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1 Introduction

The recent literature on financial crises in emerging markets is voluminous.! The workhorse model in this
literature is the stochastic two-sector endowment small-open economy where agents face an occasionally
binding price-dependent equilibrium collateral constraint.2 The presence of a relative price of nontrad-
ables to tradables in equilibrium collateral constraints introduce a well-known "pecuniary externality"
into the structure of the dynamic equilibrium of these models, and it is the critical feature which allows
these models to explain the collapse of consumption and prices during financial crises, as well as creating a
potential role for government macroprudential policies that prevent such financial collapses and Fisherian
deflations.

However, the presence of these equilibrium collateral constraints also has the potential to introduce
significant complications in the structure of dynamic equilibrium, yet little is known about the structure
of dynamic equilibrium in these models. In a recent series of papers by Schmitt-Grohé and Uribe ([72],
[73]), the authors have argued that the presence of pecuniary externalities is a potential source for multiple
sequential competitive equilibria (SCE) as well as sunspot equilibria. Although their arguments for the
possibility of multiple dynamic equilibria are intriguing, in many ways, they are incomplete. First, it is
never shown there exists any dynamic equilibrium in these models.> Additionally, their analysis arguing
for the possibility of multiple equilibria only applies to the deterministic version of these stochastic models,
and they only identify possible multiplicities of SCE near the model’s deterministic steady-state if SCE
ezrist in the deterministic version of the model. Of course, the presence of multiple dynamic equilibria
not only complicates the characterization of the equilibrium dynamics from a theoretical and numerical
perspective, and it also introduces an entirely new set of challenges for researchers using these models to
study the design of optimal macroprudential policies that seek to mitigate overborrowing and financial
collapses. So aside from the lack of results on the existence of dynamic equilibrium, there is also a lack
of understanding of what are sufficient conditions for the uniqueness of dynamic equilibrium in these
models, and if such conditions are even plausible in applications of these models for the quantitative
analysis of optimal macroprudential policies.

The aim of this paper is straightforward: to characterize completely the set of recursive competitive
equilibrium (RCE) in the canonical class of sudden stop models, as well as provide sufficient conditions
for the uniqueness of RCE in these models. The paper also provides the first attempt to show existence
of dynamic equilibrium in a macroeconomic model with incomplete markets, infinite horizons, and oc-
casionally binding price-dependent collateral constraints using constructive methods. The methods here
are designed to handle the presence of multiple equilibria and discontinuous selections. In our analysis,
we focus on RCE as they are the class of SCE that is typically studied in much of the applied work using
the baseline sudden stops model. We show the set of RCE forms a (nonempty) complete lattice. We
also provide a powerful collection of simple iterative methods that compute RCE via successive approx-
imation algorithms, as well as using a new collection of "generalized iterative methods" that allows us
to compute "local RCE bounds" starting from any initial guess at RCE. Appealing to the monotonicity
of our approach, we can also provide a new set of (computable) RCE comparative statics results relative
to important deep parameters of these economies (e.g., parameters of equilibrium collateral constraints).
Here, aside from providing the usual comparisons of the least and greatest RCE in deep parameters,
very importantly, we provide a new generalized iterative method that offers an equilibrium comparison
of any RCE. In studying the structure of RCE in this class of models, we precisely characterize how
multiple RCEs arise in these models. We show that pecuniary externalities create the possibility of an
implicit equilibrium dynamic complementarity between household decision rules on tradables consump-
tion and per-capita levels of equilibrium tradables consumption in states where equilibrium collateral

1A small sampling of work in this literature includes the early work of Mendoza ([46], [47]), Bianchi ([17]), Bianchi and
Mendoza ([18]), Benigno, Chen, Otrok, Rebucci, and Young ( e.g., see [10], [11], [12]). More recent papers include the
papers of Deveraux and Yu ([32]), and Schmitt-Grohe and Uribe ([72], [73], [74]), Chi, Schmitt-Grohe, and Uribe ([23]),
Ottonello, Perez, and Vassaco ([56], [57]), Bengui and Bianchi ([15]), Rojas and Saffie ([66]), Pierri, Mira and Montes-Rojas
([59]), Drechsel ([34]), Drechsel and Kim ([35]), Arce [4], Arce, Bengui and Bianchi (|5]), among many others.

2For the prototype of this model, see Bianchi ([17]) and Schmitt-Grohé and Uribe (73], [74]), for example.

3Actually, to the best of our knowledge, we are not aware of any result on the existence of dynamic equilibrium for the
prototype sudden stops model in this literature or any of its extensions.



constraints bind. We refer to this form of implicit equilibrium dynamic complementarity in these models
as a pecuniary complementarity.

A succinct preview of the results in the paper goes as follows: we first construct a recursive rep-
resentation of SCE in these models. To construct such a recursive representation, we identify a novel
complication that arises in these models, as the collateral constraint is the price-dependent (hence, an
equilibrium object), we need to parameterize the aggregate economy in the model in a manner such that
in all states, the equilibrium collateral constraint allows households to choose a level of tradables and
nontradables consumption that is positive. That is, is identify a necessary "strict interiority" condition
of feasible consumption for household decision problems that must be met in an RCE (or SCE, for that
matter). This strict positivity of consumption issue turns out to be a critical issue that has not been
systematically addressed in the existing literature. After constructing such a recursive representation
of SCE and characterizing household decision problems in RCE, using equilibrium versions of household
Euler inequalities, we then develop a new two-step monotone fixed point method for characterizing the
set of RCE and show that the set of RCE forms a nonempty complete lattice in the space of tradables
consumption policies. We then identify sufficient conditions for the uniqueness of RCE, and the sufficient
conditions are strong relative to applications.

Our two-step fixed point method addresses a critical complication that arises when constructing RCE;
namely, we have to identify equilibrium states that "partition" the RCE into two regimes: unconstrained
vs. constrained states. Moreover, we must locate this partition for two consecutive periods in the same
operator, as the collateral constraint might bind jointly or separately in any of these pairs of periods.
To accomplish this characterization of equilibria, in the first step of our equilibrium construction, we
parameterize the equilibrium collateral constraint at a fixed function for per-capita tradables consumption
and then compute using a monotone contraction map the (unique) strict positive contingent RCE for
tradables consumption over "unconstrained" states. This first-step fixed point defines a second-step
(monotone) operator. The domain of this second step is the function space that we used to parameterize
the equilibrium collateral constraint, which in turn helps us compute a set of strictly positive fixed points
for tradables consumption. The positivity of consumption, at the same time, makes the equilibrium
collateral constraint consistent with the contingent RCE in the first step, which implements the set of
RCE collateral constraints and then defines the set of RCE. We note, in our characterization of RCE, the
equilibrium collateral constraints themselves form a complete lattice (hence, have a least and greatest
element). This dramatically complicates the application of optimal macroprudential policy design.

Next, because of the order continuity properties of the equilibrium operator, we are also able to develop
iterative methods that can be used to construct elements of the set of RCE when starting iterations from
any element of the candidate element of the set of RCE functions. These new iterative fixed point methods
are based on not only classical applications of the Tarski-Kantorovich principles, but also apply recent
new results in the extend the classical Tarski-Kantorovich principle (which characterizes both the "least"
and "greatest" fixed point of a monotone mapping) to the case of constructing "local fixed point bounds"
to any initial iterate of a monotone mapping. * We then build a computable approach to characterizing
the set of equilibrium comparative statics in important deep parameters such as those present in the
model’s collateral constraints for any RCE (not merely least and greatest RCE as is typically done in
the equilibrium comparative statics literature based upon monotone methods).> These new generalized
iteration methods can also be used to check whether a particular RCE is "order stable" in the sense of
the so-called correspondence principle of Samuelson (|67]) and Echenique ([36]).

An essential contribution of the paper relative to the existing literature on multiple equilibria in
these models is that we show that in a RCE, the presence of pecuniary externalities creates a very
natural global dynamic equilibrium complementarity between aggregate levels of tradables consumptions
and the corresponding household decision rules on optimal tradables consumption, and it is this dynamic
complementarity that leads naturally to the presence of multiple RCEs. This dynamic complementarity

4These new results on generalized Tarski-Kantorovich principles are found in the recent paper of Olszewski ([55]) for
order continuous mappings, and extended to ascending order upper hemicontinuous correspondences in Balbus, Olszewski,
Reffett, and Wozny ([7]).

5See the recent paper of Balbus, Olszewski, Reffett, and Wozny ([8]) for discussion of iterative monotone comparative
statics.



arises in equilibrium states where the equilibrium collateral constraint binds. In particular, we prove that
when aggregate levels of perceived borrowing and tradables consumption are relatively "low" (respectively,
"high"), for example, as the price of nontradables to tradables consumption is also relatively "low"
(respectively, "high") as the equilibrium collateral constraint is relatively "tight" (respectively, "loose").
This creates an equilibrium (dynamic) complementarity via the household’s Euler inequality that is
precisely how least (respectively, greatest) RCE can become self-fulfilling with levels of low aggregate
borrowing (respectively, high aggregate borrowing).® This intuition is formalized mathematically in this
paper, by the construction of a monotone RCE operator, defined implicitly in the model’s equilibrium
Euler inequality, and make precise and complements the arguments on multiple equilibria in the work of
Schmitt-Grohé and Uribe ([72], [73]) and Bianchi and Mendoza ([21]).

To obtain monotonicity for our RCE operator using an equilibrium versions of the household’s Euler
inequality, we characterize a new equilibrium single-crossing condition that naturally arises in this class
of models via the existence of “pecuniary externalities" that affect the entire equilibrium structure of the
model when price-dependent equilibrium collateral constraints bind. We refer to this new form of dynamic
complementarity as a pecuniary complementarity, and we show it provides a global source of multiple
RCE. Our approach provides a rigorous method for explaining the “self-fulfilling" nature of multiple
RCE for stochastic small open economies with equilibrium price-dependent collateral constraints, and
our results, therefore, provide a precise formal justification for the source of multiplicity suggested in
the papers of Schmitt-Grohé and Uribe ([73], [74]). More specifically, using order continuous (monotone
operator) techniques, we prove that when constructing RCE, if agents perceive the aggregate laws of
motion of equilibrium states governing future per-capita aggregate borrowing will be "low" (resp., "high")
in the future, RCE household collateral constraints will be tighter (resp., looser) as the relative price of
tradables will be lower (resp., high) because perceived RCE prices for nontradable endowments will be
lower (resp, higher). These expectations can be globally self-generating for some parameterized versions
of consumption aggregators (including versions of Armington aggregators that have been used in the
applied literature), which in turn implies the existence of a least (resp., greatest) borrowing RCE where
consumption/debt will be lower (resp., higher).

1.1 This Paper and the Existing Literature

The literature on sudden stops models of emerging market financial crises begins with the important
papers by Mendoza ([46], [47]), Mendoza and Smith ([48]), Bianchi and Mendoza ([18]), and Bianchi
([17]), but has continued with many recent papers exploring the different dimensions of Sudden Stops
and emerging market financial crises.” This paper contributes to this existing literature along several
dimensions.

Relative to the work of Bianchi ([17]) and many other papers in this literature using recursive methods
to characterize sudden stops and optimal macroprudential policies numerically, we provide the first results
on the existence and characterization of the set of RCE for this class of sudden stops models. Additionally,
from a computational perspective, we provide a new collection of “time-iteration" algorithms that work
based on an order continuous (hence monotone) operators and are able to immediately show how to
compute least and greatest RCE (as well as their equilibrium comparative statics in important deep
parameters of the model) by simple successive approximations on our equilibrium operator.

In Bianchi’s work (and many other papers in this literature using so-called "time iteration" methods),
the authors essentially work in the "dual" of the systems of Euler equalities which include Kuhn-Tucker
multipliers on equilibrium versions of both household budget constraints and collateral constraints where
one locates states where Kuhn-Tucker multipliers associated with the collateral constraints bind numeri-
cally and by essentially by searching over the state space to obtain numerical approximates to the (RCE)
policies.® We work in the "primal" systems of Euler inequalities associated with the household’s dynamic

6See Schmitt-Grohé and Uribe ([72], [73]) for a discussion of this sort of pattern of equilibrium that is found in numerical
studies of these models.

"For a discussion of this extensive recent theoretical literature, see Mendoza and Rojas ([49]), Bianchi and Mendoza
([21]), Schmitt-Grohe and Uribe ([73]), [15], and Davis, Deverous, and Yu ( [30]).

8We should note that proving the existence of the recursive dual for the household’s optimization problem is not trivial,



programming problem and study the existence of equilibrium problem in the space of equilibrium policy
functions. As we show in sections 3 and 4 of the paper, working with an operator that directly iterates
between "tomorrow’s" and "today’s" equilibrium policy function to a stationary solution (i.e., a fixed
point) seems very natural.

We then provide a new "generalized" time-iteration method based on lim-inf and lim-sup iterations
of our monotone equilibrium operators. These methods are discussed in the recent work of Olszewski
([55]) and Balbus, Olszewski, Reflett, and Wozny ([7], [8]) where the authors show how to use iterative
methods to construct "local" lower and upper RCE "bounds" for a "lim-inf" and "lim-sup" generalized
iterative schemes relative to any initial guess at RCE for order continuous operators, as well as construct
comparative statics on the order limits of these generalized iterations. Such generalized iterative methods
could prove useful in studying the design of macroprudential policy instruments useful in dealing with
binding collateral constraints in particular RCE. All our iterative schemes (either "standard" or "gener-
alized" time iteration methods) are shown to be constructive as we are also able to identify globally stable
equilibrium selectors (i.e., RCE that satisfies the well-known "correspondence principle" discussed in the
seminal work of Samuelson ([67]) and Echenique ([36]). As in a world with multiple equilibria, charac-
terizations of optimal macroprudential policies amount (in large part) to characterizations of equilibrium
comparative statics of equilibria, identifying RCEs that are stable under perturbations seems useful for
policy design experiments.

Relative to the work of Schmitt-Grohé and Uribe (e.g., [73], [74])) and Bianchi and Mendoza ([21])
on multiple equilibria in these models, we first provide a global characterization of multiple RCE in the
stochastic versions of this model. As in their work, we show that the source of RCE multiplicities stems
from the presence of the pecuniary externalities associated with the equilibrium collateral constraint, but
unlike their work, we show how the presence of the equilibrium collateral constraints create a dynamic
complementarity in the equilibrium version of the household’s Euler inequality, and show that the nature
of the equilibrium multiplicity is global.” That is, in Schmitt-Grohé and Uribe ( [73], [74]), their approach
to characterizing the existence of multiple equilibria is built upon the deterministic versions of the model,
and in particular sequential equilibrium behavior “local" near a (deterministic) steady-state. Our results
are never “local" or “deterministic" rather are global and based on functional equations built from an
equilibrium version of the households Euler inequality and equilibrium collateral constraint. In particular,
we show that the sources of multiple RCE stem from the existence of an implicit equilibrium dynamic
complementarity generated between equilibrium collateral constraints between further equilibrium per-
capita tradables consumption and current equilibrium per-capital tradables consumption.

Also, relative to all this literature above, our paper systematically addresses the critical issue of
guaranteeing in a dynamic equilibrium strictly positive equilibrium consumption paths. This is a well-
known problem, and has been discussed in papers such as Bianchi and Mendoza ([20]) and Schmitt-Grohé
and Uribe ([73], [74]), but the literature has failed to provide any systematic approach to this challenging
issue. The complication per strict positivity of consumption is rather simple to explain: when constructing
the dynamic equilibria existence problem, agents take as given candidate economy-wide equilibrium
paths for tradables consumption, which in turn determines the equilibrium paths for relative prices of
nontradables to tradables consumption and hence equilibrium collateral constraints. The "space" of such
candidate paths for economy-wide tradables consumption must be such that strictly positive household
consumption choices are feasible (i.e., there cannot exist equilibrium states for the economy such that
relative values of household endowments are so low that, given the existing household debt levels and
current wealth, consumption is forced to be zero or negative). So, when defining the dynamic equilibrium
existence problem for these models, this condition on strict positivity of consumption paths has to be
built into the equilibrium fixed point problem. In this paper, we do this explicitly, and we verify the
strict positivity of consumption paths in a RCE by constructing an appropriate strictly positive uniform
lower bound on equilibrium tradables consumption, and then using monotonicity of our RCE operator

as one has to be very careful to make certain parameterizations of the equilibrium collateral constraints allow for a strict
interior point in the recursive dual formulation. We discuss this question carefully in section 3 of the paper as we need to
use the recursive dual to obtain envelope theorems of the value function via the work of Rincon-Zapatero and Santos ([65]).

9Their papers also characterize stochastic SCE dynamics using a technique building local “stationary sunspot" approaches
near steady state (e.g., see related work in Woodford ([79]) and Schmitt-Grohé ([69]), for example). Our work is different,
and builds a global theory of multiple RCE from any initial state of the model.



to map this point "up" and iterate then to a least RCE which is strictly positive over its minimal state
space (including debt holdings). What is critical here is that in our construction, this means the actual
"maximal" debt that is sustainable in this least RCE is endogenous.

Our paper is also related to an emerging literature that seeks to characterize dynamic models with
equilibrium borrowing constraints and/or occasionally-binding constraints. Relative to this literature, we
provide a new set of methodological tools for characterizing the RCE and SCE in models with equilibrium
price-dependent collateral constraints. Our multistep fixed point approach to RE can be shown to be
useful in other related dynamic equilibrium models where stationary equilibrium partitions into states
where collateral constraints are “slack." versus, “binding", and include models of credit cycles in the spirit
of Kiyotaki and Moore ([41]),!° models of financial frictions and production with collateral constraints
such as Moll ([52]), or models of self-fulling credit cycles such as Azariadis, Kaas, and Wen ([6]).

Finally, our work is also directly related to the extensive literature on the equilibrium comparative
statics in dynamic economies using monotone methods. ! This paper is, perhaps, most closely related
to a recent paper by Datta, Reffett, and Wozny ([29]) who propose a multistep monotone-map method
that proves especially suited for dynamic models with multiple RCE Our paper extends some of the
ideas in this paper for a class of multi-step monotone-map methods to dynamic models with equilibrium
price-dependent collateral constraints and equilibrium "regime" shifts. In addition, our paper is related
to Mirman, Morand, and Reffett ([51]), Acemoglu and Jensen ([1]), and Datta, Reffett, and Wozny ([29])
as it provides sufficient conditions for monotone dynamic equilibrium comparative statics in the deep
parameters of the economy.

The remainder of the paper is organized as follows: Section 2 presents the baseline model and provides
a preliminary characterization of household decision problems in a SCE. In section 3, we construct
a recursive representation of the sequential economy, construct household decision problems, as well
as household Euler inequalities. Section 4 proves the existence of RCE via monotone methods and
discusses how pecuniary externalities in these models generate multiple RCEs. Section 5 presents sufficient
conditions for the uniqueness of RCE. Section 6 discusses (a) how to relax some conditions on asymptotic
marginal utilities for some consumption aggregators in these models, (b) extensions to more general shock
spaces, and (c) discusses the structure of dynamic pecuniary externalities in these models. Section 7 of
the paper concludes. Most of the proofs in the paper are included in the appendix.

2 The Model

The model we study in this paper is the canonical endowment version of the two-sector small open
economy with a fixed interest rate studied in Bianchi ([17]).12 Time is discrete over an infinite horizon
and indexed by t € {0,1,2,...}. There is a representative agent and two sectors of perishable consumption
goods in the economy, a tradable consumption good y# and a non-tradable consumption good y¥1. Each
household has a strictly positive amount of each good in each period. Upon receiving their current period
endowments, households sell endowments at current market prices and choose consumption of both goods
where the consumption of tradable and non-tradable is denoted, respectively, by ¢! and ¢¥7. It turns
out to be useful to take as the numeraire the tradable good, so the relative price of non-tradable goods
to tradable goods in period t is denoted by p;.

Uncertainty is modeled as an iid stochastic process governing the endowments of tradable goods
y = {y!'}+ where each element of sequence y has distribution given by the measure x(-). Further, we
assume the realizations for tradable endowments in any period have y! € Y where the shock space

10See the survey of Gertler and Kiyotaki [39] for a nice discussion of this large literature, as well as Kiyotaki and Moore
(|42]) for recent work along these lines.

H This literature starts with the papers of Coleman ([24], [25]) and Reffett (([63]), [64]), and extended in Datta, Mirman,
and Reffett (|28]), Morand and Reffett ([53]), and Mirman, Morand, and Reffett (|51]), Curatola and Faia ([27]), Pierri
([58]), Bernstein, Plante, Richter, and Throckmorton ([16]), and Ferraro and Pierri ([37]), among many others.

12 Although we limit our discussion in this paper to stochastic representative agent versions of the endowment version of
the sudden stops models, our methods can be extended to production versions of these models (e.g., Beningo et al ( [11],
[12]) and Bengui and Bianchi ([15]) without much difficulty.



Y is finite set.!® In addition, as allowing nontradables endowments to be stochastic plays no role in
the characterization of stochastic equilibrium dynamics in these models (or this paper), as is custom in
the literature, we assume the sequence of non-tradable endowments {y7'}; is deterministic and fixed
with yVT = yNT > 0 for all ¢ . By an application of standard results in the literature on stochastic
processes, these assumptions imply we can define a stochastic process for tradables endowments denoted

by (Y*°, 2, /,Lyg") with takes realizations in each period in Y, where Y °° is the space of infinite sequences

in Y, and we assume y € Y is the initial condition for this stochastic process for tradables endowment.*

Household preferences are defined over infinite sequences of dated consumption vectors of tradable and
non-tradable goods and denoted by {c;:}52 = {(cf,cNT)}52 € X where X = R? is the commodity
space for consumption of tradables and nontradables in each period. Preferences are assumed to be time
separable with subjective discount factor 5 € (0,1). Household preferences over consumption goods in
any period are then represented by a nested utility function, which is a composition of two functions: a
utility over composite consumption U : R, — R, and a consumption aggregator A : X — R over
tradable and non-tradable consumption ¢ = (¢, cNT) where the preferences u(c) = U(A(c)) gives the
instantaneous utility of the vector of consumption ¢ € X C Ri in any period. Then, the household has
lifetime preferences given by:

oY B'U(A(er) (1)
t=0

where the mathematical expectation operator is taken over the stochastic structure of uncertainty with
respect to the date zero information.
We impose the following basic assumption on preferences in the paper:

Assumption 1: (i) The functions U(c,) and ¢, = A(c) are both continuous, strictly increasing,
C?, strictly concave, with A(c) supermodular, (i) lim., U'(c,) = 0, (iii) A: X — Ry, for N7 > 0,
limer oo A1(cT,eNT) = a >0, limer oA (c?, V)= .

We make two remarks on our assumptions on preferences. Initially, we should mention that our
assumptions are completely standard, excepting the possibly Assumption 1.iii. '® Per Assumption 1.iii,
the issue of bounding debt in equilibrium in these models has not been formally addressed in the existing
literature. Bounding debt is a well-known critical issue in dynamic models with incomplete markets
and infinite horizons. This issue in equilibrium in sudden-stop models can be addressed in at least one
of two ways. The first way is to impose a condition on asymptotic marginal utility in a manner that
bounds consumption as in Assumption 1.iii. This is a technical condition that requires U(A(c)) to have a
marginal utility that is asymptotically invariant for arbitrarily large levels of tradables consumption good.
This can be used directly to construct a natural upper bound on debt and tradable consumption in any
RCE.'6 We should mention, given this upper bound (on tradables consumption and debt), computing the
"greatest" RCE for tradables consumption simple via successive approximations via the monotonicity of
our RCE operator from this upper bound will be very simple. We should this in section 4 of the paper.
In addition, we should mention Assumption 1.iii does not change in any meaningful way nature of the
stochastic RCE dynamics at all in numerical simulations of these models !7 An alternative approach to

13 All the results of the paper hold for more general endowment processes for tradables consumption, including the case
that endowments follow a first order Markov process with stationary transition x(yT7 yT’)) on a continuous shock space
with the exception that the set of RCE will be on being a sigma complete lattice (as opposed to a complete lattice). We
discuss these extensions in the last section of the paper.

14Here, we follow, for example, Stokey, Lucas, and Prescott ([75], Chapter 7)).

15This assumption does not restrict our ability to allow for standard parametric formulations of U(A(c)) that have been
used in applied work in the literature up to an affine transformation of the standard A(c) used in the literature (i.e., CES
aggregators A(c)). For example, if we let U(A(c)) = u(A(c) + acr) where a > 0, v : R+ — R is power utility, and A(c)
is an Armington aggregator, then U(A(c)) will satisfy assumption 1, and not really change much in terms of the stochastic
dynamics of these models.

161n the existing literature, the typical preference specification is applied work assumes A(c) is such that a = 0 in
Assumption 1.iii.

17See our companion paper studying the sequential equilibrium in these models in Pierri and Reffett ([60]).



imposing something like Assumption 1.iii to bound our economy that is sometimes available for some
consumption aggregators A(c), and we discuss this in the last section of the paper. In this discussion, we
show that if one can find an "greatest fixed point" for equilibrium tradables consumption in states where
the collateral constraint binds, there is no need for Assumption 1.iii. For some common functional forms
(and parameterizations of those functional forms) for A(c) that have been used in the applied literature,
this alternative condition works, and there is no need for this condition. For the more general case of
A(c) strictly increasing, strictly concave and supermodular, Assumption 1.iii is sufficient to bound these
economies.

Second, it bears mentioning also that the aggregator A(c) plays a critical role in creating the possibility
of multiple RCEs. A typical functional form for the consumption aggregator A(c) in the literature is the
Armington/CES aggregator

T1-1 N 1-1
c=Aef ) =lac,  +(1-a), ]t

with £ > 0, a € (0,1), which is increasing, strictly concave, and supermodular on X when X = Ri
endowed with the componentwise partial ordering. We shall show how, for such an aggregator, for many
choices of &, this aggregator will create highly nonlinear pecuniary externalities and robust global mul-
tiplicities of RCE via highly nonlinear. Alternatively, one can pick other versions of A(c) (e.g., log
aggregators), where although pecuniary externalities exist, RCE will be unique. So, the choice of A(c)
will play a critical role in the study of multiple RCE in these models.

The households in this economy are assumed to face a standard sequence of budgets constraints over
their lifetime and make sequential choices for consumption and debt. In particular, given a candidate
price sequence p = {p;}$2,. Denoting the net debt position for a typical household with debt borrowed
at date ¢ but maturing at date ¢ + 1 by d;41, the budget constraint for a household in any period ¢ is
given by:

d
cf + ey +di =yl +pyd + t; (2)

where agents are allowed to borrow or lend at a fixed interest rate R = 14 r and, as this is a small open
economy, R is taken as given. In this paper, we shall only consider the case that SR < 1. That is, we
follow the timing convention used in Schmitt-Grohé and Uribe ([73], [74]), and assume consumption and
income decisions are taken at the beginning of the period, and interest is then paid/earned over that same
period. ® We adopt this timing only because it proves to be convenient in characterizing the structure
of dynamic equilibrium.!®

Finally in addition to the budget constraint in (34), the a critical feature of these models is that each
household also faces a period by period flow collateral constraint on debt given by:

dip1 < Ky + peyy)) (3)

where £ > 0 20 It is in the presence of this equilibrium collateral constraint that this model is capable
of generating the interesting equilibrium dynamics in this model, and it also this constraint that creates
the possibility of multiple dynamic equilibrium

Then, in a SCE, a typical household takes as parametric a fixed interest rate R, a level of initial
debt dy € D where D C R is a compact?!, a stochastic process for endowments y? = {yl'}2°, given
initial endowment yI € Y with y!' > 0, a constant level of non-tradable endowment y¥ = 3V, and a
history-dependent sequence of prices p = {p:(y")}$°, where each co > p;(y*) > 0 for every history y*,
where we use the notation y* = {yd, 4T, ..,y } to denote the history of tradable endowment realizations

181n this paper, the assumption that B3R < 1 greatly simplifies our proofs (in particular, our construction of the set of
RCE). This assumption can be relaxed and is discussed in Pierri and Reffett ([60]).

19Bianchi ([17]) uses a slightly different timing convention. Still, it turns out this timing convention is without loss of
generality in our case (see, for example, Adda and Cooper ([2]) for a detailed discussion of this matter).

20 Additionally, we should mention that an interesting case of this model is when the collateral constraint depends on
future income streams. This case is outside the scope of this paper, but it was studied in Pierri and Reffett ([60]).

21Under Assumption 1, one can guarantee the existence of a maximal tradable consumption (and hence, maximal debt).
That allows one to construct the compact set D.



up to period t. The household then maximizes lifetime utility choosing sequences for consumption and
debt in equation (1) subject to constraints equations (2) and (3) for each period. That is, formally, the
household’s sequential problem in any candidate SCE can be stated as follows: given R > 0, dy, SR < 1,
and stochastic processes for p and y, the household solves the following:

o0
V*(s9) = max Ey Z BU(A(cy)) (4)
t=0
d
cf +pey +di =y +peyl + %1; diyr < w(y; +peyp ), t € {0,1,2,..}
where the initial states are so = (do,yd ), and y € Y. We denote the optimal policy sequences for
consumption and debt achieving the maximum in the problem (4) by

" (s0) = {ci (s0)}iZ0; d"(s0) = {di(s0)}iZ0} ()

Under Assumption 1, it can be shown that: (a) the value function V*(sp) is finite, and (b) the optimal
policy sequences for consumption and debt given by ¢*(sg) and d*(sp) are well-defined functions, (c) using
the results in Rincon-Zapatero and Santos ([65]), theorem 3.1), as the household sequential optimization
problem satisfies standard convexity and continuity conditions as well as standard sequential constraint
qualifications (i.e., linear independence constraint qualifications), given the continuous differentiability
assumptions on preferences, (i) there exists a well-defined standard Lagrangian formulation for the se-
quential primal problem in equation (4) with (summable) dual variables '\; and 3u; associated with
the sequence of constraints in equations (2) and (8), respectively.?? Then, the system of necessary and
sufficient first-order conditions for the Lagrangian dual version of the household problem in equation (4)
in a SCE is then given as follows:

N = U (A() i ) (©
_ As(f)
bt = Ar(ch) (7)
[~ WA = BB (®)
pildiy — w(F + P = 0, >0 0

along with sequential budget constraints in (2) and collateral constraints in (3) where the set of sequences
of Kuhn Tucker multipliers A(so) = {A:(s0)}52; and p(sg) = {pe(s0) 52, are well-defined and unique.

3 Recursive Competitive Equilibrium

To construct a RCE, we first define a minimal state space for the household decision problem. This state
space will consist of two components each period: (a) the individual state of a typical representative
household, and (b) the aggregate state of the aggregate economy used to compute prices. Per (a),
a typical household will enter any period in a RCE with an individual level of debt d € D C R as
well as an endowment of tradable and non-tradable denoted by the vector y = (y*,y"), where y €
Y x {yVT}c Ri_ 4 and D can be considered a compact set under assumption 1. So the individual state
of the household will be characterized by the vector (d,y) € D xY = S where S is compact. In addition,
for (b) the household will face an aggregate economy that has per-capita aggregate measures of each of
these individual state variables. That is, the aggregate state variable is a vector S = (D,Y) e DxY =S
where D € D is the per-capita level of aggregate debt, Y7 (resp, Y?V) are the per-capita endowment

221t is important to note this statement also requires one to restrict the possible paths for prices p = {pt(yt)};’io to have
each pt(y') € [p;,p*] where p; > 0. When we specialize the SCE to the case of RCE, we can be explicit on how to use
Assumption 1 to create such bounds. For the case of more general SCE and parameterizing the sequence p = {pt(yt)};’io ,
see Pierri and Reffett ([60]) for a discussion.



draws for tradable (resp,., non-tradable) endowments with vector Y = (y7,yN?) € Y x {yNT}C Ri 4
Therefore, the state of a household entering any given period in a RCE will be denoted by s = (d,y,S) €
D x Y x S. Then, finally by s¢ = (d,y,d,y) € D x 'Y = S we shall denote equilibrium state space for
a RCE (i.e., the "diagonal" of the state variable of the household s = (d,y,D,Y) € S x S when d = D,
y =7Y). This then becomes the minimal state space in a RCE.

To develop a recursive representation of the household’s sequential optimization problem in equation
(4), we need to construct a recursive representation of the aggregate economy that agents will take as
given when solving their individual decision problems. Anticipating the structure of RCE, the relative
price for nontradables to tradables consumption (denoted by p(CT)) will be equal to the equilibrium
marginal rate of substitution between the two types of consumption goods:

U2 CT, NT A2 CT
UlgCT,ZNTi B Al((yNT)) =#(C) (10)

where C7 is the per-capita aggregate level of tradables consumption. As we shall impose in any RCE that
nontradables consumption ¢V7 = yNT = YNT where YNT' is the per-capita endowment of nontradables;
for the rest of the paper, we shall suppress the dependence of the price p(CT) on the constant Y V7.
Under the supermodularity and concavity conditions in Assumption 1 on A(c), the relative price p(C7) is
increasing in CT. Let the collection of candidate per-capita tradables consumption CT : S — [0,c™2] C
R, that parameterizes the price p(CT)(S) in equation (10) be defined as follows:

C/(8) = {CT(9)]|0 < CT(S) < cmax, CT is continuous, increasing in Y, (11)

T — o + =p(CT(S))yNT > 0}

decreasing in D such that (1 + E)y 7

R

where Cmax and dmaxexist under Assumption 1. 23 We endow the space C/ with the standard pointwise
partial order >. The space (C7,>) is a a join lattice. 24

Next, using an equilibrium version of the household’s budget constraint as well as equilibrium collateral
constraint each parameterized by CT € Cf(S), we can now construct the implied law of motion for per-
capita debt D for the aggregate economy as follows:

D' = &(CT)(S) = inf[R{CT(S) — Y + D}, s{y” + p(CT(9))yNT}], T e C/(S) (12)

where R is the current interest rate. Here, the "inf" operation is taken pointwise by state over the two
equilibrium regimes in a candidate RCE governed by CT € C7(S). The first term of this infimum repre-
sents aggregate debt in states where collateral constraints do not bind, while the second term represents
aggregate debt in states where the collateral constraint binds. As D is the only endogenous aggregate
state in this economy, given the stochastic process of the endowment shocks, we now have a full characteri-
zation of the stochastic transition structure of the aggregate economy in any candidate RCE CT € C/(S).
Using equations (10) and (48), we can also now generate a recursive representation of sequential price
system p = {p{S:}} by constructing candidate recursive representations of the laws of motion for the
per-capita aggregate debt D which in conjunction with realizations of stochastic endowments {Y;} will
allow us to generate realizations of sequential paths for candidate RCE prices p = {p(S;)}32

We can now construct a recursive representation of a household’s sequential optimization problem in
(4) any candidate for a RCE governed by an element CT € C/(S). A household enters any period in the
state s = (d,y, S), faces a fixed interest rate R > 0 such that SR < 1, for any function C7(S) € C/(S)

23The strict positivity constraint (1 4 %)yT — dmax + %p(CT(S))yNT > 0 in the definition of C/(S) in equation (11)
requires the elements CT € Cf(S) be such that in every aggregate state S € S, the household’s feasible correspondence
will have a strict interior point. More on this in a moment.

24That is, if C{ and C§ are any elements of C/(S), the join C{ VCF = sup{CT (S),C7 (S)}) is socially feasible, satisfies
the monotonicity conditions in the definition of C/(S), and critically we have (1+ £ )y” — dmax + 5p(CT VCI (9)))y™ > 0
(as p(CT) is increasing). But this is not the case for the meet CT v CT = inf{CT (S), CT(S)} will be in C/(S). Namely,

although the meet will also be socially feasible, satisfy the requisite monotonicity conditions, we could have (1 + % )yT —

R
dmax + %p(C{ A CT ()Y < 0.
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(and the implied law of motion for per-capita debt given by equation (48)), the household chooses
consumption of tradables and nontradables, as well as debt in each state given from the correspondence:

G(C")(s) = {c € R2,d € D| (49a) and (50) hold}

where ’

4 p(CT(SNN <y —d+plCT ()T + E (132)

d < ky" +p(CT(9)y"") (14)

As CT(S) € C/(8S) is continuous, G(CT)(s) is a continuous correspondence in s = (d,y,S) € S x S.
Notice, the strict positivity constraint (1+4%)y” —dmax+5p(CT (5))y™" > 0 in the definition of C*(S) €
C/(S) guarantees that in every aggregate state S € S, the household’s feasible correspondence will have
a strict interior point. Aside from the obvious economic reason, the condition is needed to guarantee
a strictly positive optimal (or equilibrium) tradables policy, it is also needed to check Slater conditions
required when constructing a dual Lagrangian representation of the household’s primal optimization
problem (so the set of Kuhn Tucker multipliers of this dual is well-defined). It is a straightforward to see
G(CT)(s) is additionally convex-valued.

Under Assumption 1, we now use standard dynamic programming argument in the literature to
construct a unique value function V*(C7)(s) solving a Bellman equation for each CT € C¥, CT(S) > 0
for all S € S:

VHCT)(s) = max U(A(C))+5/V*(d',y/7Y',‘I)(CT)(5);CT)X(dZ/) (15)
z=(c,d )eG(CT)(s)

with optimal policies associated with given by:

z*(CT)(s) = arg max U(A(c)) (16)
z=(c,d" )EG(CT)(s)

+ 8 / V(o Y, ®(CT)(S): CT)x(dy)

where by a standard application of Berge’s maximum theorem to the right side of the Bellman
equation in (15) along with standard dynamic programming constructions, the unique value function
V*(CT)(s) is jointly continuous in s € S x S, and the optimal policies for consumption ¢*(CT)(s) =
(cT*(CT)(s),cNT*(CT)(s)) and debt d*(CT)(s)) exist. Further, by the strict concavity of the primitive
data under Assumption 1 for each CT € C7, the optimal policies are unique, V*(C7)(s) is strictly concave
and decreasing in d for each (y,.S), and increasing in y, each (d, S).

The first order theory for the optimal policy function ¢*(C7)(s) defined in (16) can be constructed
appealing to the duality and envelope theorem results in Rincon-Zapatero and Santos (([65]), Proposition
3.1 and Theorem 3.1). That is, a recursive Lagrangian dual formulation of (15) for each CT € C7 is
given by: . .

* . ! . *,
v*(C")(s) = /\’1,1;1;) C’dpel%xxDL(c,d S, ;8,0 C) (17)

where c€ C = {ceR%|c" €[0,c™™],cY € Ry} and d’ € D where

Lie,d', A i 5,07, CT) = U, V) + 8 / o (g B(5:CT), y; CT)x(dy) (18)

/

FAT PO (ST — G~ 4 p(CT(8)eN)

+Aufr(y" +p(CT(9)y"T) — d'}
where under Assumption 1, the recursive Lagrangian dual formulation of the primal constrained dynamic

program problem in (15) admits a system of unique system of stationary Kuhn Tucker multipliers,
M (CT)(s) and p*(CT)(s) associated with the infinite horizon sequential dual program that dualizes

11



the household’s sequential primal optimization problem in (4) from all initial conditions with the asso-
ciated unique (stationary) Kuhn Tucker multipliers {(A\*(CT)(s), u*(CT)(s)) ; (cT*(CT)(s),N*(CT)(s),
g*(CT)(s))} in (18) the unique stationary saddlepoints of (17) with the envelope theorem for (17) in d
given by:

9qv*(CT)(s) = 0aV*(CT)(s) (19)
= U1(A(c" (€M) () Ar (T (CT)(5))

where ¢*(CT)(s) = (T (CT)(s),cN*(CT)(s)) is the vector of unique optimal solutions for consumption
goods for the primal dynamic program in (15).

Using this envelope theorem in (19), the system of first order conditions (necessary and sufficient) for
our primal representation of the dynamic programming problem in (15) are the following:2®

p(CT(9)) = (20)

A CEDEN A CTY) + 8 [ X (C)6) v 2(S:CTy5CT <0 (21)
=0 i (3) < wly" 4 p(CT ()T

d”(s) = w(y" +p(CT(9)y"T) <0 (22)

where the law of motion on individual debt in (21) is given by:
d*(C")(s) = imnf{R{c"™(CT)(s) —y" = p(CT(S)y™T + d}, w{y" + p(CT(S))y™"} (23)

and the law of motion on per-capita debt D’ in (21) is given by ®(S;C7) in equation (48).
We can now state the formal definition of RCE:

Definition 1 A minimal state space RCE in this economy is a function for per-capita tradables CT*(s),
a household value function V*(CT*)(s®) that solves the functional equation in (15) at CT* € Cf(S), with
optimal solution for consumption c*(CT*)(s) = ( <I*(CT*)(s),cNT*(CT*)(s)) and optimal debt policy
d*(CT*)(s)) defined in (16) such that when in each state s¢,we have tradables cT*(CT*)(s¢)=CT*(s¢) > 0
and nontradables cNT*(CT*(5¢)) = yNT with the associated nontradables relative price p(CT*(s¢)) > 0
and finite.

4 Existence of Recursive Competitive Equilibrium

We now prove the existence of RCE under Assumption 1. A key challenge to constructing a RCE in
dynamic models with occasionally binding collateral constraints is that our approach needs to be able to
characterizing the "regime change" in equilibrium policy functions over states where collateral constraints
bind vs. do not bind. To address the technical complication, we develop a two-step fixed point method
based upon an operator. Roughly speaking, to do this, we first construct an operator A(c,CT) =
A(Aue(c,CT), A(CT)) with arguments (c,CT) where ¢ represents equilibrium tradables consumption
in equilibrium states s¢ € S¢ where households are not collateral constrained, CT parameterizes the
equilibrium collateral constraint at relative prices p(CT) , Au.(c,CT) is an operator which computes
"contingent" RCE equilibrium tradables consumption in equilibrium states where households are not

25Notice although we work primarily with the primal first-order theory for the RCE, one can easily work with the
Lagrangian dual representation given the results in Rincon-Zapatero and Santos ([65] regarding envelope theorems. That
could be useful, for example, if one uses our RCE constructed to build a theory of optimal further macroprudential policies
with multiple equilibria. See Pierri and Reffett [62] for discussions of this fact.
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collateral constrained given a collateral constraint parameterized by p(CT) for fixed CT, and A.(CT)
is the level of tradables consumption in states where households are collateral constrained (and this
mapping is completely determined by CT). 26 Then, in the first step of our equilibrium construction,
we prove there exists a unique strictly fixed point ¢*(CT) for the operator A,.(c;CT) for each fixed CT
(and we interpret ¢*(CT) as a "contingent" equilibrium tradables consumption over states where the
collateral constraint does not bind given collateral constraint fixed at C7 (which determines completely
the equilibrium states in the current period where collateral constraints do bind). Then, in the second
step, we then uses this first step fixed point ¢*(C7T) to define our actual RCE operator which is the
mapping A*(CT) = A(c*(CT),CT), and we show this operator has a complee lattice of strictly positive
fixed points each RCE equilibrium tradables consumption, and these RCE tradables induced a RCE over
all the variables of the model (e.g., prices and laws of motion on debt, etc.).

It also bears mentioning that when construction our RCE operator A*(CT) = A(c*(CT),CT) shows
both (a) how to explicitly constructs the states where collateral constraints bind and do not bind any
particular RCE, and (b) provides a natural way of modeling equilibrium dynamic complementarities in
those models. Per the later point, in the first step, we shall show as C7 increases, collateral constrained
tradables consumption A.(CT) increases pointwise over the state space (as the equilibrium collateral
constraints get relaxed with pointwise increases in C7 as the value of nontradeables endowments p(C7)
rises. This relaxing of the collateral constraint then allows unconstrained trades consumption in the
unique "contingent equilibrium" ¢*(C7) to increase. This increase, in turn, will imply in in the second
step of our construction, our RCE operator A*(c*(CT), A.(CT)) will very naturally increasing in C7.
This form of "pecuniary complementarity" in equilibrium is precisely what allows for the possibility of
multiple equilibria with some RCE having both lower levels of debt and tradables consumption, and while
other RCE are associated with higher levels of debt and consumption.

4.1 Constructing a RCE operator

We first construct the mapping A(c, CT') mentioned above. Anticipating the structure of RCE over multi-
ple equilibrium regimes, and noting that maximal collateral constrainted tradable consumption is always
greater than unconstrained collateral constrained tradable consumption in an RCE,. we assume the
structure of the (unknown) RCE tradable consumption over the two equilibrium regimes is given by the
mapping C(c,CT)(s) defined as follows:

C(e,CT)(s) = inf{c(d, y), C(S,CT(S5))} (24)

where we shall assume (i) the function ¢(d,y) € CP(S) representing the RCE tradables consumption in
states where households are not collateral constrained is an element of the space:

C?(S)= {c(d,y) = &(d,y, d.y)|0 < ¢(d,y) < y" —d+ (dmax/R) (25)
¢(d,y) decreasing in d, increasing in y,
st. (*) —d = R(y" —d - c(d,y,d,y)) decreasing in d, increasing in y}
with dpax is the maximal level of debt which can constructed from ¢4, under Assumption 1 (hence,
yT —d+ (dmax/R) < cmax), (i) CT(S) € Cf(S) defined in (11) is used to parameterize the relative price

p(C) in the equilibrium collateral constraint, and (iii) CZ(S, CT(9)) is the RCE tradables consumption
for the households when households are collateral constrained and given by:

C.(S,CT(8)) = (1 + %)YT —D+ %p(CT(S)YNT

Also, denote by C%_ (S) the set of ¢ € C? such that ¢(d,y) > 0.

26For this informal discussion here, the domains of the operators Ayc(c, CT), Ac(CT), A(Auc(c,CT), and A*(CT) =
A(c*(CT),CT) will suppressed from the discussion. Of course, in our actual construction of the mappings in this section,
we make all the domains of our operators explicit, and discuss their properties.
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In the appendix, we prove the space CP(S) is: (a) an equicontinuous collection of continuous functions
(hence, compact) in C7(S); (b) a nonempty subcomplete sublattice of C/(S) in its relative pointwise
partial order. Further, the space Ci +(8) can be made into a complete metric space with an appropriate
metric. See Li and Stachurski ([43]). Finally, we endow the space CP(S) with the pointwise partial
order. Notice for any function ¢ € CP, the implied policy function for debt d’'(d,y) will be decreasing in
y, and increasing in d (i.e., the mapping -d’'(d,y) works like "savings" in this model when households
are not collateral-constrained to smooth endowment shocks when tradables consumption is not collateral
constrained).

We now define an operator A(c, CT)(s¢) for (¢, CT) € CP x C/ which will become the foundation of our
two step equilibrium analysis. To define this mapping, we first rewrite the household’s Euler inequality
in (21) in any equilibrium as follows: imposing equilibrium restrictions that d’ = D’ and 3y’ = Y”, and for
for any c(d,y) € Ch, and any CT(S) € C/, we can substitute C(c, CT)(s) defined in equation (24) for
consumption "tomorrow," and define a new mapping Z*. given by:

Ul (:L', yNT)

Zio(a,s",e,CT) = ZH—— (26)

8 / Uy (inf{c(®(2)(d, 1), ¥'), Co(@()(d, 1), o/, CT(B()(d ), 4'))x(dy)

where s¢ = (d,y,d,y) is the equilibrium state of a household in a RCE and the mapping d’'(s¢) =
®(2)(d,y) = inf[R{z — Y + D}, {y” + p(x)yNT}].2" For any c € C ., CT € C/(S), under Assumption
1 the mapping Z;.(x,s% ¢, CT) is strictly decreasing and continuous in x. We can then compute the
function z¥ (¢, CT(S))(s¢) implicitly in this expression at the unique root that makes:

Zne(@he(e, CT(d,y))(5%), 5% ¢, CT) = 0 (27)

which is well-defined as a function as Z7, is strictly decreasing and continuous under Assumption
1 noting ¢(d,y) € Ch, and CT(d,y) € C/(S)) (hence, both continuous in their arguments). Also,
as Z. decreasing and the continuous d, and increasing and continuous pointwise in evaluation map
eval(c, CT)(s°), the unique root z (c, CT)(s¢) is continuous in s°, and continuous (in the topology of
pointwise convergence) in (¢, OT) for each s¢. Further, by a standard comparative statics argument, under
Assumption 1, the root ¥ .(c, CT)(s¢) is increasing in (¢, CT,y) and decreasing in d. Finally, for ¢ € ct.,,
by the Inada conditions in Assumption 1, the root z%.(c, CT)(s¢) > 0.
We can now use x7.(c, CT)(s¢) to construct an the operator A(c, CT)(s¢) from which we will use to
construct RCE. To do this, the implied debt level associated with the implied tradables consumption
level 7% .(c, CT)(s¢) obtain in equation (27) is given by:

du; (¢, CT)(s%) = R{w (e, CT)(s°) =y + d} (28)
If dy- (c,C")(s°) satisfies

ds; (¢, CT)(s%) < R{YT +p(CT(d,y)YNT)

uc

the household is not be debt-constrained state s¢ given the mapping C(c, CT)(s)?® and we let our RCE
operator be defined at this state s© to be:

Aue(e;CT)(5%) = aoe, CT)(5%) (29)

Alternatively, if d,.c*(c, CT)(s¢) has dy.c*(c, CT)(s¢) > {YT + p(CT(d,y))YNT), the collateral con-
straint binds, and the implied household tradables the collateral-constrained tradables consumption gives
consumption level:

ACTY(s) = L4+ )Y T =D+ Zp(CT (d. )y (30)

2"Notice, the mapping ®(x)(d,y) in equation (26) is the mapping ®(C7T)(S) in equation (48) where in a RCE, we set
2=CT, andd=D and y =Y.

Z8Notice, when the debt 4= (c,CT(5))(s?) = w{YT + p(CT(S))YN), the collateral constraint is saturated, but not
binding. In this case, the implied KKT multiplier on the collateral constraint would be 0.
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Then, define the operator A(c, CT)(s¢) for (¢,CT) € CP x C/ at state s¢ for each CT € C/ : when
d=D,y=Y

Ale,CT) (%) = A(Ayec,CT), A(CT)) = inf{Ayc(c, CT)(5%), Ac(CT)(5%)} when c(d,y) >0 (31)
= Oelse

where the operator A(c,CT)(s¢) on (¢,CT) € C° x C/ has exactly the form of the operator we discussed
at the beginning of this section.

4.2 Existence of RCE

We now construct the set of RCE using the operator A(c,CT) in equation (31). In the first step, we
characterizing the fixed point set of the mapping A,.(c; CT)(s®) in equation (29) for each CT(S) €
C/(S). Lemma 2 shows that the mapping A,.(c; CT)(s°) is an order continuous operator in ¢ € CP, and
a monotone contraction on the complete metric space ¢ € C | (S) (where the metric we use is the one
introduced in Li and Stachurski ([43]) for Euler equation operators). Hence, A,.(c; CT)(s¢) will have a
unique strictly positive fixed point ¢*(CT)(s%) € C%, for each CT(5) € C/(8S).

Lemma 2 Under Assumption 1, the first step operator A,.(c;CT)(s¢) has a unique strictly positive
fized point c*(CT)(s°) € CH_(S) for each CT(S) € C/(S) and can be computed (for ezample) as
inf,, A7, (cmax; CT)(5¢) = ¢*(CT)(s°). Furthermore, the fived point mapping c*(CT)(s¢) is order continu-
ous (hence, monotone increasing) on C¥(S).

We now use the fixed point mapping ¢*(C7)(s¢) in Lemma 2 to define our RCE operator. Before we
do this, we first define two function spaces that will be used to build the domain of our RCE operator.
The first function is the space C/*(S) C C’(S) where we shall show RCE exist:

C/*(8) = {C(S) € C/(S)| CT(S) € [Crn(S), Cmax] - (32)
(**) D'(D,Y) = k(YT 4+ p(CT(S))Y" is increasing in Y, decreasing in D, C,,(S) >> 0}

where C,,,(S) € CT*(8S) is a strictly positive function represents the "lower bound" for tradables con-
sumption in a RCE.?° We can then define the space C* to be the domain for the RCE operator:

C*(S°) = {C(s°)=inf{c"(d,y,CT(d,y),Cc(d,Y,CT (d,y)) € Ch, x C/* whend=D, y=Y"} (33)

Notice that the only endogenous state variable is debt and in equilibrium, d = D is one dimensional, and
the shocks are discrete, the space C*(S) is equicontinuous. This leads to the following conclusion.

Lemma 3 The space C*(S%) is a nonempty complete lattice under pointwise partial orders.

We remark that the elements of C/*(S) have the exact same structure for tradables consumptions as
the elements in CP(S) defined in equation (25) over S € S, but as they represent tradables consumption in
states where the collateral constraint binds, they have the associated debt dynamics satisfying condition
(**) (i.e., are decreasing in output and increasing in debt.). That means the primary difference between
RCE over uncollateral constrained states vs. collateral-constrained states is that in collateral constrained
states, debt dynamics reverse in order relative to those in uncollateral constrained states (i.e., compared
to the debt dynamics associated with the elements ¢(d,y) € CP).

29We show in the appendix how to construct Cyp, (S).
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Next, using the fixed point mapping ¢*(C7)(s¢), but restricting C7 (S) € C/*(8S) (and hence, C(c*(CT),
CT)(s°) € C*(S9)), we construct our second-step operator A*(C)(s) on the space C* :

A(C)(5%)) = inf{c*(CT)(s%), Ac(CT)(s%)} (34)

A*(C)(s%)) is our RCE operator whose strictly positive fixed points will be RCE for this economy. We
now have the following lemma:

Lemma 4 A*(C)(s°)) is order continuous on C*(S°).

We now state our main existence result that both characterizes the set of RCE for this economy, as
well as provides a first result on computing the least and greatest RCE via successive approximations on
our operator:

Theorem 5 Under Assumption 1, the set of strictly positive RCE tradables consumption forms a (nonempty)
complete lattice in C*(S). Further, the least RCE C}(S) (resp., greatest RCE CY/(S)) can be computed
by successtve approximations

0 < sup A*™(0)(s%) — Cx(S) (resp., (inf A™" (cmax)(s%) = CV(5°) < cmax)

from initial element Cy = 0 (resp., Co = Cmax)-

In Theorem 5, we should mention we characterize how to compute extremal RCE (i.e., least and
greatest RCE) via simple successive approximations from the least and greatest elements of the space
C*(S). This is an application of the standard Tarski-Kantorovich principle to our RCE existence problem.
Later in the paper, in the additional results and extensions section, we shall generalize this result. In
particular, we shall apply the generalized iteration results in Olszewski ([55]) and Balbus, Olszewski,
Reffett, and Wozny ([7]) on the computation of tight "lower" and "upper" RCE (fixed point) bounds for
the operator A*(C)(s¢) local to iterations from any initial element Cy in C*(S).

4.3 RCE Comparative Statics

We now can provide an important equilibrium comparative statics theorem for the set of RCE. We focus
in this section on ordered changes in the discount rate 3, the interest rate R, and the parameter governing
the tightness of the equilibrium collateral constraint «. We first present a theorem that characterizes how
ordered changes in important parameters of the model translate into ordered changes in the least and
great RCE in Theorem 5. Theorem 6 below shows how least and great RCE change relative to ordered
changes in the discount rate 3, the parameter  in the collateral constraint (which recall is the fraction of
current wealth that the households can borrow against), and the global interest rate R. In the second set
of results, we general these equilibrium comparative statics results to any RCE. In the later case, we are
also able to address issues related to the "correspondence principle" and the order stability of particular
RCE.
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4.3.1 Comparative statics of least and greatest RCE

We first consider what happens to least and greatest RCE when (a) the discount rate and/or world interest
rate falls, or (b) the parameter x in the equilibrium collateral constraint rises (meaning the collateral
constraint is more "slack"). We now introduce the notation for these parameters into the definition of
our RCE operator A*(C, 8, k, R)(s¢) in equation (34). Then, the next theorem provides a simple method
for verifying and computing the ordered changes in the least and greatest RCE relative to the ordered
changes mentioned in the parameters (3, %, R) :

Theorem 6 Under Assumption 1, the least (resp., greatest) RCE C (B, k, R)(s%) (resp, C%(8, K, R)(s°))
are each increasing in k, and decreasing in (8, R). The equilibrium comparative statics can be computed
by the simple successive approrimations

sup A" (0; B8, k, R)(s°) — Cx(B,k, R)(s%)
i:’rrllf A*n(cmax; B, K, R)(Se) — C@ (67 K, R)(Se)

Theorem 6 provides sharp RCE comparative statics on the "low" and "high" borrowing equilibria
for this class of economies. These equilibrium comparative statics results are obtained by an application
of the standard Tarski-Kantorovich principles applied to the operator A*(C; 8, k, R). (e.g., see Dugundji
and Granas [33] for a discussion).

4.3.2 Iterative Monotone Comparative Statics and the Correspondence Principle

We can also consider an extension of our main RCE comparative statics theorem in Theorem 6 to the case
of comparative statics of any RCE. That is, for any RCE tradables consumption C*(p) € ¥*(p) at the
parameter setting p = (8, k, R), if one considers the exact same comparative statics question of Theorem 6
(i.e., if one lowers the world interest rate from R to R’, and/or agents are less patient, so the discount rate
falls from 3 to §’, the equilibrium collateral constraint becomes more "slack" so the parameter rise from
k to k'), can we construct a RCE tradables consumption that rises? Theorem 6 shows the "extremal"
RCE (i.e., least and greatest RCE) increase if these parameter changes are made but is silent on any
other RCE. We also have to be very careful in our interpretation of any such comparative statics result
for any RCE (as we know, by the correspondence principle of Samuelson ([67]) and Echenique ([36]) that
not all RCE will be "order stable" (i.e., some particular RCE could actually have the reverse comparative
statics claimed in Theorem 6).

We now show one can prove a related result can be obtained for any RCE C*(p) € ¥*(p) when p
changes as described above to p’ = (f',«’, R’). We should also mention, our new results comes with
the caveat that the original RCE C*(p) might not be "order stable" (i.e., might not satisfying the
"correspondence principle" of Samuelson ([67])) under the new parameters p’ = (5’,x', R')). That is,
the correspondence principle of Samuelson (and others) says that if a particular equilibrium is stable
if a small perturbation in parameters lead to a dynamic adjustment of the economy that converges to
a new equilibrium. The most relevant version of the correspondence principle for our purposes is that
presented in Echenique [36] where he proves under some regularity conditions on C*(p) in p, the stability
of dynamical systems generated by (generalized) adaptive dynamics initiated by the perturbation of
the existing equilibrium C*(p) govern the validity of comparative statics predictions of the particular
equilibrium when the parameters are changed. So a critical part of our next theorem is the second part
of our result which provides sufficient conditions a particular RCE will be order stable relative to our
parameter changes (and the new majorizing RCE is actually the old RCE that has dynamically adjusted
to the higher RCE). In particular, our generalized iterations provide a characterization of when there
exist dynamical adjustment paths for any particular C*(p) at p such that if this parameter is changed to
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p’ the particular RCE under study will dynamically rise (via our generalized iterations) to a new higher
RCE. 3¢
With this discussion in mind, we now provide an explicit iterative procedure whose order limit verifies
the existence of a new RCE C*(8',k/,R’) € U*(8',k’, R") which has C*(8,k,R) < C*(f',k’,R’) in a
"tight" sense (i.e., there does not exist other majorizing equilibria at the new parameters that are lower
in order yet still "higher" than the original RCE C*(, s, R)).3! To do this, we apply the recent results
in a series of recent papers by Olszewski ( [55]) and Balbus et al (7] and [8]) which provide a new of
"iterative monotone comparative statics" for order continuous operators equation in complete lattices.??
Fix the parameters of the model at their initial setting p = (8, &, R) for the moment, and consider
defining a pair of generalized iterative methods from any initial fixed point Cp(p) € C*(D®xY*) based
our (parameterized) equilibrium operator Ay (Cop) from any initial iterate Cp € C*. That is, compute the
lower-inf iterations
CNTHY (p) = AL (inf{OR7, ... CX "7 )i p)
and the upper-sup generalized iterations:
it (p) = Ag(sup{C¥", ..., C{ " p

where v control how "backward" looking the adaptive dynamics are, and for [ > k, and we assume for
both the lower and upper iterations that CF¥ 7 = €% and Cy = C%7 = €Y7 for all v € N. For any
fixed 7, compute the lower and upper order limits (i.e., the lim-inf and lim-sup iterations):

lim inf N (p) =C(Co)(p)

and
lim s%p C'\If’7 (p)=CJ(Co)(p)

where each limit exists in C*(D“xY*®) as C*(D“xY®) is a complete lattice.
We now notate the order limits to be C}(Co)(p) and CJ(Cy)(p) for each depend on the initial Cy €
C*(DxY*) for each ~:
CA(Co)(p) =1lim CX(Co)(p) (35)

and
CY(Co)(p)=lim CY(Co)(p) (36)

where each order limit again exists in C* for both lower and upper iterations as the sequence {C(Co)(p)}32,
(vesp., {CX(Co)(p)}5%,) is decreasing (vesp., increasing) in v by construction and C* is a complete lattice.

The following table contains a useful graphical exhibition of sequences C*™7 limits lim inf, CF ™17
and profile C'% as well as the inequalities and convergences between them for a fixed p (which we suppress

from the diagram). An analogous graphical exhibition applies to C\If’v, lim infy, C'\If’7 and CY.

CL(Cy) = liminf, CF* ot ol o1 ot
vV vV v A\ A\
C2(Cp) = liminfy, CF? o 32 c2? < )P
v v v v v
C3(Cp) = liminfy, Cf\"?’ a*s a?? < a®? < o'3
v vV v A\ A\
C4(Cp) = liminfy, CF* ot o< o3t o< ot < ot
Ly
CA(Co)

30See Balbus et al ( [8], section 4) for a detailed discussion of the correspondence principle the context of this section of
the paper. So we also include in our result in this section a condition that guarantees that the correspondence principle
holds for a equilibrium C*(p).

31The point here is verifying the existence of a "tight" higher RCE at the new parameters is that we always know the
greatest RCE at the new parameters will majorize C*(3, k, R). What we would like is a "least upper bound" on the set
of majorizing RCE at the new parameter. This is precisely what our iterative monotone comparative statics result will
guarantee.

32The results in that paper apply in our context (e.g., see Balbus, et al ([8], Proposition 3).
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We now state the following direct implication of this construction as a Lemma.

Lemma 7 Fiz p = (8,k,R). Then, for each Cy € C*(D°xY®), the lower (resp., upper) generalized
iterations {CR(Co)(p)}3y (resp., {CU(Co)(p)}32,) converge to a fized point CX(Co)(p) (resp., C3(Co)(p)
) each is a RCE with C%(Ch)(p) < C%(Co)(p).

Lemma 7 can be viewed as a generalization of the Tarski-Kantorovich principle applied to the initial
iterate Cy € C* relative to the generalized iterations {C}(Co)(p)}5Z; (resp, {CX(Co)(p)}5Z;) with each
element of the sequence defined in equations (35) and (36. 33 In particular, the Lemma shows that from
any initial iterate Cy € C*, one can construct an lower and upper RCE bound relative where each RCE
bound is an element of the lower (resp., upper) generalized iterations are constructed via a lim-inf (resp.,
lim-sup) operator indexed by v € {0,1,2,...}. The convergence of these lower (resp., upper) iterations to
fixed points is guaranteed by the order continuity of the mapping A*(C) applied to monotone sequences
[CAU(Co) ()} (resp, {C2(Co)(p)}22).

We can now use Lemma 7 to produce a new version of our comparative statics Theorem 6 relative
to any RCE C; = C*(B8,k, R) € C*(DxY?®) for the same changes in the deep parameters p = (3, k, R)
to p’ = (#,k', R') in Theorem 6. What is our main theorem in this section below will show that using
parameterized versions of our generalized iterations in Lemma 7, as for every -, we will have

CX(Co)(p) < CR(Co)(P)( resp, CX(Co)(p) < CA(Co)(p))

then, when taking the order limits of the lower and upper, the parameterized generalized iterations in
Lemma 7, we will obtain obtain

CA(Co)(p) < CX(Co)(P)( resp., CX(Co)(p) < CR(Co)(p"))

A particularly interesting case of this result is when we start iterations off at any old RCE Cy = C*(p),
and initiate the generalized iterations for the operator A;/(C) at p’. When we do this, we obtain the
following extension of Theorem 6.

Theorem 8 Say (8, R') < (8, R) and x' > . Then for any RCE C; € C*(D°xY®), at p = (B,, R),
for Co = Cj, the lower (resp. wupper) generalized iterations have order limits C}(Cy)(8', ', K') and
CH(Cy)(B' K, R') in equation (85) and (36) that satisfy:

C* (8,5, R) = Cj < CH(Cy)(B#, K') < CL(Cy) (B, )

where C; (C5) (B, k', K') and C3(C) (B, k', R') are ROE in V*(8', k', R'). Further, if Cx(C;)(8', k', K') =
CH(CH) (B K, R), then the RCE C; = C*(B, K, R) is order stable relative to ordered changes in p.

We make a remark on the interpretation of the last part of the theorem relative to the correspondence
principle results in [36]. What the theorem says is if the lower and upper generalized iterations converge
to the same order limit from initial iterations starting from the "old" equilibrium (i.e., any equilibrium at
the initial set of parameters p), the "old" equilibrium is stable from the perspective of dynamic adjustment
processes if our lower and upper generalized iterations converge to a "new" equilibrium that is higher
than the "old" RCE. The theorem does not say that all RCEs have this property; instead, it says that
for any RCE, we can have a "tight" RCE that majorizes the "old" RCE, and this majorizing RCE can
be obtained only using the lower generalized iterations.

33The Tarski-Kantorovich principle says that if f : X — X is an order continuous transformation of X where X is a
countable chain complete partially ordered set such that AX < f(AX) < f(VX) < VX, then the least (resp, greatest) fixed
point of f(x) can be computed as sup{f™(AX)} (resp., inf{f™(VX)}).
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5 Uniqueness of Recursive Competitive Equilibrium

We now provide sufficient conditions for the uniqueness of RCE. We shall begin by discussing how
equilibrium multiplicities occur in these models (and in particular, the critical role of the relative price of
nontradables to tradables, and the structure of the consumption aggregator). In discussing these issues,
we focus on how "large" pecuniary externalities can create a potential role for RCE multiplicities. We
provide examples of consumption aggregators such that the implied, relative price of nontradables and
tradables are not too "large" to generate multiple solutions for tradables consumption in states where
equilibrium collateral constraints bind. Next, we then use this discussion of pecuniary externalities to
propose sufficient conditions for the uniqueness of RCE, and we prove that for economies that satisfy
these additional conditions on consumption aggregators, RCE are unique.

5.1 Multiple RCE and Pecuniary Externalities

We will say that there are static pecuniary externalities if current price changes, through general equi-
librium effects, affect the availability of credit to the private sector in any current state of the current
period. Pecuniary externalities are dynamic if agents expect that this relationship holds in the continua-
tion period in any continuation state. This section will focus primarily on static pecuniary externalities.
We defer to section 6.3 to discuss dynamic pecuniary externalities. We explain in this section why, under
general preferences allowed for in Assumption 1, pecuniary externalities can generate multiple equilibria.
Moreover, both types of externalities may hold simultaneously in a RCE, interacting with each other and
generating severe coordination problems in the decentralized equilibrium.

Pecuniary externalities may generate multiple equilibria, which require a selection mechanism. More-
over, this mechanism must preserve stationarity in a recursive environment. This section first discusses
the connection between multiplicity and static pecuniary externalities. Understanding this connection is
essential to properly motivating our results. We show that the economy’s stochastic and global nature can
generate multiple equilibria under very general conditions. Thus, deriving methods to handle multiple
equilibria in economies with pecuniary externalities is essential. To illustrate this point, we show that
economies in expansion (i.e., when we observe a high shock) are more exposed to coordination problems
than recessions. Thus, cyclical aggregate functions generate crises characterized by multiple equilibria.

It turns out that the intratemporal elasticity of substitution is a key element behind externalities
and multiple equilibria. By controlling this elasticity, not only can we eliminate both these features of
the model but also the presence of the spiraling downward collapse in prices, consumption, and debt
often referred to as Fisherian deflation (see Bianchi ([17]) among others). We say the economy faces a
Fisherian deflation if we observe at least two consecutive deleveraging periods after a crisis. As in this
model, leverage is affected by prices due to the general equilibrium nature of the collateral constraint; a
Fisherian deflation arises in the presence of pecuniary externalities. We further show that if pecuniary
externalities are strong enough, we may observe multiple equilibria. That is, if credit conditions are
too sensitive to prices, then they may induce a coordination problem due to the presence of more than
one possible equilibrium. Thus, balance of payment crises and multiple equilibria are deeply connected.
Along the same lines, if pecuniary externalities are sufficiently mild, it is possible to observe a Fisherian
deflation in models with a unique continuous equilibrium. Coordination problems may not arise without
affecting the possibility of observing a collapse and recession as pecuniary externalities are still present.
If this relationship is non-linear, multiplicities and spiraling recessions occur.

5.1.1 Multiple equilibria under static pecuniary externalities: the case of CES preferences
This type of multiplicity is frequently studied in the literature (see Schmitt-Grohé and Uribe ([73])) and
it is concerned with the possibility of having more than one solution to equation (7) for a given pair

of states (d,y”) when the collateral constraint is binding. Note that this equation defines a stationary
system in debt today d for any level of tradable income y”.
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As we want to establish a direct relationship with the literature, we will use standard CES preferences
as, for instance, in Bianchi ([17]). Let U(A(z)) = (A*° — 1)/(1 — o), A(c) = (a(cT)' V¢ + (1 —
a) (V)18 (A-1/8) with 0 = 1/¢ = 2 and a = 1/2. We will assume that Z is compact. Then, equation
(7) becomes:

F(P) =PV = kPy™ =y /yN + ryn — d/y" = K(d), (37)
where we have set y7 = y;;, and (1 — a)/a = Ry = 1. The left-hand side of (37) is a function of P
and the right-hand side of d. Let f(P) and K(d) be the former and the latter, respectively. As we
have assumed Ry™ = 1, f is increasing for 0 < P < R?/(4x?) and decreasing otherwise (for P > 0, of
course). Figure 1 illustrates equation (37) for the described parametrization. The mapping f reaches
a maximum at R?/(4x?) = P*. Moreover, intertemporal optimality implies that P is a monotonic
function of (aggregate) consumption. Then, obtaining the roots in equation (37) written in terms of debt
implies finding multiple equilibria for our operator A.(CT)(s¢) defined in equation (30) as a function of
(aggregate) consumption, and hence multiple RCE for our operator A*(C7T)(s¢) in equation (34).
We can also look at the multiplicity of RCE regarding exchange rates. The K locus depends on d. The
f locus depends on P, depicted in the “x-axis". The K (0) line represents the smallest possible value for d
in the constrained regime (i.e., d = 0). Between K (0) and R/4x, the regime is not collateral-constrained.
Below K (0) and over the locus formed by f lie all the candidate pairs (d, P) for the constrained regime.

Figure 1: Equation (37), y© = yp

K(dso) K(dso)
. L ‘ ‘ ‘ P‘ ~ ‘ ‘ d
PsP; = Py Py yn Bt — L d>o K(d)

f(P)

The K locus depends on d. The f locus depends on P. The K(0) line represents the smallest possible
value for d in the constrained regime. The regime is not collateral-constrained between K (0) and R/2k.
Below K (0) and over the locus formed by f lie all the candidate pairs (d, P) for the constrained regime.

Note that for d = 0, there are two possible exchange rate levels, P1 and P2, and a change in d
with d > 0 can either increase or decrease P. This is depicted in points P3 and P4 in the same figure.
Moreover, an increase in y” implies that the K (0) locus must jump upwards while the f(P) locus remains
constant as it is independent of tradable output by construction. Figure 2 illustrates this situation. Note
that the collateral constraint doesn’t bind when the agent saves (i.e., d < 0) as endowments and prices
are positive. Thus, after the depicted increase in 4, the region of possible multiple prices for a positive
level of debt now includes the whole f locus.

Figures 1 and 2 illustrate the implications of the stochastic structure in the presence of static pecuniary
externalities: as we increase the shock level from yy, to yT, there is an increase in the admissible (positive)
debt levels which can generate multiple equilibria. This fact follows immediately from the definition of K.
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Figure 2: Equation (37), y* > y;
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An increase in y7 shifts the K line. Thus, the whole locus f contains all the candidate pairs (d, P) for
the constrained regime.

5.1.2 Static pecuniary externalities with different preferences

This section presents two examples of different intratemporal preferences to study the interaction between
static pecuniary externalities and multiple equilibria. Even though the absence of a static pecuniary
externality is sufficient to obtain a unique equilibrium, it is not necessary. We may have a unique
equilibrium with static pecuniary externalities.

To keep the paper self-contained, let us define the intratemporal elasticity of substitution:
Crrs = 0ln(cT JeN) /0In(MRS(cN, 1)) = din(cT /cN) /din(p).

If U(A(2)) = (A7 = 1)/(1 = 0), A(c) = (a(c")! /5 + (1 = a)(¢™) VOV, (rpg = €.

The discussion in the preceding section implies that as long £ = 0.5, we will generally have i) static
pecuniary externalities, ii) multiple equilibria, iii) a spiraling (i.e., observed in at least two consecutive
periods) balance of payment crises characterized by deleveraging and a real depreciation (i.e., a reduction
in d and p). The critical aspect behind i) and iii), ii) was extensively covered in the previous section, is
captured by the collateral constraint in equilibrium: d; = s(yVp(c”) + yT), where the dependence of
p on ¢! follows from equation (7). A balance of payment crisis implies a reduction in ¢?, which pushes
down debt through the collateral constraint and a depreciation (i.e., a reduction in p).

Now consider imposing a quasi-linear intratemporal structure of preferences. That is, assume that:

- (cN)1-1/¢

A =+ (39)

Under equation (38), p, characterized by equation (7), becomes p = (y™)~/¢ and a binding collateral
constraint implies dy = s((yV)'~%/¢ 4 yT), which not only has one root but also breaks the spiraling
recession as it rules out the static pecuniary externality (i.e., the dependence of p on cT).
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The intuition behind the uniqueness is straightforward: the marginal rate of substitution, equa-
tion (7), is independent3* of ¢I'. As GDP is expressed in tradable goods, which equals py™ + yT, it
is exogenous. The intratemporal behavior of tradable consumption is also exogenous. Thus, there is
neither static pecuniary externality nor spiraling recession. Of course, inter-temporarily tradable con-
sumption is driven by the standard consumption smoothing channel that comes from the Euler equa-
tion. Moreover, uniqueness is guaranteed because the collateral constraint only has one root. Finally,
let d(d,y”) be the policy function for debt in the unconstrained problem. As debt tomorrow satisfies
dy = min{x((y™) 1€ +yT),d(d,y")}, the equilibrium is continuous. Thus, with quasi-linear prefer-
ences, we don’t have static pecuniary externalities, and the equilibrium is unique. The absence of static
pecuniary externalities is sufficient for uniqueness. We now turn to necessity.

Assume that A(c) = In(cT) +in(cN). That is, (;ps = ¢ =1 and p = ¢T /cV. In this case, we have:

ryT —
O @

Equation (39) implies the necessity of 2 additional restrictions: i) p > 0 and ii) py® +y? > 0. The
former implies (1 4+ /@)yT > d and the latter 2y” > d. We can eliminate the two restrictions by assuming
0 < k < 1. Now the collateral constraint is given by: dy < k(1 — k)"![2yT — d]. Thus, we have the
following restrictions:

dy =min{d(y",d), k(1 — k)" [2y"7 —d], 1+ r)y"} (40)

Equation (40) implies that if 0.5 < k& < 1, then dy = min{d(yT,d),(1 + x)y’}, which implies
uniqueness, continuity, and the absence of pecuniary externalities. However, if 0 < x < 0.5, we have
dy = min{d(yT,d), k(1 — k) "![2yT — d]}, which implies uniqueness, but the model displays pecuniary
externalities and spiraling recessions. To verify this claim, we must have:

d++ = Kl(l — H)il[2yT - (’i(l - “4‘)71[2yT - d])] (41)

(1 =) 2y" = (51— 5) 7 29" = d])] < k(1= k)7 2y" —d] (42)

Equation (41) implies that the collateral constraint is binding for two consecutive periods, and equation
(42) that there is deleveraging. While the latter follows directly if 0 < d < y”, the former requires a more
subtle argument. Note that to verify equation (41) we need to have d(y?, z) > r(1— )~ [2y” — ], where
x is a potential value for debt, for at least 1 level tradable output y?. As d(y”, x) follows from a standard
savings problem, we must have d(y.;,0) < 0. Let Ky = [KY, K4] be the compact set containing d. As
d(y,.) is increasing in x for any y, we have d(y.,, K¥) < 0. Then, (1 — )~ }[2yu, — ] is linear and
decreasing in x with x(1—#) " [2yu,—K%] > 0. Then, there exist * with d(yus, ©*) = k(1—K) " [2yus—2*].
The last 2 inequalities imply that we have: d(yup, ) > k(1 — £) " 2y — 2] for = € (2%, K¥?] as desired.
Thus, we show that with log preferences, we have a unique continuous equilibrium and static pecuniary
externalities. That is, uniqueness is not equivalent to the absence of static pecuniary externalities.

5.2 Uniqueness of RCE

With the discussion of the previous section in place, we can now turn to sufficient conditions for the
uniqueness of RCE. To obtain a unique RCE, minimally, we will need to guarantee that the price p(C7)
in (10) is such that static pecuniary externalities are "not too large." To formalize "not too large" in the

34With quasi-linear preferences, the elasticity of substitution is not constant but is 0 for compensated price changes.
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form of a sufficient condition for uniqueness, note that any state equilibrium state s¢ where the collateral
constraint binds, our RCE operator A*(C7T)(s°) is defined to be:

ALCT)(s) = (L4 ZW" =D+ Hp(CT(dy)y"T —d (43)
where recall A.(CT)(s) defines the operator A*(C)(s¢) in equation (34) in states where collateral con-
straints bind. In this expression, say we are in a fixed point C*(s¢) for the operator A*(C)(s¢). Then, we
will have using equation (43) at this fixed point C*(s¢) in an equilibrium state s¢ where d = D, y =Y,
solve the following equation for x = z*(s¢) :

K K
Z2(@ (), 0" (%)) = @ = (L+ F)y" = d+ Fpla” (s )y — d

and define the correspondence X*(s¢) to be:
X*(s%) = {z > 0| Zc(z, 8%, 2) = 0}

Notice, when the collateral constraint binds, the correspondence X*(s¢) gives all the values of the set of
RCE C*(s°) € X*(s¢) pointwise at any state s¢.

We now make a few remarks about the correspondence X*(s¢). First, under Assumption 1, the
correspondence X*(s¢) can easily be shown to be well-defined (e.g., is nonempty and compact-valued
by an application of the intermediate value theorem). Further, it has least and greatest element (as the
correspondence X*(s¢) C Ry is chain-valued additional and hence has a least and greatest element).
This implies in equilibrium states s¢ where the collateral constraint binds, as Schmitt-Grohé and Uribe
([73]) suggest, in general, we will have (globally) “low borrowing" (associated with “least" RE tradable
consumption) and “high borrowing" (associated with “greatest" RE tradable consumption ) in equilibrium
states where the equilibrium collateral constraint binds and the correspondence X*(s¢) is not a single-
valued. That is, if the relative price p(-) is such that that mapping

Zeola (7). 27 (s%), %) = () = (1 + 1)y (44)
—d+ (e ()T —d =0

does not have unique root x*(s¢) = CT*(s) € X*(s°) for any s® when the collateral constraints binds,
there will necessarily be multiple equilibria.3®

We now use the intuition of the above argument to answer the additional question of when this class of
models has a unique RCE. For this, we reconsider Lemma 2 and Theorem 5 under the following additional
assumption:

Assumption 2: The consumption aggregator A(c) is such that for the associated p(z) = %7 the

mapping Z..(z, s¢,z) = 0 in equation (44) has a unique root z*(s¢) for a given x and R.

We now can show with the addition of Assumption 2 in Theorem 5, the RCE is unique.

Theorem 9 Under Assumption 1 and 2, there is a unique RCE C*(s¢) = inf{c*(s%), x*(s%)} where z*(s)
is the unique root of equation (44), with

Al (co)(d,y) = c*(s°)

for any co € CE_.

353chmitt-Grohé and Uribe ([73]) give a local sufficient condition near the deterministic steady-state for this to be the
case for the case that the utility aggregator A(cT,cV7T) is an Armington aggregator and near a steady state. But clearly,
their idea about the source of multiplicity applies in any equilibrium state s¢. That is, generally Z.c(z,z;y, k/R,d) is not
either strictly increasing or decreasing in z at each s¢ under Assumption 1 (hence, roots are unique)
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A few remarks on this theorem. First, when using our two-step construction in theorem 5 under the
added condition in Assumption 2, we can first compute the unique maximal collateral consumption in a
RCE as the unique solution x*(s¢) in

Zeo(a™(dyy), 2" (d,y), d,y) = 2" (dyy) — (1 + = )y”

¥ (45)

K *
—d+ Rp(z (d,y)y"" —d=0
Then, the second step of the RCE construction is not needed. That is, substituting z*(s¢) = A.(CT)(s°)
in the definition operator A*(C')(s°) with

C(s°) = inf{c(d, y), 27 (d, y) }

we can now construct the RCE using only the first step operator A% _(c) (which is a monotone contraction
on C¥_, (S¢) with unique strictly positive fixed point ¢*(d, y) > 0, so the unique RCE is the strictly positive
function C*(s°) = inf{c*(d,y), z*(s%) € C*(S°).

Second, the sufficient condition for uniqueness can be satisfied as discussed in Section (e.g., A(c)
is quasi-linear or log). We emphasize that when quantitative versions of this model are studied in the
existing literature, A(c) is the Armington/CES aggregator. In this case, for typical parameterizations of
this mapping, Assumption 2 will not be satisfied, and multiple RCE will exist (e.g., see the discussion in
Schmitt-Grohé and Uribe ([73])).

(46)

6 Additional Results and Extensions

6.1 Relaxing Assumptions on Consumption Aggregators

In section 5.1.1 we assume that preferences are given by U(A(z)) = (A" — 1)/(1 — o), A(c) =
(a(c™)'=VE + (1 — a) (M) A-1/E) with @ = 1/2 and ¢ = 1/¢ = 2. Now, we partially relax
this last restriction. In particular, we let ¢ = 1/€ and £ > 0. We must assume that the relative risk
aversion coefficient ¢ equals the reciprocal of the intratemporal elasticity of substitution £ to keep the
Euler equation tractable. Using o to calibrate the model is frequent in applications. Thus, this section
is relevant as we can study multiplicity in a more general numerically relevant environment.

If we assume x = R™! and y» = 1, equation (7) when the collateral constraint is binding becomes:

h(P)y=P*—(1+Pyl =1-d (47)

We will call a solution to (47) a root. As P increases in aggregate consumption, we can map any
element in the minimal state space (y”,d) to aggregate consumption using the solutions to (47).

We split the analysis into four possible cases based on the combination of values for the intratemporal
elasticity (EIS, &) and tradable output y”. In turn, as we need to characterize the state space, we classify
the debt values as low, mid, and high. The table below illustrates the results of the analysis.

State Space (y7,d) / EIS | Low £ <1 | High £ > 1
Low d No Root 1 Root

Low yT Mid d 2 Roots 2 Roots
High d 1 Root No Root
Low d No Root 1 Root

High 37 Mid d 2 Roots 2 Roots
High d 1 Root No Root

Table 1: Existence of solutions to equation (7) when the collateral constraint is binding

It is easy to see that h'$~1 — yT, h/*) = 0 with P* = (y*/€)/¢=1 and h(0) = —y”. Then, when
&> 1, his convex with a minimum at P = P* and with £ < 1, it is concave with a maximum at h(P*).
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We called the latter "high" and the former "low" ¢. Further, we say that income y” is "low" / "high"
if yT is close to yr/yup. Finally, as the collateral constraint cannot bind if households hold net assets,
root to equation (47) must lie in the following set: P, = {0 < P < oo, h(P) =1 —d with h(P) < 1}.

When £ > 1, h decreases for 0 < P < P* and increases thereafter. Then, for low values of debt, there
is only one root as h(0) = —y? < 0 and h(P) crosses 1 —d only for P > P*. Then, for intermediate values
of debt, h(P*) < 1—d < —y”, there are two roots. Note that the region with multiple equilibria increases
for low-income values as —y” is closer to 1 than when y” is "high." Finally, there is no root for high debt
values, 1 —d < h(P*). Thus, we must set the maximum level of debt accordingly: dajae = 1 — h(P*).
In this case, the maximal P satisfies h(Ppsq,) = 1, which is finite and defines the maximal aggregate
consumption in the constrained case.

When £ < 1, the case is similar to the one described in section 5.1.1, and thus, we skip the details. A
sufficient condition exists to eliminate the "no Root" region for "low" debt values. As h(P*) is decreasing
in &, it suffices to set an upper bound for this parameter, &y, such that h(P*) = (1 — &)(y” /&)&/ (-1 —
yT > 1, with (1 — &up)(yun/éup)ive/Cvs=1) —yyp =1 as h(P*) is decreasing in y”. Then, the only
admissible values of ¢ are 0 < ¢ < {yp. This implies that in section 5.1.1, we need to set y” such that
(0.5)(2yT) — yT > 1, which is satisfied for all y*.

6.2 General shock spaces

We now mention how the main results in the paper change if the shocks in the model to endowments are
more general. We are concerned here with the situation of the model where the shocks are: (a) iid but are
defined on a continuous (compact) support, or (b) are first-order Markov shocks (for either the discrete
or continuous compact support case). In both case (a) and (b), if shocks are on continuous shock spaces,
issues of measurability will become important when characterizing the appropriate version of the space
C*(DxY*) where existence of RCE arguments will take place. In any case, although some differences
in the result does occur, nothing in the constructions in the paper change, and the results will remain
similar to those on Theorems 5, 6, and 8 with one notable change.

Let us first consider how to generalize the main theorems on existence and characterization of the
set of RCE for the case (a) of iid shocks on a continuous compact support. In this case, when defining
the candidate set of RCE C*(D“xY®) in equation (33), we will now also need to require each element
C(S¢) € C* to also be (Borel) measurable. Let’s denote the version of the space C*(D°xY¢) by

i (D°xY?)%0), if we give the space C3, (D°xY®) the pointwise partial order >, then in Lemma
3, the space (C3,,(D°xY*),>p) is no longer a complete lattice (rather, it is just o—complete). 7
Still, it can easily be shown that our operator A*(C) constructed exactly as before is well-defined and
order continuous. That is, for the "first step" operator A(c; CT) for each CT € C1,,, this operator still
has a unique strictly positive measurable fixed point ¢*(CT)(s). This unique fixed point is again order
continuous in CT on Cf,» 50 can again used to define our (second step) RCE operator A*(C) and study
it’s set of fixed points in C3,,(D°xY?). As C3,,(D°xY®) is o—complete, the least and greatest RCE
can be computed as in Theorem 31 via a standard application of the Tarski-Kantorovich theorem. But
the one critical thing that changes in Theorem 5 for this new setting is now the set of RCE is only a
o—complete lattice in C*,(D“xY®) (e.g., by Theorem 1 in [9])). Per Theorem 6, nothing changes, nor
does any change in the uniqueness of RCE under Assumptions 1 and 2 in Theorem 9. Finally, the iterative
monotone comparative static result in Theorem 8 does not change either (as the operator A*(C) is order
continuous in a o—complete lattice CZ, (D“xY*)).

Next, if the shocks are Markovian, the operator A*(C) can again defined exactly as it is defined
in the iid shock case, but the major change in the construction of RCE is that RCE are no longer
monotone increasing in endowment shocks. So, if from the definition of the space C%, (D°xY¢)) now
only require tradables consumption to be bounded and measurable in the endowments y, and if we denote

36Here the subscript ” 1 m” on the space C3,,(DxY*®) is to indicate that the elements this new version of the space
C*(D®xY*®) are monotone increasing and measurable on y.

3TWe say a lattice X is o—complete if for every countable subset X. C X, VX, and AX. are in X. If we take a space
of measurable functions with a least and greatest element measurable and give it a pointwise partial order; the space is
generally only o—complete (i.e., it’s only closed under pointwise sup and inf operations for countable subsets).
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the resulting space by C,(D“xY*®), and if we give the space C}, (D°xY¢) the pointwise order >, then
(Cr,(D°xY®), > ) remains a o —complete lattice in the new version of Lemma 3. As the operator A*(C')
can be shown to remain order continuous on C}, (D®xY¢), not much changes in the construction of the set
of RCE from the iid shock case. If the shock space is finite (resp, continuous, and compact), the resulting
version Theorem 5 has the set of RCE a complete lattice (resp., o—complete lattice) in C}, (D“xY*®).
The comparison of least and greatest RCE in Theorem 6 remains the same, and the uniqueness of RCE
under Assumptions 1 and 2 in Theorem 9 still holds. Also, the iterative monotone comparative static
result in Theorem 8 does not change.

6.3 Dynamic Pecuniary externalities

In this section, we characterize the presence of dynamic pecuniary externalities. Even if agents are not
credit-constrained in the present, the possibility of observing a crisis in the future (i.e., a hit to the
collateral constraint) affects current decisions. If these crises are expected to induce multiple equilibria
in the future, coordination problems affect the current market conditions. If agents coordinate in a high
consumption-high leverage equilibrium, this situation self-fulfills into the present. As the transmission of
future market conditions into the present depends on the Euler equation and the presence of pecuniary
externalities, most models with price-dependent collateral constraints and incomplete markets have these
types of equilibrium dynamic complementarities.

To discuss the presence of dynamic pecuniary externalities, we need elements that we use to charac-
terize the RCE. To keep this section self-contained, we reproduce below some elements of the dynamic
programming representation of the household’s decision problem. Let Cf,S be the set containing all
possible aggregate or per-capita consumption levels and aggregate states D,Y respectively. For any el-
ement C7 € C7f, we can identify the implied law of motion for per-capita debt D in a RCE by using
equilibrium versions of the household’s budget constraints and collateral constraints: i.e., the per-capital
debt evolves according to:

D' = ®(S;CT) = inf[R{CT(S) — Y + D}, c{y” + p(CT(9))y"}], ¢T e C/ (48)

As D is the only endogenous aggregate state in this economy, in conjunction with the primitives of
the stochastic process on the endowment shocks Y, we now have a full characterization of the stochastic
transition structure of the aggregate economy.

When entering the period in state s = (d,y, S), the household’s feasible correspondence is given by:

G(s;0") = {c € R%,d’ € D| (49a) and (50) hold}

where ’

4 p(CT(S) < y—d+p(C (S + % (192)

and
d' < k(y" +p(CT(9)y™) (50)

The aggregate economy is characterized by a law of motion on per-capita debt. D’ using (48). Then,
a recursive representation of the household’s sequential decision problem can be constructed as a unique
value function V*(s; CT) solving a Bellman equation for each C(S) € C/:

Vi(s;CT)) = max U(cT,cN)—i—ﬁ/V*(d’,y’,Y’,(I)(S; cTy; cyx(dy') (51)
z=(cT,cN,d' )eG(s;CT)

The unique optimal policy function associated with the solution to (51) is given by:

¢*(5;CT(8)) = arg max U, Ny + 8 / VAL Y, B(8;CT):CTIx(dy),  (52)
z=(cT,cN,d )eG(s;CT)
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where the vector of consumption policies ¢*(s; CT) = (¢T*(s;CT), cNT*(s;CT)) is jointly continuous
in s, and the value function V*(s,S; C7T) is continuous in s, strictly concave and decreasing in d for each
(y,S), and increasing in y, each (d, S).

We know that static pecuniary externalities may generate multiple present consumption levels to be
compatible with the same position in the state space. Equation (52) shows that future consumption
levels may also generate multiplicity. For some CT, ®(S; CT) may bind and generate multiple solutions.
This is possible under the same conditions that generate static pecuniary externalities. However, CT
values depend on agents beliefs. we will observe an economy with more tradable GDP in the future and
thus with a higher borrowing capacity, self-generating expected high consumption environment today.
That is, as there is a complementarity between the marginal utility of consumption today and tomorrow,
market conditions in the future are transmitted to the present as p is also increasing in ¢*. Of course, the
contrary happens if C7 is expected to be low. This is the dynamic pecuniary externality. That is, future
expected aggregate consumption C7 affects present individual consumption c* though expectations that
are represented by ®(S;CT) in equation (52).

7 Conclusions

This paper proposes a new multistep monotone map method for characterizing the set of RCE in the
prototype class of sudden stops models which has been the focus of a great deal of work in the applied
literature that seeks to model emerging market financial crises. Further, the paper is the first paper that
presents a constructive approach to characterizing minimal state space recursive equilibria in infinite
horizon incomplete markets models with price-dependent collateral constraints. As our methods are built
on a novel application of order continuous (monotone) operator theory, and this new approach presents
constructive methods for characterizing both existence of RCE, as well as when characterizing the nature
of RCE comparative statics. Our approach also (by construction) characterizes that partitioning of the
minimal states where equilibrium collateral constraints bind, and when they do not. In addition, an
interesting additional implication of our approach is that we show that the actually state-space, where
any RCE exists, depends critically on the particular RCE being characterized. That is, in RCE where
equilibrium collateral constraints are "tight," the level of maximal sustainable debt is lower than in RCE
where equilibrium collateral constraints are relatively "loose."

The paper is also potentially important as the methods seem amenable to extending to other infinite
horizon models with incomplete markets and occasionally binding price-dependent inequality constraints.
The key issue to extend the approach to other models with incomplete markets and collateral constraints
are that we must have an Euler inequality associated with household dynamic decision problems. Our
approach is also aimed at characterizing dynamic equilibria in settings where multiple equilibria and
discontinuous equilibrium selections are endemic to the models under study. The approach is constructive
and uses equilibrium versions of the household’s Euler inequalities to characterize RCE over states where
equilibrium collateral constraints do not bind and revert to collateral constrained consumption (which is
determined by the collateral constraint itself) over states where collateral constraints bind. This approach
seems to extend to other settings where collateral constraints are themselves equilibrium objects.

It also bears mentioning that our methods extend to other models of sudden stops in the literature.
For example, models with non-homothetic preferences (e.g., Rojas and Saffie ([66])) and production (e.g.,
Benigno et. al ([11], [12])) can be handled with our approach. Further, alternative monotone methods
can be developed to deliver similar results for models with heterogeneous agents (e.g., see Pierri and
Reffett ([61]).) Finally, generalized Markov methods can be developed to study the structure of more
general sequential equilibria than those that are (minimal state space) RCE (e.g., see Pierri and Reffett
([60[).

Many questions remain unanswered in the macroprudential policy literature, and one crucial area
of exploration is how these methods can enhance the understanding of optimal policy design in an
arbitrarily decentralized equilibrium set. The macroprudential policy has been a focal point of recent
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research 3%, a significant challenge arises in defining "optimal policy" in a world of multiple equilibria.
In the macroprudential literature, today’s optimal tax rate hinges on the marginal utility of tomorrow’s
consumption. Given that collateral constraints may bind in the future, multiple equilibria become an
intrinsic aspect of the problem. Consequently, the optimal tax can vary depending on whether the
economy operates in a high- or low-borrowing equilibrium.

Bianchi ([17]) offers a critical perspective, arguing that optimal taxes represent the private agents’
"uninternalized " marginal cost of borrowing normalized by the expected marginal utility. These costs
increase with the current level of debt when the credit constraint is binding; the tax does not generally
influence the level of borrowing. While these insights are correct, we claim that the details of this sort of
argument are incomplete in an important way (especially in the presence of multiple equilibria). First,
even under perfect commitment by the fiscal agent, taxes set today but payable tomorrow depend on
tomorrow’s marginal utility (which is endogenous in equilibrium). This tax, in turn, impacts the structure
of some RCEs, but it is not clear which RCE? Further, per counterfactuals and the evaluation of optimal
policy under multiple RCE, particular equilibria in economies "without policy intervention" of course
change under the new policy intervention, but need not be stable under the policy perturbation. This is
not generally the case of RCE are unique.

By developing a formal RCE operator that allows the collateral constraint to bind across any two
consecutive periods, we show that constrained states influence optimal taxes even in cases of a unique
equilibrium. So "designing" optimal policy in the presence of multiple equilibria seems much more delicate
than when RCE are unique. One interesting fact about using our generalized iteration approach in the
previous section is. This also allows us to develop a theory of macroprudential policy relative to "stable"
equilibrium selections.

Finally, although from a technical standpoint, our results rely on the primal characterization of equi-
librium, there is no issue developing recursive dual versions of our monotone methods (i.e., we can work
in spaces of Lagrangian multipliers for the budget constraint that are equal in all states to the marginal
utility of consumption). The point is we can easily map our primal methods directly into recursive dual
methods and isolate exactly the equilibrium states where collateral constraints hit (and Kuhn Tucker
multipliers for collateral constraints are positive). This means we can map all our equilibrium construc-
tions into dual time iteration methods that are typically used to study macroprudential policies (i.e., see
for example, the methods used in Bengui and Bianchi ([15]), for example).

Using the equilibrium construction, we can then develop equilibrium versions of constrained planning
problems and approach the question of optimal taxes are determined solely by the planner’s multipliers
along equilibrium paths for the decentralized RCE. Since these multipliers can be derived from a near-
standard optimization problem, our approach directly applies to a macroprudential policy framework.
We explore these issues in Pierri and Reffett ([62]).

38See Bianchi ([17]), Bianchi and Mendoza ([20]), Bianch, Liu, and Mendoza ([19]), Bengui and Bianchi ([15]), and
Benigno et al ([11], [12], [14]), among many others for discussion and additional references.
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Appendix: Proofs

Proof of Lemma 2

Proof. As a brief outline of our approach to the proof of this key lemma, the proof of part takes place in
five steps. We first show the operator A,.(c; CT(S))(d,y) for each CT(S) € C/(8S), Auc(c; CT(S))(d,y) :
CP(S) — CP(S) is well-defined. Second, we show the mapping A..(c, CT(S))(d,y) is jointly monotone
on CP x Cf, and order continuous in ¢ € CP for each CT € C’. Third, we show the greatest fixed
point of A,.(c; CT(S))(d,y) (denoted for now by c*(CT(S))(d,y)) is strictly positive, can be computed
by successive approximations from an initial ¢y = c¢pmax for each CT € C/. 39 Fourth, we show the greatest
fixed point is increasing in C7(S) on C/. Finally, in the fifth step, we show ¢*(CT(S), 3, R, k)(d,y) is
the unique strictly positive fixed point in CP of A(c; CT(S))(d,y) for each CT € CF .40

Step 1: A,.(c;CT(S))(d,y) : CP — CP. Fix CT € Cf, c € C?, and s = (d,y, S).

We first prove the operator A,.(c; CT(5))(d,y) is well-defined. To see this, observe when c¢(d,y) € CP,
c(d,y) = 0 for any state (d,y), C(d’,y';¢,CT) = 0, we define z}.(s% ¢,CT) = Ayue(c; CT(S))(d,y) = 0.
So consider the case when ¢ € CP, ¢(s¢) > 0. As (¢,CT) € CP x Cf, the mapping Z;(z,s%¢c,CT) in
equation (26) is strictly decreasing and continuous in x, for any (d,y,S;c,CT). Compute an implicit
mapping z7.(d,y, S; ¢, CT) in the following equation:

ZZC(J"ZC(CZ’ Y, Sa & CT), S;C, CT) =0

If the root z7.(d,y, S;c,CT) exists, it will be unique as Z7, is strictly decreasing and continuous in z
under Assumption 1. When x — 0, Z; (2,5 ¢,CT) — oo by the Inada condition in Assumption 2.
Further, as = gets sufficiently large, C((R(z —y* +d), v, R(x —y* +d,y’) — 0, hence Z*, — —oo. Then,
by the intermediate value theorem, x%.(d,y, S, c,CT) exists (hence, z.(d,y, S; ¢, CT) is a function for all
pair (c,CT)).

Next, we show z7.(d,y,S;c,CT) € CP. Again, when c(d,y) € CP, ¢(d,y) = 0 in any state (d,y),
= C(c,CT) = 0; hence, we define z7,(d,y,S;c,CT) = 0 € CP. Therefore, consider the case when
c € CP, c(s?) > 0. As CT € ¢/, for fixed ¢ € CP, Z_ in (26) is (strictly) decreasing in d, (strictly)
increasing in y, and strictly decreasing in x; hence, at such s = (d,y, S), the root z¥.(d,y,S;c, CT) is
decreasing in d, and increasing in y. Further, when ds > d; and y; > y2, by the concavity of utility in
Assumption 1, we have from the definition of the x}.(d,y, S,c,CT) in Z?, the following inequality

Ul (xzc(dlv Y1, Sa c, CT)) yN)

<
R >
/6U1(C(R($Zp(d2, Y2, Sa & CT) - yg + d2)a y/a R(ch(an Y2, S? &) CT) - y; + d2)7 y/)X(dy/)

hence, for the root =% .(d,y, S; ¢, CT) must make the right side of the above expression fall at z% . (dz, y2, S; ¢, CT)
in a new solution, which implies:

T T T T
Toe(di,y1,85¢,C77) =y +di > 27,.(d2, y2,S5¢,C77) —y5 +do
39Keep in mind, the first step operator on the space CP*(D¢ x Y¢; CT) has a trivial fixed point at ¢* = 0 for all CT € C/.

This will not be a problem as in the fourth step, we shall show that the first step mapping restricted to the domain ¢ €
CF (D€ x Y¢;¢(d,y)) with the norm

plcr,c2) =[|ulocr —u oca |

where || u' 0o c¢1 —u/ 0ca ||< 0o is a monotone contraction. It does turn out the first step operator is a monotone concave
operator on all of C?(D® x Y*¢;¢(d,y)), so by a standard argument in the monotone map literature (e.g., Datta et al. (|28],
Morand,and Reffett ([53]), and Mirman, Morand and Reffett ([51]), the first step operator only has two fixed points (the
strictly positive one, and ¢* = 0 for all CT € CY).

40Note the operator Aqyc(c, CT(S))(d, y) therefore can have many fixed points (actually, a complete lattice of fixed points),
but has a unique strictly positive fixed point (which is the only non-trivial fixed point from the vantage point of constructing
RCE). That is, all the "trivial" fixed points take place on the boundary of the space CP.
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or
y,{ - dl - m:;c(dlvylﬂ S;C7 CT*) < yg - d2 - ch(d%yQ»S;Ca CT)

Therefore, for each CT € CF, A,.(c; CT(5))(d,y) = x%.(d,y, S;¢c, CT) € CP.

Step 2: A,.(c,CT(S))(d,y) is monotone (increasing) on CP x Cf. Take z; = (¢;,C¥) and x9 =
(c2,0F) € CP x Cf, with x; < 5 under the pointwise partial order on the product space C? x C7. First,
consider the case 0 < z1 < x5, where in some state (d,y, S), either 0 = ¢1(d,y) or 0 = C{(S), Then, by
definition of the operator A(c, CT(S))(d,y), A(c1,C{)(d,y,S) =0 < A(ca, CT)(d, y, S). So, now consider
the case where 0 < z1(d,y) < z2(d,y), so in all states, 0 < ¢;(d,y) and 0 < CT(S). Then, we have from
the definition of z},, in Z;_ the following inequality:

Ul (x:;c(d7 Y, S, C1, ClT)7 yN)

R
/BUl(C’l(R(:cZC(d, Y, 8ie1,C1) —y" +d),y' R(wi(dyy, Sse1,CF) — y3 + o),y )x(dy')
> /ﬂUl(Cz(R(vac(d, Y, 801,01 ) =y +d),y', R(ayo(d,y, S;e1,CT) — 3 +d2), 5" )x(dy')
where for ¢ = 1,2, the subscript on continuation consumption is used to denote.
Ci(e,CT)(d,y,S) = inf{ei(d, y), C (D, Y, CF ()}
where recall CF = (14 £)YT — D + Zp(CT(D,Y)YN. Therefore, as Z; is strictly falling in x, we have
uo(d,y, Ssc1,CT) < wy.(d, y, 83 e2,CF)
Then, if the implied debt at d,,_(d,y, S;c1,CT) < k(YT — D + p(CT)YN, then

Aye(er, O (9))(d,y) = 20(d, y, S;e1,CF)
< iZc(dayas;C%CzT)
< Auc(627CZT(S))(d7 y)

where the second line uses the fact that d,, (d,y,S;c1,CL) < k(YT — D + p(CT)YYN < k(YT — D +
p(CIHY N so zk.(d,y,S;c1,C) < a.(d,y,S; ca, CT) is feasible (i.e., the unconstrained level of tradables
consumption at (co, C1') cannot be lower). So the operator A,.(c, CT(S))(d,y) is monotone on CP x C/.

Next, we prove A(c; CT(S))(d,y) : CP — CP is order continuous on CP for each fixed CT'(S) € C/.

First, some definitions. Let X be a countably chain complete partially ordered set,*' and X, =
(zn)nen C X, z, € X, be a countable chain. We say a operator A : X — X for is order continuous if
for any X. C X, A(z) (a) sup-preserving: A(VX,.) = VA(X,) and (b) inf-preserving: A(AX.) = ANA(X,).

We remark, order continuous operators are necessarily isotone (e.g., Dugundji and Granas ([33], p.
15)).

We now show for each CT(S) € Cf, A,.(c;CT(S))(d,y) preserves sup operations; a similar argu-
ment works for preserving inf operations. Fix the state (d,y), and CT(S) € C/, and denote by C, =
(en(d,y))nen, cn(d,y) € CP any countable chain in CP. Define VC.(d,y) € CP and VA,.(C.; CT(S))(d,y) €
CP*| which both exist in CP (resp, CP*) are both complete lattices (hence, countably chain complete).
If in any state (d,y), VC.(d,y,S) = 0, then VA,.(C.; CT(9))(d,y) = Auc(VCe; CT(S)) = 0. Therefore,
assume for every state (d,y,S), VCc(d,y) > 0. Then, we have the following inequalities for continuation

41Tet X be a partially ordered set. We say X is countably chain complete if for all countable subset X, that are a chain
(i-e., for no two elements z1,z2 € X¢, 1 and z2 are ordered), VX, € X and AX. € X.
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tradables consumption C(c,; CT) = inf{e,(d,y), CF'(D,Y,CT(S))}
c(vC.) = C(ve™; CT)

= inf{Ven(d,y), (1+ F)YT = D+ Zp(C(S)y™))

==

= Vint({en(d,y), (L4 YT~ D+ p(T ()Y
=vC(c;cT) = ve(c,; cr(9))

where in the second line Ve, (d,y) is computed, and then the infimum over two continuous functions
(Ven(d,y), (1 + £)YT — D + £p(CT(S))y™) is taken over a compact set (d,y,S) € DxY xS, and
hence continuous by Berge’s theorem, in the third line, inf, is computed pointwise over (d,y) € D xY (a
compact set and hence continuous) at each n € N, and this collection is then increasing pointwise in n
as C. is a countable chain) and the sup is taken over n € N. Then, the remaining equalities follow from
p continuous, and the fact that sup and inf operations over two continuous functions are each continuous
over the compact set (d,y,S) € D x Y x S by Berge’s maximum theorem.

Using these facts, and substituting into the definition of Z7.(x,d,y,S;c, CT), we have for the root
zt.(d,y,S,c,CT) the following equalities:

Z* (xh (d,y, S;Ven, O, d,y, S;Ven, CT) = v Z7 (2 (d,y, S; Ve, CT), d,y, S; e, CT)
=VZ; (2}.(d,y, S50, CT), dyy, S5 00, CT)
= ZZc(vch(dv Y, S; Cn, CT)v da Y, S; Cn, CT)
where the first equality follows from Uj(c,y™) continuous and C(Ve,, CT) = VC(cn, CT), the second
line follows from Z?, continuous (pointwise) in (z,¢,) for fixed CT, the third line follows from Z7,

continuous in x. Then, noting that for any state where collateral constraints do not bind, we have
zt.(dy, S, cn, CT) < A(CT)(S), our operator Ay.(c, CT(S))(d,y) is for each n € N defined as:

Aaye(d,y, 8560, CT), CT(S))(d, y) = inf{a},.(d, y, S5 ¢, CT), Ac(CT)(S)}
so we have the following:

A(Ven, CT(8))(d,y) = inf{a7,(d,y, S5 Ven, CT), Ac(CT)(9)}
= inf{Va;.(d,y, S;cn, CT), Ac(CT)(5)}
= vinf{a}(d,y, ;cn, CT), A(CT)(S)}
= VA(en; CT(5))(d, y)

where the second equality follows again from U (¢, y”) is continuous and C'(Ve,; CT) = vVO(e,; CT) for
each C” and for the third equality again uses the fact that inf, here is an increasing pointwise in n, and
the sup is then taken over n € N. Hence, A,.(c; CT(S))(d,y) is order continuous in CP for each fixed
CT ¢ C7, which completes the proof of Step 2.

Remark 10 Before proceeding to step 3, as equilibrium fixed point comparative statics be an important
question in Steps 4 and 5 (and in the proof of the comparative statics theorem in Theorem 6), for the
remaining steps of the proof of this lemma, we shall add to the notation for our operator for the parameters
of interest, and remark that the operator Ay.(c; CT(S), B, K, R)(d,y) is increasing in k, and decreasing in
(B, R) for fized (c,CT, d,y,S). To see this, noting c € CP is decreasing in d, Uy is decreasing in ¢ under
assumption 1, Z*, in (26) is decreasing in (R, B). So, the root x%.(d,y,S,c,CT; B, k, R) is decreasing in
(B,R). As Z¥, is independent of k, but A.(CT;k, R) is increasing in k, Auc(c;CT(S),B,k, R)(d,y) is
mcereasing in K.

Remark 11 By the previous remark, as Ayc(c;CT(S), B, k, R)(d,y) is decreasing in (B, R), and increas-
ing in k, and A.(CT; k, R) is decreasing in R, and increasing in , our operator A(c; CT(S), B, k, R)(d,y)
is also decreasing in (B, R) and increasing in k under Assumption 1.
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Step 3. Existence and computation of the greatest fived point of Auc(c;CT(S),B,k, R)(d,y) € CP.
Fix CT € C7, and denote by ¥4(CT(S),3,rx,R)(d,y) C CP the set of fixed points of mapping of
Aye(e; CT(9), B, K, R)(d,y) € CP. Then, by Tarski’s theorem, as A,.(c, CT(S)(B, k, R)(d, y) is monotone
on a complete lattice CP, its set of fixed points ¥4 (C7T(S), 3, %, R)(d,y) C CP is a nonempty complete
lattice.*> By definition, the least fixed point is trivial, and is ¢* = 0 for all y € Y. By step 2 above,
Aue(e;CT(9), B, K, R)(d, y) is order continuous on CP. Further, A,.(c™®;CT(S))(d,y) < cmax (With
strict inequality for some states (d,y)). Hence, by the Tarski-Kantorovich theorem (e.g, Dugundji and
Granas ([33], p.15), the greatest fixed point ¢*(CT(S))(d,y) can be computed as:

/\AZC(cmaX;CT(S),B, k, R)(d,y) — c*(CT(S),ﬁ,m,R)(d, y) >0

where the strict positivity of ¢*(CT(S),3,k, R)(d,y) € CP > 0 follows from the Inada condition on
Ui (c;y™) in its first argument, and we note the dependence of ¢*(CT'(S), 3, k, R)(d, y) on deep parameters
for later reference. That proves the existence of a strictly positive greatest fixed point.

Step 4. Fized point comparative statics of greatest fized point. By standard fixed point statics
argument for order continuous operators, the greatest fixed point ¢*(C7T(S), 8, x, R)(d, y) is increasing in
(CT(9), k), and decreasing in (3, R) (e.g., by a parameterized version of the Tarski-Kantorovich Theorem).

Step 5: c¢*(CT(S),,k, R)(d,y) the unique strictly positive fized point. This follows from an appli-
cation of Corollary 4.1 in Li and Stachurski ([43]) for each CT € Cf. To see this, for fixed CT ¢ C/
put

s(d,y) = u'(A(CT)(d, y)) (53)

and restrict the first step operator A,.(c; CT(S), 8, k, R)(d,y) to the set CE,(S;s) c Ch = {c €
C?|c(d,y) > 0}. where in our notation we make explicit the dependence of the the space C, (S;¢) on
the upper bound in (53). Let ¢; and ¢z be elements of CP*(S;<). Equipped the space the C%_ (S;<(d,y))
with the norm

pler,c2) = uioer —u oca ||

where || ' o ¢y —u' ocy ||[< oo, where u/(c) = U'(A(c))Ar(cT,yNT) is strictly decreasing in ¢! under
Assumption 1, and give C’ | (8) its relative distance structure.

Clearly, from the arguments in Step 1 of this proof, A(c; CT(S),8,k, R)(d,y) maps C%_ (S;¢) into
itself. By Li and Stachurski ([43], Proposition 4.1.a), the pair ( C%_ (S;<),p) is a complete metric space.
As BR < 1, by Li and Stachurski ([43], Proposition 4.1.c), for each A,.(c;CT(S),B,k, R)(d,y) is a
contraction of modulus 0 < SR < 1 in ( C% . (S;<),p). Then, by the contraction mapping theorem,
A(c; CT(S), B, k, R)(d, y) has exactly one fixed point in ( C_ (S;<),p). So, ¢*(CT(S), B, k, R)(d,y) is the
unique strictly positive fixed point of A,.(c; CT(S), 3, K, R)(d,y) for CT € C7.

Finally, as A,.(c; CT(S), B, k, R)(d,y) is easily shown to be continuous in CT(S) € C7 in the topology
of pointwise convergence and monotone on C7/, by a standard application of the parameterized version
of the Tarski-Kantorovich theorem, as

inf A7, (Cma, C7)(s°) = (O (8), B. . B) (d )
is monotone increasing in C7 on C7. Further, by the Bonsall-Nadler theorem for parameterized contrac-

tions, c¢*(CT(S), B, k,7)(d,y) is also continuous in the topology of pointwise convergence on C7 (e.g., see
Nadler ([54], Theorem 1)). Hence, c*(CT(S), 8, k, R)(d,y) is order continuous on C/. m

42The space CP is an closed equicontinuous collection of functions, hence compact set in the space of continuous function
in the topology of uniform convergence. To see this, as ¢(d,y) is decreasing (resp., increasing) in d (resp., y) such that
—d'(d,y) = R(yT — d) — c(d,y) is decreasing (resp., increasing) in d (resp., in y), we have |c(d’,y’) — c¢(d,v)| < R |(y' —
d') — (y — d)| when (d',y') > (d,y), hence CP is an (uniformly) equicontinuous collection of continuous functions. Noting
y € Y is discrete, CP is therefore a compact set in the topology of uniform convergence, and hence is chain complete.
(See Amann ( [3], lemma 3.1)). As CP is additionally a lattice, CP is a complete lattice. So the set of fixed points of
Auc(c; CT(S), B, R,k)(d,y) for each (B, k, R) given by W 4(CT(S),, R, k)(d,y) is a nonempty complete lattice by Tarski’s
theorem (e.g., see Tarski ([76])). So the existence of fixed points in Step 3 is not the question. We simply want to verify in
Step 3 that greatest fixed point VU 4(CT(S), B, R, k)(d,y) is strictly positive.
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Proof of Lemma 3

Proof. For states s = (d,y,S) when d = D and y = Y, we first sharpen the characterization of
the fixed point mapping ¢*(C7T)(d,y) for the operator A,.(c,CT)(d,y) in Lemma 2, step 5 when the
operator A,.(c;CT)(d,y) is restricted to CT € CT*(S). As C/* is compact in the topology of uniform
convergence, the arguments in step 1, lemma 2 imply A(c, CT) is continuous jointly in the topology of
uniform convergence in (¢, CT) € C% | x C/*. Therefore, as the parameterized contractions A(c; CT) are
jointly continuous in (c¢,CT), by Nadler’s theorem (Nadler ([54], Theorem 1), the fixed point mapping
c*(CT(8))(s°) is continuous on C/*. Also, note for each C7 € C/*, ¢*(CT)(d,y) is an element of a a
(uniformly) equicontinuous collection of continuous functions over (d,y). 3 Further, for each (d,y),each
CT(S) € C/* which is also an element of an (uniformly) equicontinuous collection C/*(S). In both
cases the pair (¢*(CT)(d,y),CT(d,y) satisfy the exact same bounds on the variation of (d,y). (i.e., for
c(CTY(d,y) (resp, CT(D,Y) € C’* we have ¢*(CT)(d,y) (resp., CT(S)) is decreasing in d (resp.,
increasing y) such that |c(d’,y') —c(d,y)| < R |(y' —d') — (y — d)| when (d',y") > (d,y) (resp., ¢(d’,y') —
c(d,y) < R |(y —d') — (y — d)| when (d',y') > (d,y) where c¢*(CT(d,y))(S) must satisfy the budget
constraint in equilibrium, as does C.(d,Y,CT(d,y) € C/* by construction. As ¢*(CT(d,y))(d,y) is
also continuous in s¢ = (d,y, d,y), by Berge’s theorem, C(s¢)— inf{c*(d,y, C*(d,y),C.(d,Y,CT(d,y)) is
continuous and also satisfies |C(d’,y") — C(d,y) < R |(y' — d') — (y — d)|. Hence, the space C* forms a
collection of (uniformly) equicontinuous elements over S¢. As C*(S¢) is also closed, C*(S¢) is compact
(and hence, chain complete). As C*(S¢) is also a lattice, C* is a complete lattice. m

Proof of Lemma 4

Proof. By Lemma 2, the mapping ¢*(C7(S), 3, , R)(d,y) is order continuous on Cf. It is there-
fore order continuous on the restriction of ¢*(C7(S), 8, k, R)(d,y) to C7*(S). As C/* is compact in
the topology of uniform convergence, A,.(c;CT)(d,y) is actually continuous in the topology of uni-
form convergence. Hence, by a stronger version Bonsall-Nadler theorem on parameterized contrac-
tions, ¢*(CT(S),B,k,7)(d,y). (e.g., see Nadler (|54], Theorem 2 and Lemma, p. 581)), the mapping
c*(CT(S), B, k, R)(d,y) restricted to Cf*(S) is continuous in the topology of uniform convergence. As
A(CT)(s%)} is also continuous in the topology of uniform convergence restricted to the compact do-
main C/*, mapping A*(C; B, k, R)(s%)) in (34) where C = inf{c*(C7T(5%), A.(CT)(s¢) € C*(S°) for
CT € C/*(8) continuous in the topology of uniform convergence on C*(S¢) by Berge’s theorem (and
hence, continuous in the topology of pointwise convergence), so A*(C; 3, k, R)(s%)) is order continuous
on C*. m

Proof of Theorem 5.

Proof. Let ¥ C C* be the set of fixed points of the mapping A*(C)(s°)) defined in (34). That
A*(C)(s°)) € C* is immediate ( as by construction, or fixed S, whend = D,y =Y, ¢*(CT(S); 3, R, k)(d, v)
€ CP, and (b) when (d,y) is fixed, inf{c*(CT(S); B8, R, k)(d,y), A.(CT)(S))} € C* where CT € CT* (
as if s¢ is a collateral constrained state, then in addtion to A.(CT)(d,y being increasing in y, decreasing
in d, we also have d(s¢) = k{y? + p(CT(d,y))y") is increasing in y, and decreasing in d. Further, as
¢*(CT)(d,y) in lemma 2. step 5 and A.(CT)(s) = (1+ £)YT — D + £p(C*(d,y))y™" in equation (30)
are both order continuous (hence monotone increasing) as they are both continuous in the topology of
pointwise convergence and monotone, the operator A*(C)(s¢)) = inf{c*(CT)(d,y), A.(CT)(d,y)} is is
also continuous in the topology of pointwise convergence (via Berge’s theorem) and hence order continuous
on C*.

Then as A*(C)(s%)) is monotone, and C* is a nonempty complete lattice, by Tarski’s theorem (Tarski
([76], theorem 1), ¥*is a nonempty complete lattice.

Further, as A*(C)(s¢)) is such that when CT =0, 0 < A(0) , and 0 < A(0) for states (d, y) such that
A(0) = (14 £)y" —d+ £p(0)y" > 0, we now iterate on A™(0). As A.(A"(0)) is an increasing chain
the states (d,y) such that A.(0) = (1+ £)y” —d+ £p(A™(0))y" > 0 increasing, we have 0 < 0 < A"(0)

43See the proof in the footnote of Step 3 of this proof.
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,and 0 < A™(0) on increasing subsets of states S C D x Y of equilibrium states (d,y) € D x Y. Let
Cy, = sup,, A"(0) where C,,(s°) > 0 in the set S** = sup,, S"* (where the sup is taken related to set
inclusion). As A*(C) is order continuous, sup,, A*(0) = Cy, = AV with minimal state space S* by the
Tarski-Kantorovich theorem. Further, inf,, A*"*(cmax) = VWV also by the Tarski-Kantorovich theorem,
where we have

sup A*(0) = AU < V¥ = inf A" (cmax)

for the the minimal (resp., maximal) fixed points AV (resp., V¥). ®

Proof of Theorem 6

Proof. (i) Let U*(R,k,8) C C* be the set of fixed points of the mapping A*(C; 3, R, k)(s¢)) =
inf{c*(CT(9); B, R, k)(d, y), Ac(CT)(s°)} defined in (34). as A*(C, 3, R, k)(s¢)) € C*. As by Remark 11,
Aue(e, CT) (B, k, R)(d,y) is decreasing in (3, R) and increasing in k, A*(C, S, R,k)(s°)) is decreasing in
(B8, R), and increasing in & (as A.(CT)(k, R) is decreasing in R and increasing in » the inf operation pre-
serves the relevant comparative statics). So by Veinott’s comparative statics version of Tarski’s theorem
(see Veinott ([78]), also see Topkis ([77], Theorem 2.5.2), the least and greatest selections of U*(R, &, )
exist as fixed points, and are decreasing in (3, R), and increasing in k.

(ii) As A*(C, B, R, k)(s°)) = inf{c*(CT(S); B, R, k)(d, y), Ac(CT)(5°)} is order continuous under point-
wise partial orders on C*,

sup A™(0; 8, K, R)(s°) — CX(B, K, R)(s)
i%f A (emax; B, £y R)(8%) = CY(B, k, R)(s%)

the result follows from the Tarski-Kantorovich theorem (e.g., Dugundji and Granas ([33], p.15) with
Cx(B, k, R)(s%) (resp, C3(B, Kk, R)(s%)) decreasing in (8, R) and increasing in k. m

Proof of Theorem 8

Proof. Noting the order continuity of the RCE operator, the result follows directly from an application
of the main result in Balbus, et. al. ( [8], Proposition 3). m

Proof of Theorem 9

Proof. With the addition of Assumption 2, the we can modify the proof of our main existence result in
Theorem 5 into a single-step operator and then construct the actual RCE in a single step via Lemma 2.

In particular, in equation 24, recalling the definition of the space C1"| (D¢ x Y¢¢) ¢ CH, = {c €
C?|c(d,y) > 0} in the proof of Lemma 2, for ¢ € CE, (D® x Y*¢;¢), define

C(C7 CT)(dv Y, S) = C(C7 CZ*(dv y)) = inf{c(d, y)v ‘T*(S)}

where 2*(s) is the unique solution in equation (44) (i.e., the tradables consumption over collateral con-
strained states is unique determined by equation 44 under Assumption 2).

Then in the definition of our fixed point operator A(c)(s¢) in equation 31 with A.(CT)(S) = z*(s) so
our fixed point operator A(c)(s®) under Assumption 3 now simplifies to the following

A(e)(s°) = inf{Ayc(c)(s°),2*(s°)} when ¢ > 0 (54)

=0 else

where in the constrained states, the RCE tradables consumption is ¢Z*(d, y) and unique.
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The resulting operator A(c)(s®) is a monotone contraction and has a unique strictly positive fixed
point ¢*(s¢) via the application of the Li-Stachurski version of the contraction mapping theorem in the

complete metric space ¢ € CTJF(DG x Y¢;¢), as discussed in step 5 in Lemma 2. Hence, for any initial
ce CF (D x Y¢q),

A (©)(d,y) = ¢*(d,y)

where the unique RCE for tradables consumption is given by:

cr (d’ y) = inf{C* (dv y)v z”* (da Z/)}
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