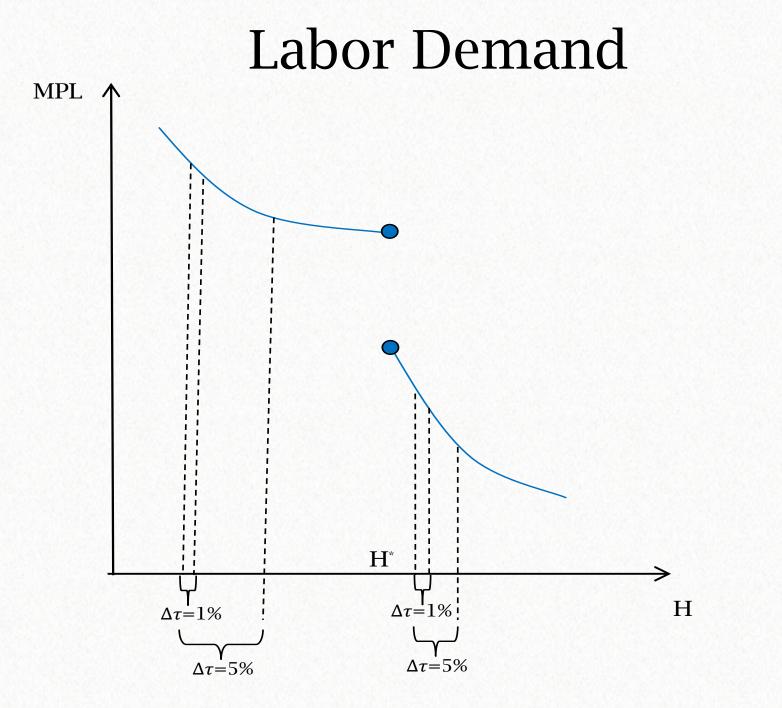
Asymmetric Fiscal Multiplier

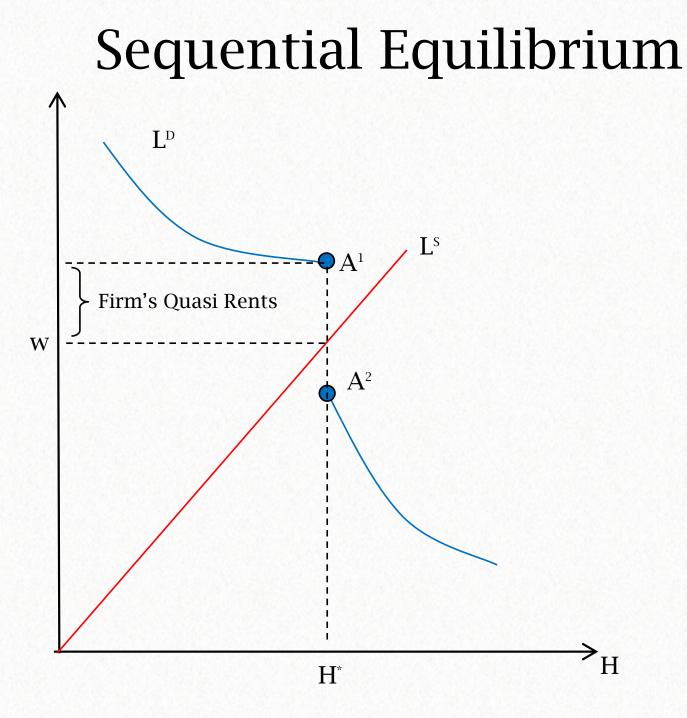

Damian Pierri damian.pierri@gmail.com www.damianpierri.com IIEP (UBA-CONICET) and UdeSA

Motivation

- Does the response of aggregate employment to changes in labor income tax rates depend on the state of the business cycle?
- **Fact**: for small changes in tax rates, IR are state independent. For a significant tax cut, the response of aggregate labor is bigger in a recession.
- Similar question as in Ferraro (2017), different history.
- Search and Matching vs. idle plant capacity
- To match the non-linearity we may need occasionally binding constraints.

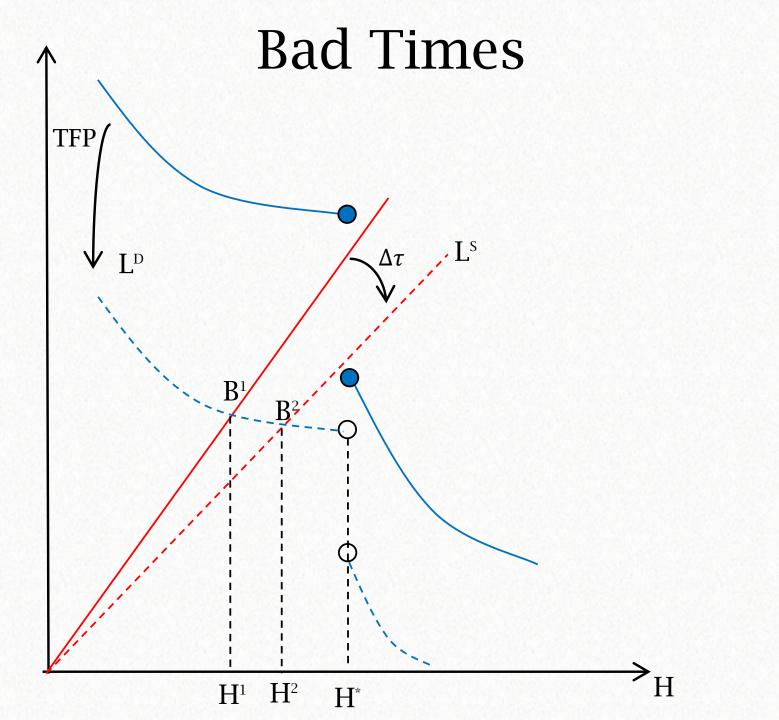
Motivation

- Recursive equilibria in this framework may not be well defined due to a **non-smooth** price function
- In Minimal state space recursive equilibria, this fact may generate a bias in the numerical simulations (Frevenza, Martinez and Pierri, 2019)
- Broader recursive equilibrium notions (Feng, et. al. 2015) also affected by the non-smoothness of the price function.
- This paper: directly computes the sequential equilibrium using a broader equilibrium definition.
- Main contribution: idle capacity implies that the aggregate production function is less concave in a recession which generate the observed responsiveness in GDP



Labor Demand Over the Business Cycle

- H^{*} is the minimum number of hours with zero idle capacity
- For H< H^{*} there is idle capacity
- For H< H^{*} the aggregate production function is less concave
- For small shocks, employment changes are similar in a boom and in a recession
- As observed in data, for big fiscal policy shocks, the multiplier is bigger in a recession
- Why?


Labor Demand Over the Business Cycle

- Intuitively
 - Fiscal policy **activate plants** in a recession
 - Each plant has a minimum hourly requirement
 - Induces a non-convexity in the choice set
 - Generates the observed asymmetry as in a "good times" hours can change smoothly due to full plant capacity
- Technically
 - For small shocks, we numerically replicate the tangent of the production function
 - The effect of idle plants is not strong enough to generate asymmetries locally
 - For big shocks, we are outside some neighborhood
 - This implies that the curvature is relevant as there is an increasing difference between the tangent at a point and the graph of the function

Sequential Equilibrium

- There are decreasing returns to scale.
- Insure the difference in the degree of concavity in "good times" and "bad times".
- Generate positive profits π even when MPL=L^s.
- At the minimum level of labor with zero idle capacity
 - The firms hires H^{*} hours of labor at wage w
 - At point A¹ profits are greater than π
 - At point A^2 profits are smaller than π
- Firm's optimal strategy for H=H^{*}
 - Pay w and compensate the Mg dis-utility of labor
 - Produce at A¹
 - Transfer π + QR to the household

Bad Times

- A Negative TFP shock lowers labor demand.
- Takes the economy to the flat region of labor demand
- We move to B¹ and employment lowers from H^{*} to H¹, where there is idle capacity
- The tax cut moves labor supply across a "flat" labor demand
- Aggregate elasticity is greater in this region because it activates plants

Computation

- We must compute the sequential equilibrium
- We impose a strong restriction on preferences as in Sargent, 2016 (QJE).
- Beyond GHH (no income effect on labor), we use quasilinear preferences (linear consumption)
- Allow us to keep track of the lagrange multipliers
- We can compute capital tomorrow using a tractable euler equation which depends only on the interest rate as:
 - $K_{t+1}(z^t)$ is given as uncertainty reveals "early"
 - $r_{t+1}(z^t z_{t+1})$ is determined by the intra-temporal optimization problem of the firm