

Merging Art, Automation and Construction

Innovative Solutions for a Sustainable Future !!!

Delivering Sustainability, Aesthetics and Speed using 3D Concrete Printing technology

Pain-Points of Construction Industry

Annual construction waste is expected to reach 2.2 BILLION TONS globally by 2025.

The Pain-Killer

Robotic construction

- Minimum labor
- Higher productivity

No need of formwork

- Ease of creating complex and optimized structures
- Minimal construction waste

Optimized 3D Designs

- Low material consumption
- Thermally efficient designs

Robust quality control

- Minimal human intervention
- Automated feeding, mixing, pumping and 3D printing

BIM and MEP integration

We have built for Hills

We have built for Deserts

We have built for Coastal regions

We have built for Highest Earthquake Prone Areas

We have built for National Security

3D-printed permanent defences have been constructed for first time by Indian Army's Corps of Engineers in desert sector. These defences were trial tested against a range of weapons from small arms to the main gun of T90 tank: Indian Army's Engineer-in-Chief Lt Gen Harpal Singh

6:53 PM · Nov 15, 2022 · Twitter Web App

MiCoB's Expertise and Strength

3D Concrete Printers

Economic

Customizable

Automated

Advanced

Ballistic tested

Highest Seismic and Wind Zones

Extreme Geo-climatic conditions

Empaneled Defence Contractor

High- Performance 3DCP Mix

Economic

Customizable

Versatile

Sustainable

Project Execution

Specialized team

Code-compliant design

Customer education

After-sales support

Potential Unlocked

13 States
Across borders and civil zones

High AltitudeUp to at 18,500 Feet

50+ 3DCP Structures
Pan India

Impact and blast Resistant 300+ Anti-tank Bunkers

150,000+ sq. ftBuilt-up area

10,000+ tons
Material saving

-20 °C to +50 °C

Disaster ProofUp to Seismic Zone V
and intense wind

MiCoB's Footprint Sq.Ft.

350

Use Cases - Military

300+ Impact and Blast resistant bunkers delivered 5,000 Bunkers to be delivered in next 2 years

Construction time reduced from 45 days to 7 days Higher Ballistic performance compared to Conventional bunkers

3D-printed permanent defences have been constructed for first time by Indian Army's Corps of Engineers in desert sector. These defences were trial tested against a range of weapons from small arms to the main gun of T90 tank: Indian Army's Engineer-in-Chief Lt Gen Harpal Singh

Use Cases - Residential and Commercial Buildings

- Upto 50% reduction in construction time
- Better thermal and sound insulation due to air voids in the wall. Lower HVAC cost/ higher building energy efficiency due to air voids.
- No need of external plaster
- No efflorescence which generally happens in the brickwork/masonry, hence reduced maintenance
- Higher building life due to extra cover to structural members

© MiCoB Private Limited

Use Cases – Hospitality Sector

Reduced operational costs

Better thermal and sound insulation due to air voids in the wall. Lower HVAC cost/ higher building energy efficiency due to air voids.

No efflorescence which generally happens in the brickwork/masonry, hence reduced maintenance

Higher building life due to extra cover to structural members

Early revenue generation potential

Video Link

Use Cases – Transmission Industry

Cable Trenches, Drains and Earth Pits

Stores and Warehouses

Foundations, Retaining walls and Fire Walls

Boundary walls

Use Cases - Infrastructure

Marine Stabilization

Tetrapod Culvert

Global developments by Competitors

Bridge decks (post-tensioned) | Piers / columns | Water storage tanks

Wind turbine foundation | Retaining wall and barriers

Use Cases – Data Centers

Indian Market

- Located in Hot and Humid regions
- Government push for PUE < 1.35 *
- Expected to grow from 2GW load to 5GW by 2030

Key focus –

- Operation efficiency
- High reliability
- Sustainability
- Reduced Total Cost of Ownership

Impact with 3D construction

- 1 MW capacity Data Center would require additional 500 kW in cooling and 250 kW in air circulation, resulting in an annual cost of approximately Rs. 4 Crore (considering Rs. 6 per kWh and 99% uptime)
- A 10% saving in the cooling and air circulation with potential annual saving of Rs. 40 Lakh per MW of IT Load. Over a period of 10 years this could be approximately Rs 4 Crores savings (on same cost basis).
- Higher life compared to PUF Panels/Dry walls, low maintenance, and Better Fire Rating
- Marginal cost increment for adoption ~ +70 Lakh / MW
- Faster to market, and early revenue generation potential

Why MiCoB?

Why MiCoB, Why Now?

, ODF

State-of-the-art construction technology

Faster Project Timelines

Proven and recognized Technology

Track Record of Excellence

Precision and Scalability

Innovative Aesthetics

Geo-climatic Solutions

Seismic Resilience

Environment

Waste Management

→ Manpower is the bottleneck resource

→ Technology is getting cheaper

Time is money

→ Project Predictability Defines Credibility

MiCoB: Your pioneering partner

in innovation!

Key Delivered Projects

3D Printed Warehouse

Plinth Area: 2250 sq. ft. Clear height: 20 ft

Electricals' warehouse 3DCP Wall Panels Traditional foundation PPGI roofing

Seismic Zone V

Cottage / Bunga

Nagoa Beach, Diu

Highly Corrosive Environment

2 months

12,000 sq.ft.

Video Link

G+2 Staff Accommodation

- Total Plinth area ~ 6500 sq.ft
- Construction time ~ 5 months
- Location Visakhapatanam
- Client: GE Naval Depot,
 Indian Navy
- 3D Printed Concrete Wall Panels as Façade
- Project video

G+1 NCO Accommodation

- Total Plinth area ~ 1700 sq.ft
- Construction time ~ 3 months
- Location Ahmedabad Cantt
- Client: GE Ahmedabad, Indian Army
- 3D Printed Concrete Wall Panels
- Project video

Air Traffic Control Hut

- Total Plinth area ~ 970 sq.ft
- Construction time ~ 1.5 months
- Location Pune Airport
- Client: GE Lohegaon, Indian Airforce
- 3D Printed Load-bearing Reinforced Concrete Panels
- Project video

Officer JCO Living

MiCoB®

- Total Plinth area ~ 1300 sq.ft
- Construction time ~ 3 months
- Location Walong, Arunachal Pradesh
- Client: Indian Army
- 3D Printed Concrete Wall Panels

ORL Shelter

- Total Plinth area ~ 2450 sq.ft
- Construction time ~ 3 months
- Location Barmer, Rajasthan
- Client: Indian Army
- 3D Printed Concrete Wall Panels

Studio Apartment

- Total Plinth area ~ 400 sq.ft
- Construction time ~ 3 months
- Location Jodhpur, Rajasthan
- Client: IIT Jodhpur
- 3D Printed Concrete Wall Panels

Double Storey ORL Shelter

MiCoB®

- Total Plinth area ~ 10,500 sq.ft
- Construction time ~ 12 months
- Location Zuluk, Sikkim
- Client: Indian Army
- 3D Printed Concrete Wall Panels

Recognitions and Support

India News

Updated on Nov 16, 2022 03:06 AM IST

The Indian Army will construct modular, 3D-printed, next generation bunkers to provide better protection to front-line soldiers guarding the country's border with China in the Ladakh sector.

Best Way to Predict the Future is to Create it!

-Peter Drucker

Let's Print the Future !!!