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Abstract: This paper derives theoretical error bounds for the Policy and Value Function 

Iteration algorithms applied to Recursive Dynamic Models with continuous decision 

variables and inequality constraints.  This paper proves two main theorems. The first one 

uses a recent result due to Santos and Rust (2004). The theorem extends the result by 

combining a feasible version of the Policy Function Iteration algorithm with the barrier 

method for a model with an arbitrary number of state and decision variables. This 

constitutes a significant difference with the original theorem, since it is no longer 

necessary to assume the interiority of the solutions. The Algorithm converges at a rate of 

1.5 for a given grid size. The second theorem, for problems with only one continuous 

endogenous state variable, uses a feasible version of the Value Function Iteration 

Algorithm, the barrier method and a cubic Variation Diminishing Spline Approximation. 

The algorithm converges at a linear rate, given the grid size. Finally, under a certain 

configuration of the parameters, the maximization problem in this last theorem is in the 

convex class, which can be solved in polynomial type complexity, and the policy function 

is first order differentiable. These last results enables the algorithm to avoid the Course 

of Dimensionality for the maximization problem in the Bellman Equation and the use of 

first order perturbation methods, thus, constitutes an extension of existing theorems 

that deals only with equality constraints (see Judd, 1994).          

Keywords: error bounds, numerical dynamic programming, inequality constraints. 

JEL Classification: C61, C63, C65 

                                                           
 I thank Daniel Heymann, Peter Howitt, Wanfeng Yan and the participants of the 11th Trento 
Summer School for their valuable comments and suggestions. I am especially grateful to Enrique 
Kawamura for his comments and support.  



2 
 

1. Introduction 

 

Dynamic economic models with occasionally binding inequality constraints have 

always been treated in a separate way in the literature of numerical methods. For 

instance, in a recent survey (Arouba, et. al, 2006) the authors compare several 

methods to solve recursive dynamic macroeconomic models, specifically the 

neoclassical growth model, assuming that the policy function belongs to the interior 

of the feasible region. While this assumption have no economic relevance in the case 

of boundary restrictions, it may be important when the occasionally binding 

constraints play a central role in the model. This is the case, for instance, in the 

Cash-in-Advance Model, in the irreversible investment model of growth and in Real 

Business Cycle Models with Heterogeneous agents and idiosyncratic liquidity or debt 

constraints.  

From another perspective, these models almost always fall in the class of Markov 

Decision Process (MDP) with continuous state and decision variables. Then, they are 

affected by the course of dimensionality (Chow, et. al. 91), meaning that the worst 

case complexity of the problem grows exponentially with the number of states and 

controls. Further, inequality constraints causes the optimization problem to suffer 

the combinatorial difficulty of nonlinear programming (Nocedal, Ch. 15), meaning 

that the number of choices in an active set strategy grows at a rate of   , where    

is the number of inequality constraints. Besides, the possibility of a binding 

constraint does not permit the differentiability of the value function, at least 

without imposing stronger restrictions on the problem (see, for instance, Santos and 

Rincon Zapatero, 2009). So, it is not possible to use neither Euler Equation Methods 

(Rust, 1994) nor Perturbation Methods (Judd, 1998, Ch. 13 to 15) without further 

structure. All these features had led the numerical optimization and numerical 

dynamic programming literature to develop algorithms that treat all these problems 

carefully, leading to a new promising branch in the literature.  

In a recent paper, Christiano and Fischer (2000) performed an exhaustive numerical 

test on a set of algorithms that they considered appropriate to deal with the 

mentioned problems. They developed a series of smooth approximation algorithms 

for the irreversible investment neoclassical growth model with only one endogenous 

continuous and one exogenous discrete state variables. They chose a version of the 

Parametrized Expectations Algorithm (PEA, Marcet and Marshall, 1994) because it 
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was the fastest method with a relatively high accuracy. Even though these results are 

useful from a practitioner’s point of view, theoretical error bounds have not been 

derived yet. Besides, unless the true function lies within the subspace spanned by 

the basis functions used in the algorithm, smooth approximation methods cannot 

provide arbitrarily accurate approximations. As a result, to obtain a benchmark 

solution, Christiano and Fischer use a discrete approximation method: the Value 

Function Iteration (VFI), taking into account the inequality constraint with a 

polynomial approximation with an extremely fine grid. Available results from Santos 

(1998) allow to think that the VFI could provide an arbitrarily accurate solution for 

the unconstrained o even equality constrained case. However, it is not clear how the 

approximation of the inequality constraint would affect the performance of the 

method, especially in terms of the accuracy. One of the purposes of this paper is to 

complement the results in Christiano and Fischer (2000), providing benchmark 

solutions for the inequality constrained case. 

In general, the lack of a closed form in a model requires a benchmark algorithm, 

because it provides a set of numerical solutions within a desired level of accuracy. 

The typical algorithms used to serve this purpose were the VFI and Policy Function 

Iteration (PFI) because of existing theoretical error bounds for models with interior 

solutions. These results are due to Santos (1998) and Santos and Rust (2004). 

However, with the notable exception of the PEA1, there have been no results on error 

bounds for MDP with continuous states and inequality constraints. This paper will 

prove the existence of such error bounds, complementing the Santos and Rust 

results.  

This paper derives theoretical error bounds for computationally feasible globally 

convergent algorithms that solve models in the Euler Class (Rust, 1994, Ch. 2) with 

inequality constraints. To deal with this problem it is necessary to take care of three 

different error sources: the approximation error (APE), the fixed point error (FPE) 

and the maximization error (ME). The first one is the cost of making the algorithm 

tractable. As it is only possible to obtain a finite number of points of the true 

function, there is a need to interpolate them to attain a smooth result.  Two 

different interpolating procedures are chosen: Piewise linear (PLA) and Variation 

Diminishing Spline (VDSA) Approximations. The FPE is due to the finiteness of 

number of iterations in an iterative discrete approximation algorithm, in this case 

the VFI and the PFI algorithms. Finally, the ME is derived from the numerical errors 

                                                           
1
 It must be mentioned that the assumptions made to derive the asymptotic convergence of the PEA 

seem to be too demanding for the mentioned context (see Rust, 1994, page 140). 
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involved in the maximization algorithms, as asymptotic convergence to the set of 

constrained maximizers is assured under weak assumptions. To handle inequality 

constraints in the maximization problem, this paper uses a Barrier Algorithm. Even 

though there are applications of the barrier method to accommodate inequality 

constraints in practice (see for instance, Preston and Roca, 2007), this paper 

constitutes the first attempt to use this method to derive asymptotic results in the 

literature of numerical dynamic programming.    

With the mentioned tools, the paper states and proves two main theorems. Theorem 

1, for a model with an arbitrary number of endogenous (continuous) states variables, 

using the PFI, the Barrier Method and PLA, shows that the FPE decreases at a rate of 

1.5, as the number of iterations goes up, but increases with the grid size. These 

results are an extension of the ones obtained by Santos and Rust (2004), taking into 

account inequality constraints. Besides, it is shown that the APE decreases 

monotonically with the grid size. Finally, the paper proves that the ME can be bound 

by adjusting a parameter in the barrier method. Thus, in a sense, Theorem 1 

constitutes an extension of the existing results as it allows to account for the three 

possible sources of error as a function of the parameters of the model. Note that a 

trade off arises between the FPE and the APE as the grid size becomes smaller. This 

last conclusion can be used to explain the collapse of the PFI found in the Christiano 

and Fischer paper and their preference for the VFI for an extremely fine grid. 

Moreover, with the help of Theorem 1, it is possible to measure this trade off, as it 

depends only in the deep parameters of the model, and to determine precisely 

whether to use the VFI or the PFI. Theorem 2, using the VFI, the Barrier Method and a 

cubic VDSA, for a model with only one endogenous continuous state variable, shows 

that FPE decreases at a linear rate, the APE decreases monotonically with the grid 

size and the ME can be controlled using the barrier method. Further, imposing some 

restrictions to the set of Lagrange multipliers and to the objective function, theorem 

2 allows to derive asymptotic convergence even when the maximizers lie on the 

boundary of the feasible region. This last result is a significant improvement since it 

allows to deal with binding constraints (the Cash-in Advance or Irreversible 

Investment constraints), without interiority assumptions (usually required in the 

existing literature) and to obtain a differentiable path for the set of barrier 

maximizers, as well as an estimate of the Lagrange multiplier. Finally, for small 

values of the barrier’s parameter, the results imply that the maximization problem is 

in the convex class, which, as it is well known, can be solved in polynomial time 

complexity using a gradient hill algorithm of the Newton-Quasi Newton Type (see 
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Nemirovsky and Yudin, 1985). The importance of this last result was highlighted in 

Judd (1994, Page 153). One of the most well kwon threats to the tractability of the 

VFI is the course of dimensionality in the maximization problem. The assumptions 

in Theorem 2 allow us to avoid it, leaving us with only the approximation problem 

due to a continuous decision variable. This result constitutes an extension of the 

one in Judd (1994), as it allows to deal with an arbitrary number of constraints, 

without imposing interiority assumptions. Finally, note that the barrier method 

implies that the feasible solutions are always interior, thus allowing for second 

order differentiability of the value function and first order differentiability of the 

policy function. This last result can easily be applied to derive first order 

perturbation (local) methods. However, it must be noted that the policy function is 

differentiable only up to the first order, and second order perturbation methods (see 

for instance Uribe, et. Al., 2004) are not well defined in the presence of inequality 

constraints. In the literature of real business cycle models with heterogeneous 

agents, the linearity of the saving function is often tested using second order 

perturbation methods (see for instance, Preston and Roca, 2007). Remark 2 of 

Theorem 2 states that the policy function is only first order differentiable, 

consequently the use of higher order approximations may be misleading.  

 

The paper is organized as follows. Section 2 presents an abstract version of the 

theoretical model together with the algorithm’s building blocks. This section 

presents the contributions of recent literature that are used as inputs for the two 

main theorems. Section 3 states the two main theorems and proves them. Section 4 

concludes. 

 

 2. Preliminaries 

 

2.1 The Model 

Let      and Z =        
   with     

            be the set of all possible 

endogenous and exogenous state variables respectively. Define         as the state 

space. 
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Note that it is assumed that     . Further, suppose that the exogenous state 

variables are driven by a (finite state) first order Markov Process with transition 

matrix P. 

The physical constraints of this economy are given by a correspondence,       

and, as usual,     (0,1), where   is the discount factor.  

The following set of additional assumptions guarantee the existence of a recursive 

(functional) version of the original (sequential) problem, which is omitted for the 

sake of concreteness (see Stockey, Lucas and Prescott, Ch. 4, sections 4.1 and 4.2 for 

a related discussion). 

 

Assumption 1:  Γ, the feasibility correspondence, is continuous, compact and convex 

valued.  

Assumption 2: Let   denote the return function. Assume then that,          , 

      in        , where    is the graph of        and          is strictly concave. 

Assumption 3: for each         , the optimal solution           
         . 

 

Given that the optimization problem includes inequality constraints, section 3 drops 

this last assumption and introduce the barrier method instead. 

These assumptions allow to define the Bellman equation,  . From standard 

arguments,   is well defined, continuous and strictly concave, 

1.                                 
                              

Where        is the conditional transition probability, which is derived from P. 

Note here the effects of the imposed structure on the stochastic process driving the 

exogenous state variables. This assumption is done only to keep the standard 

assumptions in the literature (Christiano and Fischer, 2000). Since the focus is on 

the effects of the inequality constraints on the maximization problem in equation 1, 

it makes no sense to deal also with the numerical integration issues that will arise 

with a continuous exogenous state. 
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The maximal elements in equation 1 are characterized by a policy function    

      , which it is known to be continuous. Note that        is a function only 

because of the strict concavity assumption on the return function and the shape 

preserving property of the Bellman Operator implicitly defined in equation 1. 

However, when dealing with a tractable version of numerical dynamic programming 

algorithms, the map        could perfectly be a correspondence instead of a function. 

This is because the shape preserving properties of the Bellman operator are no 

longer preserved under most of the interpolating procedures available in the 

numerical analysis literature.     

The (non linear) operator in the Bellman equation,   , (see equation 2 below) could 

be used to define a recursive mapping from a Banach Space into itself. This stresses 

that the solution to the problem will be exact (E). Further, endowing the space of 

bounded continuous functions,  , with the Sup-Norm, allows to obtain a complete 

metric space from   . The Blackwell Sufficient conditions guarantee the existence of 

unique solution to equation 1. Formally,     

2.                                     
                              

With                                   . Further, the fixed point in 2 

satisfies: 

3.          
                

Note that this simple structure guarantees the linear convergence (at a rate  ) of the 

iterative (non tractable) algorithm implicit in 2. The non tractability comes from 

assuming an exact solution to 2 in  , for each of the   iterations. Section 3 presents 

a tractable version of this algorithm kwon as the VFI. 

2.2 Differentiability of the Value Function 

The second order differentiability of the value function will be used to set bounds to 

the APE that comes from using piecewise linear interpolation.  

Further, as regards the numerical aspects of the maximization problem in the 

Bellman equation, the existence of a well defined Hessian would allow for the use 

Gradient Hill Newton Methods, which are essential to avoid the ill conditioning  

problems that produces the barrier method (see Nocedal and Wright, 2006, Ch. 17).  
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For the sake of concreteness, this discussion does not consider the first order 

derivative of the value function and refer the reader to the well known literature 

(Stockey, Lucas and Prescott, Ch. 4 section 2). However two aspects must be 

highlighted: first-order differentiability requires a concave return and value 

functions and a set of interior solutions2. Second, in the presence of inequality 

constraints, there is no guarantee of the existence of such a set of solutions. These 

problems induce to introduce barrier methods, which prevent barrier maximizers 

from reaching the boundary of the feasible region.   

Consider the theorem that guarantees the second order differentiability of the value 

function. 

 

Theorem 2.1: Under Assumptions 1-3, W     in         and            is bounded. In 

particular, 

                                   

Where B is the supremum of the Hessian of the return function. 

Proof: see Gallego (1993) 

 

In particular it should be noted that Gallego (1993) assumes that the return function 

is  -concave3, following the functional analysis literature. However on compact sets, 

every    strictly concave function is  -concave (see Gallego Pag. 15). So, Assumption 

1 and 2 guarantee the  -concavity of the return function. Besides, the author works 

in a deterministic environment. However, as noted by Santos (1998), the analysis is 

easily extended to the present framework (i.e. a discrete stochastic process).  

The first order conditions that characterized the maximal elements in the Bellman 

equation, together with theorem 2.1 establish the differentiability of the policy 

function. In particular, an application of the implicit function theorem is sufficient 

to obtain that property (see Theorem 3.2 in Gallego, 1993). 

                                                           
2
 In the case of non interior solutions, we must require stronger assumptions (see Renthall, 2006 or 

Santos and Rincon Zapatero, 2009).  As is well kwon from the convex analysis literature, a concave 
function is Lipschitz continuous in a point of the domain z if and only if it is bounded in a 
neighborhood of z (see Borwein and Lewis, 2000, Theorem 4.1). So in the boundary of the feasible 
region, even a concave function has no well defined derivative.  
3
 A function                         is said to be  -concave if              for                . 
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Theorem 2.1 could be of particular importance, as Perturbation Methods can be used 

to approximate local solutions. In a recent paper Arouba et. al. (2006), state that it is 

not possible to use perturbations methods in the presence of inequality constraints 

(see Pag. 3). However, using the barrier method, allows to obtain second order 

differentiability of the value function and first order differentiability of the policy 

function, thus allowing for first order (log) linearization. Unfortunately, higher order 

perturbation methods (such as those in Uribe and Schmitt-Grohe, 2004) cannot be 

applied because there are not kwon results on higher order differentiability 

properties of the value function. 

 

2.2 Approximation Methods 

This paper uses two different types of polynomial approximation methods. The first 

one is piecewise linear interpolation (PLA). This interpolation method will be used 

only to achieve feasibility in the PFI algorithm for         . In particular, the 

papers uses a multidimensional simplical interpolation (see Judd, 1998, Pag. 243) to 

obtain any point in the endogenous state space. To achieve this result, a family of 

disjoint simplices is constructed. The second method will be used only for    . It 

is a cubic variation diminishing spline approximation (VDSA) which allows to 

interpolate a strictly concave function in the    class. This last method constitutes a 

difference with the quadratic shape preserving spline approximation presented by 

Schumaker (1983), which was used by Judd (1994) to develop a feasible version of 

the VFI. It turns out that a    interpolant approximates a solution even in the 

boundary of the feasible region using the barrier method.   

2.2.1 Simplical Multidimensional Linear Interpolation. 

Let      and      be a disjoint finite family of simplices in K. Define the grid size, 

 , to be 

                                                          
    

Where                    
             and   to be the natural distance in the 

Euclidean space. 

Defining    to be an arbitrary vertex of triangulation of the jth simplex, any point 

     can be expressed as 
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The summation takes place over the vertices of     and       is an scalar that is used 

to write any point in the state space, for instance K, as a convex combination of the 

vertices. Then, using Lagrange data on a function,            , PLA extends the 

observed points over the hole domain of the continuous endogenous state variable 

as follows, 

4.                                                    
                

Note that interpolation is only over K given the assumption of a discrete exogenous 

state space. Further, note that piecewise linear interpolation preserves the bounds of 

the interpolated function. That is,                 . This fact will be useful in the 

proof of first theorem. 

2.2.2 Schoenberg’s Variation Diminishing Spline Approximation  

The importance of shape preservation and smoothness of the interpolating 

procedure should be clear from the perspective of the numerical optimization 

algorithm required to solve each step of the iterative process implied by the Bellman 

equation. For a general discussion on the subject the reader is referred to the 

operations research literature (Jhonson, 1993). Regarding dynamic macroeconomic 

models, as mentioned, Judd (1994) use the Schumaker’s quadratic spline 

approximation to derive theoretical error bounds for a VFI algorithm. This analysis 

differs from Judd’s in the preservation of the second order differentiability of the 

value function. This last feature allows convergence in the barrier method in a 

strong sense and the use of Gradient Hill Newton Methods. As in Judd (1994), the 

focus here is only on one endogenous state variable to allow for a shape preserving 

interpolating scheme. 

In particular, VDSA enables to preserve the concavity and differentiability properties 

of the value function and Assumption 2 together with the barrier method will 

generate an optimization problem in the convex class.  

The analysis on VDSA is based on a recent book by Lyche and Morken (2008). 
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Definition 1: Let           be a continuous function, d a given positive integer and 

                a nondecreasing sequence of knots with boundary knots      

        . The spline given by 

5.                                                     
         

 
    

Here    is called Variation Diminishing Spline Approximation. Further,  

  
        

 
       and         is the jth spline of order d defined by the usual recursive 

relation: 

                                      
    

 

    
    

           
      
   

      
      

              

Note that it is required at least d+2 knots to construct a spline of order d. So       

is constructed with n polynomial pieces that connect each other, every one of them 

having d+2 knots. Finally, note that the condition on the end knots implies that the 

first and last d+1 knots are all equal. According to the recursive relation that defines 

the splines, this would imply division by zero, so it is usual to assume that 

“anything divided by zero is zero” (see Lyche and Morken, Pag. 30). This is done to 

allow all the pieces of the polynomial function to have d+2 knots. 

This section turns now to the smoothness properties of the splines.  

 

Theorem 2.2: Suppose that z occurs m times among the knots   
      

          
  which 

define        . If        , then        is continuous at z for r=0,1,…,d-m but 

           is discontinuous at z. 

Proof: see Lynche and Morken Theorem 3.19 

 

So from Theorem 2.2 it is clear that to get a    interpolant it is necessary to deal 

with a cubic VDSA and knots with multiplicity 1. 

Finally this subsection establishes the monotonicity and shape preservation 

properties of the spline. The first property will be useful to preserve the 

monotonicity of a discrete Bellman operator, which, because of the Blackwell 

sufficient conditions, will be a contraction.  
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Theorem 2.3: if   is increasing on      , then    is also increasing in      . 

Proof: see Proposition 5.32 and 5.33 in Lyche and Morken. 

 

Theorem 2.4: if   is concave on      , then    is concave in       

Proof: see Proposition 5.37 and 5.38 in Lyche and Morken. 

The intuition of Theorem 2.3 should be clear when recalling the value of the 

derivative the VDSA (              
         

      
    

    
   ) and the fact that the 

sequence of knots is nondecreasing. 

For Theorem 2.4 note that a concave increasing function will have decreasing 

derivatives, so in this case define, 

                        
         

                 
         

        
    

      

So if   is concave,       should be a decreasing sequence. Theorem 5.37 in Lynche 

and Morken states that this condition is sufficient for    to be concave. 

2.2 Barrier Methods 

The combinatorial difficulty of inequality constraints problems induces to focus on 

the maximization problem that must be solved in each step of the Bellman operator 

defined in equation 2.  

A recent taxonomy on numerical optimization algorithms (Nocedal and Wright, 

2006, Ch. 15 to 17) considers several options to tackle the problem. However, the 

interest on the asymptotic properties of an algorithm requires a method with well- 

known convergence properties. Sometimes, inequality constrained problems are 

solved through a practical approach, meaning that these methods have no well 

defined convergence properties. Besides, the behavior of the Lagrange multiplier is 

clearly not trivial. In continuous state stochastic Markov Decision Problems, this 

means that the algorithm must keep track of the Lagrange multiplier over the hole 

discretized state space and during the number of iterations required to reach a 

desired level of the FPE. The numerical literature (Christiano and Fischer, 2000, Cao 

Alvira 2009) states that for a sufficiently small error tolerance, these facts can make 

the problem intractable. So given the need of an accurate convergent result, these 

problems must be avoided. 
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The literature has proposed several strategies to solve a constrained problem as a 

sequence of unconstrained problems.  

The first is the Penalty Function Method (Courant, 1943). This method punishes the 

objective function every time the control variable leaves the feasible region. 

Although a convergence theorem for the equality constrained version had been 

proved, similar results for the inequality constraint case are not known. 

Furthermore, while it is usual to accommodate the penalty term through the square 

of the constraints (so the punishment is increasing in the violation), dealing with 

inequality constraints requires a     function. This affects the choice of the 

numerical optimization algorithm. In particular, it is not possible to use Gradient 

Hill optimization methods. Further, as the kinks in the objective function of the 

modified problem inherit the combinatorial difficulty of the problem, it is difficult 

to use algorithms for non-smooth optimization (Bazaraa, 1993, Ch. 8), which are 

suggested for piecewise functions with kinks in a non increasing number of points. 

Another possibility is the use of Augmented Lagrangean Methods (Powell, 1969) or 

sequential quadratic programming (Nocedal, Ch. 18). However, these methods 

require an estimate of the Lagrange multipliers and, in models with state dependent 

constraints, the combinatorial difficulty of the problem will make them unfeasible. 

This paper chooses to work with the Logarithmic Barrier Method. This method does 

not require the estimation of a Lagrange multiplier to find an approximate 

maximizer and have convergence results for inequality constrained problems. The 

main drawback of this method is its numerical performance. Interior Point Methods 

(Nocedal, Ch. 19) and Sequential Quadratic Programming are faster and more robust; 

however, both of them require an estimate of the Lagrange multipliers to solve the 

modified optimization problem. 

Suppose the following inequality-constrained optimization problem4, 

[Problem 1]                                                                   

Where       ,     
   ,   and    are at least continuous and the usual 

dimensionality restrictions have been applied to   and  . The set of functions that 

defines the inequality constraints form the feasible region, denoted as  . 

                                                           
4
 The rest of this section relies heavily in Forsgren, Gill and Wright (FGW, 2002). 
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Instead of Problem 1, it is possible to solve a sequence of unconstrained problems, 

with a typical element, 

[Problem 2]                         
 
                          

 
    

where         is the logarithmic barrier function and    is a positive scalar known as 

the barrier parameter. Note that         is as smooth as the objective and constraint 

functions. 

Define then a sequence of maximizers,     , which solve the unconstrained problem 

as     . The next paragraph presents the conditions that guarantee      , for any 

decreasing sequence      as long as     , where    is the solution to Problem 1. 

Stronger assumptions also allow to define a differentiable path for      and a 

convergent estimate of the Lagrange multiplier, which depends on the barrier 

parameter, the constraint functions and   .  

Before quoting the results, consider an additional assumption and a definition. 

 

Assumption 4: The feasible region,  , is convex. 

 

Sufficient conditions for assumption 4 are concavity or cuasiconcavity requirements 

on   . Assumption 4 allows to avoid some technicalities (see Definition 3.4 in FGW). 

However, if the feasible region is not convex, the barrier maximizers are still 

convergent. 

 

Definition 2: Let N and N* be sets in    such that N*   N. The subset N* is called 

isolated if there exists a closed set, E, such that N*         and E⋂N=N*. 

 

Note that if N is compact and N=N*, then definition 2 is immediately satisfied (see 

FGW, Pag. 547). 
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Theorem 2.5: Let N be the set of maximizers of Problem 1, with objective function 

value   . Assume further that N is nonempty. Let       be a strictly decreasing 

sequence of positive barrier parameters with     . Assume further that, 

i) There exists a nonempty compact set N* of local maximiers that is an isolated subset 

of N. 

ii) At least one point in N* is in the clousure of        

Then,  

a)  There exists a compact set S such that N*       ) and such that for any    

 ⋂                   

b) For all       there exists    such that,                               ⋂   

c) For any                       with         and                     
   

          

Proof: see Fiacco and McCormick, 1990, Theorems 8 and 10. 

 

Statement (a) is the formal definition of a constrained maximizer without requiring 

the maximal element to be a Khun Tucker point. Statement (b) defines a sequence of 

(bounded) barrier maximizers in the interior of a feasible region. Finally, statement 

(c) proves the existence of a convergent subsequence.  

It must be noted that this theorem is too general for most economic applications 

(see Wright, 1992, for a weaker version of the theorem), where generally the 

existence of a Khun Tucker point and the compactness of the set of maximizers are 

generally assumed. 

Theorem 2.5 allows the barrier maximizers to converge to the solution of Problem 1 

requiring neither second order sufficient conditions nor constraint qualifications. 

This flexibility comes with a price: without sufficient conditions for isolated 

maximizers, it will be difficult, in practice, to keep track of the generated sequence. 

In particular, it is not necessarily true that every sequence of maximizers of the 

barrier function converges to the solution of Problem 1, in fact the theorem assures 

only the existence of a convergent subsequence. 

All those considerations demand more restrictions to Problem 1. 
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Theorem 2.6: Let    be a local constrained maximizer of Problem 1, let 

                  be the gradient of the objective function, the jacobian of the 

constraints and the set of active constraints at   . Assume further that,  

i)    is a Kuhn Tucker point 

ii)     
   has full row rank (Linear Independence Constraint Qualification, LICQ) 

iii) Strict complementarity holds 

iv) The second order sufficient conditions for an isolated constrained maximizer holds.  

Then as     , 

a) For any                       

b) Let              =  
  denote the estimate for the Lagrange multiplier of constraint  . 

Then the sequence of barrier multipliers is bounded and   
    , with        if the     

constraint is binding. 

c) For a sufficiently large j, the barrier function is definite negative 

d) A unique continuously differentiable function      of unconstrained barrier 

maximizers exists in a neighborhood  of     and        . 

 

Proof: see Theorem 3.12 and Lemma 3.13 of FGW. 

 

Strict complementarity and LICQ are usual assumptions in the literature (see Santos 

and Rincon Zapatero, 2009). This allows to deal with a unique bounded    and attain 

convergence for a sequence of locally unique maximizers of the barrier function (for 

sufficiently small values  ) that converge to an isolated solution of Problem 1, even 

for maximizers on the boundary of the feasible region. Further, it is also possible to 

approximate arbitrarily the Lagrange multiplier vector through a differentiable 

policy function. This last fact is important since it allows for the possibility of 

Perturbation Methods in the presence of binding inequality constraints.    

Note the difference between Theorem 2.5 and 2.6; in the first one, the setting is so 

general that it is not possible to guarantee the existence of a Kuhn Tucker point or a 

finite set of Lagrange multipliers. As it is only assumed that   is convex, the usual 

(Mangasarian – Fromovitz or Linear Independence) constraint qualifications may not 

necessarily hold. Thus, in the context of Theorem 2.5 the Lagrangean function may 

not be well defined. 
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2.3 Fixed Point Functional Algorithm 

This subsection introduces an unfeasible5 version of the VFI and PFI, omitting details 

for simplicity. The reader is referred to Rust (1994) for a survey on numerical 

dynamic programming methods. 

 

Algorithm 1 (VFI) 

I) Select a tolerance level,  , and an initial value function          . 

II) Compute the VFI, 

               
           

       
            

             

    

   

III) End of iteration, 

If                      , otherwise return to step II. 

 

Making the algorithm feasible demands to derive an approximation of  , denoted as 

     , where      denotes the VDSA. Define then a discretized Bellman operator 

(     ) associated with the discretized value function. This algorithm converges 

globally at a linear rate, β. Note that the VDSA is cubic, so the interpolated functions 

belong to the C2[a,b] class as long as the maximizers do not belong to the boundary 

of the feasible region. This fact, together with some concavity assumptions on the 

function that defines the restrictions, will suffice to apply Theorem 2.6.  As it will be 

shown,       preserves the concavity of the value function, and together with the 

shape preserving property of the VDSA and part (c) of Theorem 2.6, these conditions 

assure that the maximization problem in the Bellman equation is in the convex class. 

 

Algorithm 2 (PFI) 

I) Select a tolerance level,  , and an initial value function          . 

II) Policy Improvement step: Find         that solves 

                                                           
5
 Feasibility comes from the approximation methods introduce in section 2.2. As stated in this 

subsection, the algorithms assume the existence of an exact solution over the whole state space.    
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Where B(.) is a functional operator that has a zero in the solution to the Bellman 

equation, W. 

III) Policy Iteration step: find           such that, 

            
   

           
        

              
             

    

  

IV) End of iteration, 

If                      , otherwise return to step II. 

 

Feasibility of the algorithm requires to derive an approximation of  , denoted as 

     , where      denotes the PLA. As before, define a discretized Bellman operator 

(     ) associated with the discretized value function. This algorithm converges 

globally at a rate of 1.5 and locally at a quadratic rate. The quadratic result is 

inherited from the Newton-Kantorovich theorem, which is a root-finding method for 

functional spaces (see for instance Argyros, 2006). The local quadratic rate will not 

be used for several reasons: i) it requires strong assumptions, ii) the range of 

convergence has not been derived yet, iii) for a benchmark – first attempt algorithm, 

a global result is preferred. Theorem 2.5 and the Berge’s Theorem of the Maximum 

will be used to solve the maximization problem in II) and to guarantee the existence 

of a policy correspondence. 

 

 

3. Asymptotic Results for Numerical Dynamic Programming 

Algorithms with Inequality Constraints. 

 

This section connects all the pieces presented in section 2, establishing the main 

results in two theorems. The first one,  for     , uses a results due to Santos and 

Rust (2004) who derived a computationally feasible version of the Puterman and 
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Brumelle (1979) theorem for the PFI Algorithm. The theorem uses a result due to 

Santos and Vigo Aguiar (1998) to set bounds on the approximation error. It then 

uses the barrier method (Theorem 2.5) to achieve an  -approximation to the 

maximization problem. The second theorem derives a similar result     using the 

VFI. The theorem derives a feasible algorithm using VDSA and sets bounds to the 

approximation error using a theorem due to Cohen, et. al. (2001). Finally, theorem 2 

achieves an  -approximation of the maximization problem using Theorem 2.6. 

It should be emphasized that there are worst case complexity results for continuous 

state infinite horizon MDP similar to those in Chow and Tsitsiklis (1991) that were 

provided by Rust (1994, see Theorem 5.2) and could be used to derive similar 

consistency results for the VFI algorithm. However, worst case complexity may serve 

as a stringent bound that can be relaxed using “the special structure of problems 

encountered in practice” (Rust, 1994, Pag. 153). 

3.1 The Structure of the Feasible Algorithm 

This subsection presents the algorithm exploiting the special structure of recursive 

dynamic macroeconomic models with inequality constraints in the Euler Class. 

Given the interest in including inequality constraints in the optimization problem, 

Assumption 3 is no longer valid. However, note that the barrier method (Problem 2) 

has a solution in the interior of the feasible region. Further, Problem 2 is designed to 

handle only inequality constraints. This demands to assume that either the problem 

has no equality constraints or that it is possible to substitute them into the barrier 

and value functions. 

Taking into account the inequality constraints, the Bellman equation can be written 

as, 

6.                                
                    

 
                                 

Where         denote the state dependent inequality constraints which, due to 

assumption 4, are not topologically inconsistent (see FGW, Definition 3.4). Further 

note that, for simplicity, the dependence of    on k’ has been omitted.  

Then rewrite equation 6 using the barrier method, just as in Problem 1, 

7.                              
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Denoting      as the parameter associated with the initial state z  , as it is possible 

to solve a different Bellman equation for each initial exogenous state. This is to 

stress that the level of the initial exogenous state variable plays a central role in 

determining whether the constraint is binding or not (see Christiano and Fischer 

2000 for a related discussion).  

Note also that the Lagrange multiplier function have been replaced with the barrier 

parameter, so now it is not necessary to estimate it to solve the problem. This 

constitutes a major difference with respect to most available numerical dynamic 

programming methods (like Marcet’s PEA) or optimization algorithms (SQP and 

Interior Point) that deal efficiently with inequality constraints. 

Despite this fact, as can be seen from Theorem 2.6, imposing some additional 

assumptions, allows to approximate arbitrarily not only the policy function but also 

the Lagrange multiplier function for k’ in the clousure of       . That is, if the 

maximizers in equation 6 lies on the boundary of   (i.e. there are at least one active 

constraint), it is possible to arbitrarily approximate the maximizer together with the 

associated multiplier as       . 

Finally, note that the constrained maximization problem in equation 6 have turned 

into a free one, with return function                      
 
   . Then, it is easy to see 

that the Bellman operator in equation 7, denoted as T, is also a contraction and have 

a unique fixed point ( ).      

The subsection turns now to the feasibility of the algorithm. Define the space of 

interpolating approximations,   , as 

                                                                       

                                                                            

where       and       are defined as in equations 4 and 5 respectively and the 

approximation of an element of   takes place only in the endogenous state variable, 

k.  

Defined a discretized version of the Bellman Operator,                     as, 

8.                                            
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Using the Blackwell sufficient conditions, it is a standard exercise to show that 

            is a contraction mapping with modulus β. So the VFI algorithm presented 

in section 2.3 immediately applies (see Algorithm 1) and converges at a liner rate, β. 

Further, the arguments in section 2.1 allow to show that there exists a unique fixed 

point of            , denoted as      .   

Moreover, define the operator   
    

              , which satisfies, 

   
    

                                       

with the usual Sup-Norm. Here   
    

 is used to set bounds to the numerical errors of 

the barrier method in the maximization problem implicit in the Bellman equation 8. 

This bound guarantees an  -approximation of      . As before,   
    

       is a 

contraction mapping with modulus β (see Santos, 1999). 

Now, from Santos (1999), the following inequality shows a decomposition of the 

error involved in a general numerical dynamic programming algorithm, 

9.      
    

   
    

                             
    

            
    

    
    

   
    

     

where   and       are fixed points of   (equation 7) and       (equation 8) 

respectively.  

Intuitively, it is possible to achieve an arbitrarily approximation of   by deriving 

consistency theorems for the FPE (the second term in the right hand side of the 

inequality) and the ME (the third term). This terminology is due to Rust (1994). The 

first term is the APE, which will be bound using standard arguments in the 

polynomial approximation literature. 

3.2 Main Results 

This subsection derives a general theorem for         , using the PFI algorithm 

and Theorem 2.5 to tackle the FPE and ME respectively. Theorem 4.3 in Santos 

(1999) deals with the APE. The theorem will allow to work with inequality 

constraints and an arbitrary number of endogenous state variables, achieving 

convergence for the FPE at a rate of 1.5. Then the paper turns to a problem with only 

one endogenous state using the VFI algorithm, Theorem 2.6 and VDSA to set bounds 

to the FPE, ME and APE respectively. 
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Theorem 3.1: Let       be the fixed point of       and W be the fixed point of T. 

Assume that       is concave. Let    
    

 
   

be the sequence of value functions 

generated by the PFI (Algorithm 2) over a uniform grid. Then under Assumptions 1 

and 2: 

                              
    

     
    

   
   

      
   

    

   
  

 

 
  

 

    
  
   

        

where   is the bound of     in Theorem 2.1,   is the grid size and   is the parameter 

that defines the  -concavity of the return function, M is the bound of the value 

function in equation 1 and   
    

 is the Bellman operator that solves the maximization 

problem through the barrier method (Theorem 2.5) and thus has a bounded 

numerical error,  . 

Proof: see the Appendix 

 

The first term is the APE for a PLA (which decreases in  ), the second is the FPE for 

the PFI algorithm (which increases in  ) and the last term is the ME. Finally Theorem 

2.5 allows to approximate arbitrarily the policy function in equation 6. 

Theorem 3.1 represents an extension of the results in Santos and Rust (2004), as it 

allows to derive theoretical error bounds for recursive dynamic models without 

imposing interiority assumptions. Besides, in contrast with previous results (Santos 

and Rust, 2004, Judd, 1994, Marcet and Marshall, 1994), the bound presents the 

dependence of the three sources of error on the deep parameters of the model, thus 

allowing to obtain the desired level of accuracy together with a convergence rate.    

 

Theorem 3.2: Let       be the fixed point of      , W be the fixed point of T and    . 

Let    
    

 
   

be the sequence of value functions generated by the VFI (Algorithm 1) 

over a uniform grid. Assume that the conditions            of Theorem 2.6 are satisfied. 

Then under standard Assumptions 1 and 2: 

                                           
    

     
    

   
  

     
   

 

   
  
   

     

                            
    
      

    with     
   >0 if the     constraint is binding. 
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where   is the grid size, M is the bound of the value function and   
    

is the Bellman 

operator that solves the maximization problem through the barrier method (Theorem 

2.6). 

Proof: see Appendix 

 

The first term is the APE for a VDSA (which decreases in  ), the second is the FPE for 

the VFI algorithm (which does not depend on  ) and the last term is the ME. Finally, 

note that Theorem 2.6 allows to approximate arbitrarily the policy function and 

Lagrange multiplier6 in equation 6.     

Theorem 3.2 constitutes an extension of the results in Judd (1994) as it does not 

require an interiority assumption. Besides, assures the existence of a differentiable 

convergent path for the barrier maximizers and an estimate of the Lagrange 

multipliers even for problem with multiple binding constraints. This last result 

constitutes a major difference with the existent literature, as smooth approximation 

methods (which estimate Lagrange multipliers as well as maximizers) do not have 

error bounds and discrete approximation methods (which have error bounds) do not 

estimate Lagrange multipliers (the interiority assumption makes them trivially zero). 

The importance of an estimate of the Lagrange Multiplier function in practice can be 

seen in Cao Alvira (2009), which finds a better fit of the velocity of money to data in 

a Cash-in Advance model allowing for occasionally binding constraints. This paper 

can provide a benchmark solution to the Cao Alvira’s model (which uses a smooth 

approximation method), as it provides a globally convergent arbitrarily accurate 

solution.             

Remark 1: Note that Theorem 3.1 and Theorem 3.2 implies that             , 

where   and    are the policy functions that solve equation 67 and 7 respectively. Then 

under Lemma 3.1 in Santos (2000) implies, 

                                                       
    

     
 

where    and H are constants defined in equation 3.4 and Assumption 4 of the 

mentioned paper. 

                                                           
6 Note that the estimate of the Lagrange multiplier and the barrier parameter are both functions of 
the initial endogenous state. So when we write     , we are doing an abuse of notation. This is done 
to stress the importance of the exogenous state in determining whether the constraint is binding. 
7 If Lagrange multipliers are not well defined we must use equation 1. 
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Because the (exact) Bellman operator in equation 7 is a contraction, by the 

(intractable) VFI algorithm of section 2.1      is concave. Then, Remark 1 holds only 

from first order differentiability of the value function     and a bound on the 

composite mapping                     , which define the bounds for    and H 

respectively. The first assumption is assured because the barrier maximizers belong 

to        and Assumption 2. The second is guaranteed by the Maximum Theorem, 

which is used in the proofs of Theorems 3.1 and 3.2 and assures the compactness of 

the policy function that solves equation 7.  

Remark 1 states an error bound between the exact unfeasible Bellman operator 

(equation 6) and their modified version using the barrier method (equation 7). The 

result highlights the importance of the interiority of the barrier maximizers, as it 

allows to obtain a bound for the modified optimization program using standard 

approximation theory.    

Remark 2: Note that Theorem 3.2 implies that for    ,     is differentiable and the 

Hessian of the objective function in the maximization problem in equation 8,  

                          
 
        

                      , is negative definite.  

Remark 2 states that, for small values of the barrier parameter, the modified 

optimization problem in equation 8 is in the convex class, thus, it can be solved in 

polynomial time. Remark 2 is an extension of the results in Judd (1994) for models 

with inequality constraints. In Judd’s paper the concavity of interpolated value 

function was guaranteed by a quadratic (shape preserving) spline approximation, 

here VSDA is used to serve that purpose. Moreover, Remark 2 states that the policy 

function is differentiable only up to the first order. This finding allows for the 

possibility of (local) first order perturbation methods, such as those used by 

DYNARE (one of the most popular software packages used to solve DSGE models). 

This result differs sharply with the ones in Judd (1994), as the quadratic spline 

approximation used there does neither assure the second order differentiability of 

the value function nor, by Theorem 3.2 in Gallego (1993), the first order 

differentiability of the policy function. This remark can be used to contrast the 

results in Roca and Preston (2007), which uses the barrier method and second order 

perturbation algorithms in a heterogeneous agent RBC model with inequality 

constraints. 
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4. Conclusions. 

Theorem 3.1 shows the existence of error bounds, which allow to approximate the 

fixed point in equation 7, where the constrained maximization problem in the exact 

Bellman operator (equation 1) have been modified by the barrier method. The 

distinct feature of equation 7 is the interiority of the approximate maximizers. Note 

that this last fact is crucial to set bounds to the APE, as most existing theory deals 

only with smooth functions.  

Another remarkable aspect of Theorem 3.1 is that only requires very weak 

assumptions, which are completely standard for the literature. This fact is inherited 

from Theorem 2.5. Note that an application of the Maximum Theorem is enough to 

guarantee the existence of a solution in equation 7 and the convexity of the feasible 

region together with the compactness of the policy correspondence are sufficient for 

the existence of a convergent subsequence of barrier maximizers. The only 

restrictive assumption is the concavity of the fixed point in equation 8, which is 

required by the bound to the FPE. In fact, in practice it would be quite difficult to 

assure the existence of such a function because; i) only a finite number of steps in 

the PFI algorithm are possible, ii) multidimensional interpolation is not shape 

preserving. So, in practice, the degree of concavity in the approximate fixed point of 

equation 8 must be checked by some index, as the one developed in Johnson (1993). 

Other distinctive fact of Theorem 3.1 is the convergence rate in the FPE, which is 

derived from the global result in Santos and Rust (2004). Even though Theorem 5.8 

in Rust and Santos (2004) allows to achieve convergence at a local quadratic rate, the 

lack of existing theory on the domain of attraction (see Argyros 2008, Ch. 2 and 3) 

makes the algorithm unattractive. This is because the available theory deals with a 

Newton Kantorovich iterative algorithms. In the case of the PFI, the Frechet 

differentiability of the Bellman operator is not guaranteed during the iterative 

procedure. This fact requires a change in the Newton Kantorovich iterations, 

replacing the derivative with the support of the Bellman operator (see Santos and 

Rust, 2004 Pag. 2102). Thus, without theory on the domain of attraction, results may 

be divergent, especially because the topology of the domain may be not well defined 

(see for instance Polyak, 2004).  

Moreover, note that the FPE is increasing in the grid size. The result is inherited 

from Theorem 5.7 in Santos and Rust (2004). This may explain why PFI works better 
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with a thicker grid, comparing its performance with the VFI (see Rust, 1994, Ch. 5 

section 4). 

Finally, note that the APE in Theorem 3.1 depends on (the bound of) the Hessian of 

the value function. As theorem 3.1 deals with (first-order) linear approximations, 

only the first derivative is well defined. The simplicity and efficiency of the 

approximation algorithm affects its accuracy, as the error is increasing in the 

curvature of the function.  

Theorem 3.2 imposes additional assumptions (ii and iii in theorem 2.6 and the 

restriction on the size of the state space) to guarantee the existence of a unique 

Lagrange multiplier and isolated (locally unique) maximizers of the constrained 

problem. This strengthen the convergence properties of the barrier method 

(Theorem 2.6), allowing to derive an asymptotic theory for the estimates of the 

Lagrange multipliers, a maximization problem in the convex class and a path of 

differentiable unique barrier maximizers (see Remark 2).   

From a practical point of view, these last findings are significant. First, the 

maximization problem in equation 8 can be solved in polynomial time, meaning that 

the number of operations required to solve the optimization problem is bounded by 

a polynomial of finite order. For non-convex problems, numerical optimization 

algorithms are affected by the course of dimensionality. Consequently, the required 

number of operations is bounded by a constant that grows exponentially with the 

size of the grid. Second, there is no need to worry for the existence of multiple paths 

in the barrier problem. Third, this approximation allows to deal with occasionally 

binding constraints easily, as Lagrange multipliers can be estimated as a function of 

the initial state. This constitutes a major difference from Theorem 3.1. 

On the other hand, Theorem 3.2 only allows for linear convergence of the FPE. This 

is because faster and more accurate algorithms (i.e. the PFI) do not preserve the 

concavity of the value function. The shape preservation is a crucial fact in the proof 

of Theorem 3.2, because it allows to apply Theorem 2.6, especially to prove 

assumption   . 

Further, note that the APE is smaller in Theorem 3.2 than in Theorem 3.1,given the 

use of  a cubic smooth interpolant rather than a piecewise linear approximation.          

Remark 1 establishes an error bound for the (exact) barrier Bellman equation. This 

is, only asymptotic approximation of the value function in equation 6 is possible 
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through the fixed point in equation 7. Again, the interiority of the policy function in 

equation 7 plays a crucial role here, because it allows the differentiability of the 

value function, which is required to measure the error involved in the 

approximation.        

Finally, regarding the numerical properties of the algorithm, as is well known from 

the literature (see for instance Rust, 1994, Ch. 5) VFI and PFI are among the most 

accurate algorithms available. However, they are two of the most inefficient ones as 

measured in CPU time. Further, the numerical properties of the logarithmic barrier 

method are not quite satisfactory either. This is because the method is very ill 

conditioned when it is solved through Quasi Newton and Direction Set methods and 

it also suffers from the Scaling Problem (Nocedal, Ch. 12) when solved through the 

Newton Method. This last fact can be explained by the barrier parameter. Because 

convergence demands the barrier parameter to be close to zero, it affects the size of 

the inverse of the Hessian of the objective function, and thus the numerical 

performance of the method. All these features increase the size of the ME, measured 

by   in inequality 9. So, even though the size of the ME is bounded, it can be quite 

large, affecting the applicability of the algorithm. To measure the size of  , a 

numerical test must be performed on the algorithm.   

To conclude, as the objective of the paper is to derive theoretical error bounds for a 

global accurate algorithm, efficiency and numerical issues are not being taking into 

account seriously. In practice, the algorithms developed here can be used to 

complement more efficient local methods such as those used by Christiano and 

Fischer (2000) by providing an arbitrarily accurate benchmark solution. Moreover, 

Theorem 1 provides an extension of the Santos and Rust (2004) results, as it derives 

error bounds for an arbitrarily number of states and constraints without an 

interiority assumption. Further, Theorem 2 is an extension of the results in Judd 

(1994), as it derives a unique differentiable set of barrier maximizers that converge 

to the solution of the constrained problem. This last result can be applied to derive 

first order perturbation (local) methods. 
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Appendix 

Proof of Theorem 3.1 

The Proof proceeds from left to right in inequality 9. 

Part 1: Bound of the Maximization Error 

Note that the following problem is being solved, 

     A.1                                
                                

where k’ is assumed to belong to the compact set that defines the state space, S. 

Further, it is known from Assumption 1 that the feasibility correspondence is 

continuous and convex valued. To guarantee the existence of a solution and the 

continuity of the value function, it is possible to use Berge’s Theorem of the 

Maximum. So the continuity of the sequence of value functions generated by 

algorithm 1,     
    

 
   

must be checked.  

Note that step III in Algorithm 2 solves for     
    

. To accomplish this feature in a 

finite state space, the algorithm solves the following system of equations, 

A.2                          
    

        
    

      
  
        

    
 

Where  
  
     is the Markov operator in the problem, which can be written in matrix 

form. To check this last statement see Lyche y Morken (2008), Ch. 2 Section 3 for the 

algebraic manipulations required for PLA and note that it is always possible to write 

the transition probabilities in a finite state first order Markov process as a matrix.  

Equation A.2 can be written equivalently as, 

A.3                           
  
         

    
        

    
    

So to solve A.3, it is necessary to invert the matrix      
  
       .  

In order to do that, the full row rank of A must be checked. The Banach inversion 

lemma on lineal operators (see Argyros, Pag. 4) can serve this purpose. 
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Assume that the maximization problem in A.1 has a well defined solution for    . 

This is typically assured with the proper choice of   
    

      . Note that  
  
        

      is a linear, positive, bounded operator. 

Let us define    , the identity matrix and note that          
  
    . 

To show that A-1 exists, following Banach’s inversion lemma, it must be shown that 

        , where the Sup-Norm is being used, as in Santos and Rust (2004, Pag. 

2102, Equation 4.9). Let   denote a typical scalar in A. Then, because A is formed by 

the weights in a PLA and the elements of a transition matrix,        . So,         is 

sufficient to establish the desired result.  

Finally note that the Banach inversion lemma together with equation A.3 implies, 

A.4                                              
    

            
    

     

As       
    

    is a continuous function and     is a linear operator, the continuity of 

  
    

 has been established. 

Having proved the continuity of   
    

, to apply Berge’s Theorem of the maximum, 

the continuity and compactness of the feasibility correspondence must be verified. 

This is done with Assumptions 1 and 2.   

So, the continuity of the sequence of value functions generated by Algorithm 2 and 

the upper hemi continuity of the associated policy functions,    
    

 
   

 and 

   
    

 
   

  respectively have been proved. Note also that   
    

      is also compact 

valued. 

Note that the same arguments that were used to establish the continuity and 

compactness of the value and policy functions in A.1, can be used in equation 8. So, 

once the convergence of the barrier method has been proved, the continuity and 

compactness proof relevant for this equation will be omitted.  

The paper turns now to the conditions in Theorem 2.5, which are required to solve 

the maximization problem in equation 8. 

     

   



33 
 

Setting   
    

   and choosing      for the sets defined in Theorem 2.5, it is clear 

that    is an isolated subset of  . So assumption    is satisfied. 

Further as,   
    

 is compact valued, feasible and      it is clear that at least one 

point in    is in the clousure of       , so assumption    is also satisfied. 

So part c) of Theorem 2.5 assures the existence of a convergent subsequence of 

barrier maximizers with a limit point in   . This limit point will be denoted    
    

. 

So it has been established that the barrier maximizers can approximate arbitrarily 

the solution to the feasible constrained problem, equation A.1. Consequently, it is 

clear that the ME depends only on numerical (rounding, etc.) errors. Finally, note 

that   
    

 is also a contraction mapping (see Santos, 1999, Pag. 328), so the sequence 

of ME converges to 
 

     
.     

∎ 

Part 2: Bound of the Fixed Point Error 

The paper turns now to the bound affecting the FPE, using Theorem 5.7 in Santos 

and Rust (2004). Assumptions 1 and 2 (Pag. 2099) must be verified in equation 8.   

Note that, assuming that it is possible to get rid of the boundary restrictions 

through Inada like conditions, the Bellman equation in 8 implies an unconstrained 

maximization problem with return function                                   
   . 

So under Assumptions 1 and 2 in section 2 it is easy to see that the state space is 

compact, the feasibility correspondence is convex and compact valued and        is 

strictly concave for sufficiently small values of     . So using Theorem 5.7 in Santos 

and Rust (2004) the sequence of value function under the PFI in equation 8, 

      
    

 
   

, satisfies,      

A.5                                  
            

    
  

  

     
   

          
    

 
   

 

Where   
     is the fixed point in equation 8, which was assumed concave. 

After a simple iterative procedure and assuming      
    

   A.5 turns into 
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As the Sup-Norm is being used and PLA preserves the bounds of the value function 

in equation 7, 

   
                                 

         

     
     

Note that the existence of M is assured because       is defined over the space of 

bounded continuous functions. 

Finally, the constant in inequality A.5 is defined for a uniform grid by                

(see Santos y Rust, 2004, Pag. 2105). So after a few algebraic manipulations, 

   
            

    
    

    

   
  
 

 
  

 

    
  

   

     

∎ 

Part 3: Bound of the Approximation Error 

To establish a bound in the APE Lemma 3.4 in Santos and Vigo Aguiar (1998) is 

used. 

Assumptions 1 and 2 of the mentioned lemma (Pag. 411) have already been verified. 

Assumption 4 is not necessary. To verify Assumption 3, the proof uses Lemma 3.7 

in FGW (2002, Pag. 547), which assures the interiority of the solutions to equation 7. 

Then using Theorem 2.1 in section 2,     is bounded, where W is the fixed point of 

the implicit Bellman operator in equation 7. Let   denote that bound. So a simple 

application of Lemma 3.4 in Santos and Vigo Aguiar (1998) implies that, 

          
   

      
 

∎ 

∎∎ 
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Proof of Theorem 3.2 

Only the first and third part of inequality 9 in Theorem 3.2 will be proved as the 

second part is a simply application of equation 3, which is standard in the literature. 

Part 1: Bound of the Maximization Error 

Using Theorem 2.6 it will be shown that the sequence of barrier maximizers in 

equation 8 for     approximate arbitrarily the solution to equation A.1.  

Suppose, as before, that   
    

       was chosen so as to allow the maximization 

problem in A.1 to have a solution. An application of the Theorem of the maximum is 

sufficient to establish the continuity of   
    

  and the upper hemi continuity of   
    

. 

Further, because under the VFI algorithm,       maps the space of bounded 

continuous strictly concave into itself, it is possible to guarantee that   
    

 is a 

continuous function. 

Let us denote    
              

   
 the sequence of data points use to generate 

          in Definition 1 of section 2.   Then   
                    is increasing, 

strictly concave and belong to the C2-Class because of Theorems 2.3, 2.4 and 2.2 in 

section 2 respectively.  

Remember that a sufficient condition for Assumption 4 is that the set of constraints 

functions,          ,  are twice continuous differentiable and strictly concave. So 

under that assumption, the Hessian of the Lagrangean that can be defined from 

equation A.1 is negative definite, satisfying Assumption    of Theorem 2.6. 

Assumption            hold by hypothesis and   is guaranteed by the LICQ as the 

Lagrange multiplier,   , is finite and unique for        . 

Finally, the convergence of the estimate of the Lagrange multiplier,     
  , and the 

negative definiteness of the barrier function in equation 8 are a direct consequences 

of part b and c in Theorem 2.6 respectively.    

∎ 

Part 3: Bound of the Approximation Error 

In order to establish a bound in the APE, a standard result in the literature of spline 

approximations will be used (see Ch. 9 in Cohen, et. al. 2001). 
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The error in approximating a function in the C2-Class with a cubic VSDA is O       
  , 

where       
              . Let    be an arbitrary average knot in Definition 1 of 

section 2, the uniformity of the grid implies       
    . 

Let   and       be the fixed point of   and       in equation 7 and 8 respectively. 

Then, 

                                                         
 

Further, 

A.6                                                      
 

Finally, inequality A.6 together with       
     implies 

          
  

     
 

∎ 

∎∎ 

 

 

 

 

    

 

  

  

 

  

  

 


