Biological molecules - 2021 IGCSE 0610

1. Nov/2021/Paper_11/No.11

Four test-tubes were set up as shown in the diagram.

In which test-tube is the starch digested most quickly?

2. Nov/2021/Paper_11/No.15

The diagram shows a large food molecule changing into smaller molecules.

What is process X?

- A absorption
- **B** chewing
- C digestion
- **D** secretion

3. Nov/2021/Paper_12/No.11

Four test-tubes were set up as shown in the diagram.

In which test-tube is the starch digested most quickly?

4. Nov/2021/Paper 12/No.14

What is the dietary importance of carbohydrates?

- A to promote healthy bones and teeth
- B to make fats
- C to provide energy for the body
- D to make proteins

5. Nov/2021/Paper_12/No.15

The diagram shows a large food molecule changing into smaller molecules.

What is process X?

- A absorption
- **B** chewing
- C digestion
- **D** secretion

6. Nov/2021/Paper_13/No.11

Four test-tubes were set up as shown in the diagram.

In which test-tube is the starch digested most quickly?

7. Nov/2021/Paper_13/No.13

Which element is present in all amino acids?

- A iron
- **B** magnesium
- C calcium
- D nitrogen

8. Nov/2021/Paper_13/No.15

The diagram shows a large food molecule changing into smaller molecules.

What is process X?

- A absorption
- B chewing
- C digestion
- **D** secretion

9. Nov/2021/Paper_21/No.2

Two animals have an identical sequence of amino acids in one of the proteins found in their cells.

What does this indicate about these animals?

- **A** They have been eating the same types of food.
- **B** They have not been exposed to substances that cause mutation.
- C They must be members of the same genus.
- D They share an ancestor.

10. Nov/2021/Paper_21/No.8

The bases on one of the strands of a DNA molecule have the sequence shown.

What is the corresponding sequence of bases on the other strand?

- A A-A-T-C-T-G
- B C-C-G-A-G-T
- C G-G-C-T-C-A
- D T-T-A-G-A-C

11. Nov/2021/Paper_21/No.11

Four test-tubes were set up as shown in the diagram.

In which test-tube is the starch digested most quickly?

12. Nov/2021/Paper_21/No.15

The diagram shows a large food molecule changing into smaller molecules.

What is process X?

- A absorption
- **B** chewing
- C digestion
- **D** secretion

13. Nov/2021/Paper_22/No.2

Two animals have an identical sequence of amino acids in one of the proteins found in their cells.

What does this indicate about these animals?

- **A** They have been eating the same types of food.
- **B** They have not been exposed to substances that cause mutation.
- **C** They must be members of the same genus.
- **D** They share an ancestor.

14. Nov/2021/Paper_22/No.8

The bases on one of the strands of a DNA molecule have the sequence shown.

What is the corresponding sequence of bases on the other strand?

- A A-A-T-C-T-G
- B C-C-G-A-G-T
- C G-G-C-T-C-A
- D T-T-A-G-A-C

15. Nov/2021/Paper 22/No.15

The diagram shows a large food molecule changing into smaller molecules.

What is process X?

- A absorption
- **B** chewing
- C digestion
- **D** secretion

16. Nov/2021/Paper_23/No.2

Two animals have an identical sequence of amino acids in one of the proteins found in their cells.

What does this indicate about these animals?

- A They have been eating the same types of food.
- **B** They have not been exposed to substances that cause mutation.
- **C** They must be members of the same genus.
- **D** They share an ancestor.

17. Nov/2021/Paper_23/No.8

The bases on one of the strands of a DNA molecule have the sequence shown.

What is the corresponding sequence of bases on the other strand?

- A A-A-T-C-T-G
- B C-C-G-A-G-T
- C G-G-C-T-C-A
- D T-T-A-G-A-C

18. Nov/2021/Paper_23/No.32

Which structures in bacterial cells synthesise proteins?

- A cell wall
- **B** chloroplasts
- C nucleus
- **D** ribosomes

19	Nov	/2021	/Paper	43	/No	1
1 / .	1100	/ 2021	/ rapei	40	/ 110	

Enzymes are used in genetic engineering.

(a)	Define the term enzyme.							
(I-)								[2]
(b)	rne pr	ocess of genetic engineering	j oπen sta	rts with th	e steps sr	nown in Fi		DNA strand
step	1						7	ONA strand
step	2		enzyme	1			7 1	
step	3 T							
			Fig	. 1.1				
	(i)	State the sequence of base	es on the I	ower strar	nd of the D	NA molec	ule in ster	1.
		upper DNA strand	G	А	А	Т	Т	С
		lower DNA strand						
		L						[1]
	(ii)	State the name of enzyme	1 in sten 2	of Fig. 1	1			

solvedpapers.co.uk

(111)	Describe the effect of enzyme 1 on the DNA molecule in step 3.
	[2]
(iv)	Explain how enzyme 1 in Fig. 1.1 is specific to the exact sequence of DNA bases.
	[2]

(c) Another enzyme, enzyme 2, is used later in the process of genetic engineering.

Fig. 1.2 is a diagram showing the action of enzyme 2.

State the name of enzyme 2 in step 7 of Fig. 1.2.

State the name of the molecule formed in step 8.

(ii)

(iii)

......[1]

(d) Sketch a graph to describe how the activity of the enzymes used in genetic engineering would change if the reaction occurred at a range of temperatures from very cold to very hot.

Label the axes with appropriate titles.

Do not use units or a numbered scale.

[3]

[Total: 14]