...;2, then one measurement of the sum or difference 
has standard deviation 0'V372. Then the variance of our estimate of A 
would be 

Under these assumptions our precision is only as good as li independent 
measurements instead of 2, but still better than a single direct measurement. 

We may rationalize the assignment of standard deviation 0'/...;2 to each 
alignment by thinking of s (or d) as composed of the sum of two independent 
unbiased measurement errors, each having variance 0'2/2. Then the sum of 
the component errors would produce the variance assumed earlier of 0'2. 
When we also assign the third alignment the variance 0'2/2, our model is 
completed. 

You can read about variances of means and sums of independent variables 
in PWSA, pp. 318-322. 
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50. Random Quadratic Equations 

What is the probability that the quadratic equation 

x 2 + 2bx + c = 0 
has real roots? 



Solution for Random Quadratic Equations 

To make this question meaningful, we shall suppose that the point (b, c) 
is randomly chosen from a uniform distribution over a large square centered 
at the origin, with side 2B (see the figure). We solve the problem for a given 
va!ue of B; then we let B grow large so that band c can take any values. 

For the quadratic to have real roots, we must have 

In the figure, we plot the parabola b 2 = c and show the regions in the 
square, for B = 4, where the original equation has real roots. 

c 

Regions yielding complex and 
real roots. Shaded regIon gives 
real roots; unshaded, complex. 

~~~ __ ~~~ __ ~+-~b 

=: ~~,~o r 
-3 

'------+--4 

It is an easy exercise in calculus to show that the area of the unshaded 
region is !Bi (for B ~ I), and, of course, the whole square has area 4B2. 
Consequently, the probability of getting complex roots is 1/(3YB). When 
B = 4, the result is i. As B grows large, I/YB tends to zero, and so the 
probability that the roots are real tends to I! 

I should warn you that the problem we have just solved is not identical 
with that for ax 2 + 2bx + c = O. You might think you could divide 
through by a. You can, but if the old coefficients a, b, c were independently 
uniformly distributed over a cube, then b/a and c/a are neither uniformly 
nor independently distributed. 

.-.~ ~ 
11- -II • 

51. Two-Dimensional Random Walk 

Starting from an origin 0, a particle has a 5().SO chance of moving I step north 
or I step south, and also a 50-SO chance of moving I step cast or I step west. 
After the step is taken, the move is repeated from the new position and so on 
indefinitely. What is the chance that the particle returns to the origin? 
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• • • • J 

• • • 2 

• X' • 
• • 0 y 

Part of lattice of points traveled by 
particles in the two-dimensional ran- • • • · -\ 
dom walk problem. At each move 
the particle goes one step north- • • • -2 
east, northwest, southeast, or south-

• -3 west from its current position. the • • • 
-3 -2 -\ 0 \ 2 3 directions being equally likely. x 

Solution for Two-Dimensional Random Walk 

In the one-dimensional random walk, The Cliff-Hanger, Problem 35 (last 
paragraph of Solution), we found the probability that the particle returns 
to the origin to be unity when the probabilities of steps to the left and right 
were eqlUllly likely. But matters were most delicately balanced. Had either 
probability budged from !, the particle would have walked off to infinity. 
In two dimensions one might suppose that the particle has plenty of space 
to wander off to infinity. Let us see. I plan to find the average number of 
times a particle returns to the origin, and from this to deduce the probability 
that the particle returns. First, how many times will a particle come back to 
the origin? If P is the probability of a return, then I - P = Q is the 
probability of no return. The probability of exactly x returns is prQ, be­
cause after each return the particle might as well be regarded as starting over. 
If P were known, then the mean number of returns to the origin could be 
computed from this geometric series as 

Looking back at Problem 4 on trials until first success, we find the mean 
number to be the reciprocal of the probability of success. In that problem 
the success terminated the series. Here a non-return to the origin terminates 
the series, and so the mean number of trials to first success is I/Q. Conse­
quently, the mean number of successes is I/Q - I. If Q = I, then the 
mean number of successes is 0, that is, with probability one a particle gets 
lost and never returns. On the other hand, the smaller Q is, the larger the 
mean number of returns. Indeed, for every Q there is a mean number of 
returns and for every mean there is a Q. If the mean number of returns be­
fore final escape were infinite (unbounded), then Q would have to vanish, 
and P would equal I. More formally, as J.L tends to 00, P tends to I. Now to 
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get the story on the two-dimensional random walk, all we need do is com- 51 
pute J.I. 

Starting from the origin, the particle can only get home to the origin in an 
even number of ste~. Furthermore its path can be represented as the 
product of two independent one-dimensional random walks, each starting 
at zero, one stepping east or west on each move, the other stepping north or 
south on each. For example, toss a coin twice; the first toss decides the east­
west component, the second the north-south one. After the first two steps, 
the horizontal component, X, has the distribution 

x -2 o 2 

P(x) 

The vertical component, Y, is similarly distributed after two steps, and 
their joint probability is distributed over the 9 possible points as follows: 

P(x,y) 
Marginal for Y 

y P(y) 

on 0-h on 2 ! 

0-h on 0-h 0 ! 

on °lif on -2 ! 

Marginal x -2 0 2 
for X P(x) ! ! ! 

Joint distribution of X and Y after two moves. 

The main information we ,,':~h to note is that the probability at the origin 
is n and that it can be obtained by multiplying P(X = 0) by P( Y = 0) 
because of the independence of the component walks. Finally, we want to 
interpret this information. At the end of two moves 1\ of particles have 
returned to the origin. The contribution to the mean number of returns 
to the origin is then (n)1 + (H)O = n. We compute the probability of 
the particle's being at the origin after 2, 4, 6, ... trials and add these up to 
get the expected number of times the particle returns to the origin. 

After 2n moves, n = I, '}, ... , the probability of the particle's being at the 
origin is 

P(particleatorigin) = P(X = O)P(Y = 0) = [(2:) Gy'T, 
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because we must get equal numbers of east and west moves as well as equal 
numbers of north and south moves. (I ought really to put subscripts on X 
and Y, writing X 2", but it makes the page look horrible to me and frightening 
to some.) We plan to sum, approximately, these probabilities to get the 
expected number of returns. For large values of n we can apply Stirling's 
approximation given in Problem 18 and get 

( 2n)(!)2" = (2n)! (!)2" "'" 
n 2 n! n! 2 

"'" l/v,rn. 

V21f(2n )2"+le -2" 

(V21f n"+le-")222" 

For good-sized n then 

P(particle at origin) "'" ~. 
7rn 

We need to sum over the values of n. Recall from Problem 14 that 
L.~_l1/n "'" 10~N is a number which is unbounded as N grows. What we 
have computed is the probability that the particle is at the origin at the end 
of steps numbered 2, 4, 6, 8, ... ,2n. Each of these probabilities is also the 
mean number of times the particle is at the origin at the end of exactly 2n 
trials. To get the mean total number of times the particle is at the origin, 
we sum because the mean of the sum is the sum of the means. Therefore the 
mean number of returns to the origin is unbounded, and therefore the 
probability of return to the origin is P = 1. And so each particle not only 
returns, but returns infinitely often. More carefully, I should say nearly 
every particle returns infinitely often, because there are paths such as the 
steady northeast course forever that allow some particles to drift off to 
infinity. But the fraction of such particles among all of them is zero. 

52. Three-Dimensional Random Walk 

As in the tw<HIimensional walk, a particle starts at an origin 0 in three-space. 
Think of the origin as centered in a cube 2 units on a side. One move in this 
walk sends the particle with equal likelihood to one of the eight corners of the 
cube. Thus, at every move the particle has a SO-50 chance of moving one unit 
up or down, one unit east or west, and one unit north or south. If the walk 
continues forever, find the fraction of particles that return to the origin. 

Solution for Three-Dimensional Random Walk 

Now that we know that in both one and two dimensions the particle returns 
to the origin with probability one, isn't it reasonable that it will surely return 
for any finite number of dimensions? It was to me, but I was fooled. 
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We have three coordinates and the probability that all three vanish at 52 
trial 2n is 

P(particle at origin) = P(X = O)P(Y = O)P(Z = 0) = [(2:)(4y nr 
Let's try Stirling's approximation again. We have for three dimensions after 
2n moves 

P(particle at origin).., I/(rn)i. 

We can show by integration methods that L Iini is bounded. Replace the 
number Iini by the area of a rectangle whose base runs from n to n + I, 
and whose height is Iini. See figure. Run a smooth curvef(n) = If.(n - I)i 
through the upper right-hand corners of the rectangles. The area under the 
curve exceeds the area of the rectangle: 

i
N dx 

n (x - l)i 
2 ]N 

(x - l)l n 

2 2 

(n - 1)1 (N - 1)1 

Now as N tends to infinity, the area 
tends to 2/(n - 1)1, a finite number. 
This shows that the mean converges to 
a finite number. 

We can evaluate that number by 
actually evaluating the early terms of 
the series 

0.8 
« , 
'"' I 

~ 0.6 
,s 
!. 0.4 
'" ~ 

0.2 

0
0 8 

n 

Plan for getting upper bound 
to L:-t llni. 

and then approximating the rest of the sum by inte~!ltion methods. I get 
0.315. After, say, to or 20 terms, Stirling'S approximation should be very 
accurate, and the remainder that needs evaluation by integration is tiny 
by then. I used 18 terms. This 0.315 is the mean number of returns to the 
origin per particle. Consequently IIQ = 1 + 0.315, and we get 

Q'" 1/1.315.., 0.761. 

Therefore the probability P that a particle returns to the origin is about 
0.239. 

For those of you who have seen the results for the random walk where the 
steps are to the centers of the faces of the surrounding cube rather than to the 
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corners, you may know that the fraction returning is about 0.35.* Apparently 
then 8 equally likely moves reduces the chance of returning more than 6. 

The same techniques for a 4-dimensiorlal random walk where 4 coins are 
tossed to find the vector to be added to the present coordinates show that 
the probability of return is reduced to 0.105. 

53. HutrOD'S Needle 

A table of infinite expanse has inscribed on it a set of parallel lines spaced 
2a units apart. A needle of length 21 (smaller than 20) is twirled and tossed on 
the table. What is the probability that when it comes to rest it crosses a line? 

Solution for Buffon '8 Needle 

This is a great favorite among geometric probability problems. The figure 
shows how the needle might land so that it just touches one of the parallels. 
We only need to look at one half-segment, because the symmetries handle 
the rest. 

The vertical position of the needle does not matter because moving it up 
or down leaves the state of crossing or not crossing a vertical line unchanged. 
What matters is the needle's angle with the horizontal and the distance of 
the center of the needle from its nearest parallel. The center P is equally 
likely to fall anywhere between the parallels (assumption of uniform dis­
tribution); and for a fixed value of the angle 0, the chance that the line crosses 
one of the parallels is 2x/2a, because the line crosses a parallel if the center 
falls within x units of either parallel-see the dashed needles in the figure. 
Because of the twirling, the angle 0 
might as well be thought of as uni-
formly distributed from 0 to 7r/2 
radians (or in degrees from 0° to a a 
90°), because crossings that happen 
for angle 0 also happen for angle 
7r - 0 (or in degrees 1800 - 0). All 
we need then is the mean value of 
x/a, or, since x = I cos 0, the mean 
value of (//a)cos o. This average can 
be found by integrating 

I/a 1..-/2 

7r/2 0 cos 0 dO = 21/7ra. 

The 7r/2 in the denominator on the 
Solid needles touch one parallel 

line; the dashed needles cross one. 

·W. Feller, Probability theory and its applications, 1st ed., Wiley, 1950, p. 297. 
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left makes the probability I that (J is between 0 and 7r/2. We can also write, 54 
remembering 21 is the length of the needle, 

2(1ength of needle) 
P(needle crosses a parallel) =. t' f . I f d· clrcum,erence 0 CITC e 0 ra IUS a 

Why is this problem a favorite? I think because it suggests a relation 
between a pure chance experiment and a famous number 7r. You could 
actually construct such a table-it needn't be quite infinite-with rulings, 
say, an inch apart; often ordinary graph paper is so ruled. Get a needlelike 
object, perhaps an inch long, and keep track of the fraction of times the 
needle crosses a line. Then 7r may be estimated as about 2/(proportion of 
crosses). You won't get close to 7r very fast this way, and this estimate is 
always a rational number (if you get some crosses), but the charming thing 
is that there is any relation at all between a universal constant like 7r and a 
chance experiment. Instead of doing this experiment, wait a bit, we'll have a 
better one in Problem 55. If geometrical probabilities interest you, take a 
look at: Joseph Edwards, Treatise on integral calculus, Vol. II, Chelsea 
Publishing Co., New York, 1954 (originally printed by Macmillan in 1922). 
M. G. Kendall and P. A. P. Moran, Geometrical probability, Griffin's Statis­
tical Monographs and Courses No. 10, Hafner Publishing Company, New 
York, 1963. 

54. Hutron's Needle with Horizontal and Vertical Rulings 

Suppose we toss a needle of length 21 (less than I) on a grid with both hori­
zontal and vertical rulings spaced one unit apart. What is the mean number of 
lines the needle crosses? (I have dropped 2a for the spacing because we might 
as well think of the length of the needle as measured in units of spacing) 

Solution/or Buffon's Needle with Horizontal 
and Vertical Rulings 

The mean number of vertical rulings crossed is the same as the probability 
of crossing a vertical ruling. From the previous problem (with a = !), it 
is 41/7r. The mean number of horizontal rulings crossed must also be 41/7r 
because it is the same problem if you turn your head through 90°. The 
mean of a sum is the sum of the means, and so the mean total number of 
crossings is 81/7r. 

If the needle is of length I, the mean number of crosses is 4/7r "" 1.27. 

Up to now we have worked with needles shorter than the spacing, what 
about longer needles? 
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55. Long Needles 

In the previous problem let the needle be of arbitrary length, then what is the 
mean number of crosses? 

Solution for Long Needles 

Let the needle be divided into n pieces of equal lengths so that all are less 
than I. If we toss each of these little needles at random, each will have a 
mean number of crosses obtained from the previous problem. The mean 
of the sum is the sum of the means, and so their expected number of crosses 
is 4(original length)/1I". The fact that the needle was not tossed as a rigid 
structure does not matter to the mean. 

For purposes of estimating 11" the experiment of tossing a long needle on a 
grid of squares represents a substantial improvement over the original BulTon 
problem. Why not get some graph paper and try it? I used a toothpick and 
graph paper ruled in half-inch squares. The toothpick was 5.2 half-inches 
long. I decided on 10 tosses, got 8, 6, 7, 6, 5, 6, 7, 5, 5, 7 crosses, totaling 
62. My estimate for 11" is 4(5.2)/(62/10) "" 3.35, instead of 3.14. A friend 
of mine also made 10 tries, producing 67 crosses, yielding the estimate 3.10. 

56. Molina's Urns 

Two urns contain the same total numbers of balls, some blacks and some 
whites in each. From each urn are drawn n ( ~ 3) balls with replacement. Find 
the number of drawings and the composition of the two urns so that the proba. 
bility that all white balls are drawn from the first urn is equal to the probability 
that the drawing from the second is eith.:r all whites or all blacks. 

Discussion for Molina's Urns 

E. C. Molina invented this problem to display Fermat's famous conjec­
ture in number theory as a probability problem. 

Let z be the number of white balls in the first urn, x the number of whites 
and y the number of blacks in the second. Then we want to find integers 
n, x, y, and z so that 

or 
z" = x" + y". 

Although, for many values of n, it is known that this equation cannot be 
satisfied, it is not known whether it is impossible for all values of n ~ 3. 
But it is known to be impossible for n < 2000. 
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