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Abstract

The seminal paper of Duffie, et. al. (1994) shows that in non-optimal economies
with a finite number of exogenous shocks there is a trade off between the generality
of a recursive representation and a well behaved steady state, which is defined by
an ergodic invariant measure of an stationary Markov Process. The authors ”con-
vexified” the state space using ”sunspots” in order to prove the ergodicity of the
measure. The purpose of this note is to show that, in certain environments, it is
possible to obtain a recursive representation of a non-optimal general equilibrium
model with a finite number of exogenous shocks that has an ergodic invariant mea-
sure, a compact and stationary state space and no ”sunspots”. By enlarging the
number of variables in the state space, this paper proves the existence of multiple
continuous markovian representations; which allows deriving an ergodic invariant
measure for each of them using standard results.These facts show, contrarily to what
is claimed in Blume (1982), that it is possible to obtain an economy with multiple
equilibria and a continuous markovian representation. Moreover, for a stochastic
RBC model with taxes, this paper derives a closed form recursive representation. As
it is not necessary to use ”sunspots”, it is possible to simulate the model accurately.
These results are then used to test the performance of minimal state space recursive
equilibrium methods. Even if the algorithm converges, the numerically simulated
distribution does not match any of the possible ergodic measures. We found that
minimal state space methods may over/sub-estimate concentration and dispersion
measures of the true ergodic distribution. Moreover, when it comes to asses the
effect of economic policies, the numerical solution may even predict a different sign
with respect to any of the actual distributions.
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1 Introduction

Since the seminal paper of [10] macroeconomists have been concerned with the recursive
representation of sequential equilibria in general equilibrium models. This representation
is relevant not only for computational purposes but also for theoretical ones. As regards
the former, it is easier to numerically approximate a first order stationary dynamic process
rather than the sequential representation originally defined. In reference to the latter, a
markovian structure allows to define a well behaved long term equilibria (i.e. a steady
state) using a recursive equilibrium notion (see for instance [3]). Finally, and more im-
portantly, the theoretical and computational arguments are related with each other since
accurate numerical simulations requeres a Markovian representation and an appropriate
steady state (see for intance [14] among others).

Unfortunately, there is no free lunch. In order to improve the emprical performance
of general equilibrium models, macroeconomists have turned to the incomplete markets
framework. Thus, the results in [10] are insufficient. [6] showed that in incomplete market
models there is a trade off between the generality of a recursive representation and a well
behaved steady state. The authors showed that in the presence of multiple sequential
equilibria, Markov equilibria may not be continuous. Thus, in order to obtain an ergodic
invariant measure, which is the natural representation of a steady state under the most
general markovian environment, it is necessary to artificially convexify an appropriately
enlarged state space. This fact affects the predictive performance of the model as each
time period has an arbitrarily large number of possible continuations which are called
”sunspots”. Moreover, with the notable exception of [7], there is no numerical procedure
that uses sunspots to convexify multiple equilibria. The standard practice is to proceed
as if equilibrium were unique (see for instance [12]). From another perspective, [3] showed
that it is possible to prove the existence of an invariant measure using a state space with
no sunspots as long as there is an uncountable number of exogenous shocks. This last fact
is inconvinient from a numerical point of view as the computed policy functions must be
evaluated in an arbitrarily large number of different shocks in order to satisfy the required
assumption.

The purpose of this note is to show that, in certain environments, it is possible to
obtain a recursive representation with an ergodic invariant measure, a finite number of
exogenous shocks and a well behaved state space (i.e. a state space with no sunspots).
Moreover, the recursive equilibrium is not unique and each of them induces a Feller
mechanism. One of the main contributions of the paper is to present a closed form con-
tinuous Markov equilibrium that satisfies all the requirements of the sequential version
of a canonical RBC model with taxes. Equipped with that equilibrium it is possible to
test the accuracy of simulations of a standard, numerically convergent, minimal state
space algorithm. We found that a cononical procedure may sub-estimate both concentra-
tion and dispersion measures of any of the possible multiple ergodic distributions of the
model. For instance, the mean (the coefficient of variation) of the ”true” distribution
could be almost 5 (12) times bigger than its numerical counterpart. We argue that this
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bias could be generated either for the lack of existence of a minimal state space equi-
librium, which precludes the theoretical convergence of the algorithm, or by the lack of
existence of a well behaved steady state, which affects the performance of the simulations.

When it comes to compute recursive equilibrium models, the curse of dimentionality
calls for minimal state space (MSS) methods. However, [9] argued that in the presence
of the presence of multiple equilibria a MSS recursive representation may not exist. This
fact justifies the necessity of an enlarged state space in an incomplete markets general
equilibrium framework as uniqueness has been an elusive quest in this field1. By enlarg-
ing the number of variables in the state space, it is possible to obtain multiple markovian
representations, each of them continuous, which allows to derive an ergodic invariant
measure by applying standard results. This note shows that, in certain cases, an appro-
priate enlargement is enough to: i) derive at least 1, possible 2, continuous markovian
process which represents a subset of all (possibly multiple) sequential equilibria, ii) obtain
a sunspots free state space with a finite number of exogenous shocks and, iii) determine
a suitable steady state.

Fact i) above is relevant from a theoretical point of view as it provides a counterexam-
ple for the equivalence between a continuous markovian representation and the uniqueness
of the sequential equilibrium. In words of [3]:

”the existence of a continuos selection - tantamount to the uniqueness of equilibrium
in each state - is not often satisfied”.

The results in this paper are based on a stochastic version of a RBC model due to [13].
The non-stochastic version of the model illustrates the implications of looking for a com-
putationally efficient recursive representation. In particular, [13] presents an example of
an economy with a discontinuous markovian representation and minimal state space. In
this note, it is shown that an enlargement similar to the one used in [6] is enough to derive
a continuous markovian representation with well behaved steady state and state space for
the model in [13] with aggregate productivity shocks.

From a methodological point of view, the results in this paper are used to test the
accuracy of simulations in MSS recursive equilibrium methods. In order to prove er-
godicity, this paper derives a closed form generalized recursive equilibrium (Fact i) for a
standard version of the RBC model with decreacing taxes on capital presented in [13].
The state space for exogeneous shocks is finite (Fact ii), which allows for computations
using standard procedures. As minimal state space are subset of generalized recursive
equilibria, any simulation from the latter, must be matched using the former. It is shown
that a numerically convergent MSS algorithm does not match any of the 2 ergodic dis-
tributions of the model (Fact iii). This bias not only affects the long run simulations

1 [4] provided conditions to guarantee the uniqueness of equilibria in an infinite horizon economy with
complete markets. There is no analogous result for incomplete markets
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obtained from MSS methods but also the trajectories obtained from them, which implies
in turn that the computed effects of economic policies are also innacurate. In particular,
we simulate shocks to preferences and technology. We found that numerical simulations
may over/sub-estimate the response of endogeneous variables, both taking into account
concentration and dispersion measures. Moreover, for some cases, the numerical compar-
ative statics gives a wrong sign (i.e. a decrease in the coefficient of variation of the long
run distribution of capital, when 1 of the 2 ”true” distributions increase their dispersion
and the other does not change significantly after the shock).

The paper is organized as follows: section 2 presents the canonical model and the
closed form recursive equilibrium and discusses its implications. Section 3 presents the
numerical test. Section 4 concludes.

2 A Continuous Recursive Representation

2.1 Setting of the Model

The model is a stochastic version of [13] (section 3.2). Consider a representative agent
economy with discrete time, t � 0, 1, 2.... Exogenous shocks are markovian and will be
denoted z. For the sake of simplicity let us assume that the state space for these shocks is
t0, 1u. An element of the transition matrix will be denoted pp., .q. Let tztu be a sequence
of shocks and Zt the set of histories up to time t, being a typical element zt. Using
standard results (see [16], Ch. 8) it is possible to define, for any z0 P t0, 1u, a stochastic
process pΩ, σΩ, µz0q on Z8.

There is a unique decreasing return to scale firm which only uses capital as input and
its technology is characterized by yt � Apztqfpktq with f 1 ¡ 0, f2   0 and fp0q � 0 as
usual. The firm is owned by the consumer as she is endowed with k0 ¡ 0 units of capital.
Thus, the agent has two sources of current income derived from her endowment: benefits,
denoted by πt, and rents from capital, denoted by rtkt. Besides, the flow of taxes paid
and transfers received is τpktqrtkt and Tt respectively. Note that the tax rate depends on
the stock of capital. In particular, it is given by a piecewise linear continuous function
(see [13], page 87 for details).

The problem faced by the consumer is to choose a pair of functions c : Z8 ÝÑ R and
x : Z8 ÝÑ R that solves the following problem:

max
tc,xu

¸
t

¸
ztPZt

γtupcpztqqµz0pz
tq (1)

s.t.

kpztq � xpztq � p1 � δqkpzt�1q (2)

cpztq � xpztq ¤ πpzt�1q � p1 � τpzt�1qqrpztqkpzt�1q � T pztq (3)
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cpztq ¥ 0, xpztq ¥ 0 for any zt P Zt, z0 and k0 ¡ 0 given, δ P r0, 1s is the depreciation rate
and γ P p0, 1q the discount factor.

In what follows τpzt�1q stands for τpkpzt�1qq or abusing notation τpktpz
t�1qq.

That is, the tax rate affects the rents obtained from capital holdings at time t, which
is in turn affected by the information contained in zt�1 because ktpz

t�1q � xt�1pz
t�1q �

p1� δqkt�1pz
t�2q. A similar argument can be used to understand rpztq because the agent

knows the clearing condition for the market of factors and the optimality condition for
the firm to be described below.

The problem of the firm is standard. Taking rt as given it solves:

max
Kt

ApztqfpKtq � rtKt, for any zt P t0, 1u. (4)

Observe that the optimality of the firm implies rt � Apztqf
1pKtq. The Government

simply transfers to the consumer the tax revenues:

T � τpzt�1qrpztqkpzt�1q. (5)

Finally, goods and factor markets clear:

cpztq � xpztq � ApztqfpKtq Goods Market

kpztq � Kt�1 Capital Market

where both equations hold for any zt P Zt.

Note that in equilibrium, the optimality condition of the firm and the market clear-
ing equation for capital holdings implies rt � Apztqf

1pkpzt�1qq which in turn implies
rt � rpztq as claimed. Further, both market clearing conditions imply cpztq � xpztq �
Apztqfpkpz

t�1qq � ypztq as expected.

2.2 Equilibrium Equation

In this case, the solution to the model can be characterized by the equilibrium Euler equa-
tion, which can be obtained by putting the optimality condition for the firm, the budget
constraint for the Government and the market clearing conditions into the optimality
condition for the consumer.

Assume that upcq � lnpcq and δ � 1. Then, the equilibrium equation is given by:

1
Ct
� γ

¸
zt�1�0,1

Apzt�1qppzt, zt�1qp1 � τpKt�1qqf
1pKt�1q

Ct�1

, (6)

with constrains given by
Kt�1 � ApztqfpKtq � Ct. (7)
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Note that the market clearing condition for capital implies that given zt the demand for
capital Kt�1 does not depend on the realizations of the exogenous shock at t� 1. Hence,
by replacing Ct�1 in (6) with its expression obtained from (7) and after some algebra we
can rewrite (6) in the following way:

1

γpApztqfpKtq �Kt�1qp1 � τpKt�1qqf 1pKt�1q

c

�

c1

Ap0qppzt, 0q

Ap0qfpKt�1q

d1

�Kt�2

�

c2

Ap1qppzt, 1q

Ap1qfpKt�1q

d1

�Kt�2

.

(8)
The purpose of this note is to find an equation Ψ : X ÝÑ X, where X is an appro-

priately defined state space and Ψ is a function that maps xt ÞÝÑ xt�1 with pxt, xt�1q
satisfying equation (8) for any t.

Notice that by standard arguments, by fixing δ � 1 and fp0q � 0, Kt stays in r0, KUBs
(see [16], Ch. 5) for any t.

Let X � r0, KUBs�r0, KUBs�t0, 1u. With this state space Ψ becomes a vector valued
function of the form xt ÞÝÑ pΨ1pxtq,Ψ2pxtq,Ψ3pxtqq with xt � pKt, Ut, ztq.

Let tznu be a realization of pΩ, σΩ, µz0q. Then, it is possible to define each coordinate
in the image of Ψ as follows:

Kt�1 � Ψ1pxtq � Ut

zt�1 � Ψ3pxtq � tznupt� 1q.

In order define Ψ2 we could use (8). Notice that (8) takes the form

c �
c1

d1 � Ut�1

�
c2

d2 � Ut�1

, (9)

or equivalently,

cpd1 � Ut�1qpd2 � Ut�1q � c1pd2 � Ut�1q � c2pd1 � Ut�1q. (10)

Due to the fact that this is just a quadratic equation we can get Ut�1 as a continuous
function of the parameters, namely:

Ut�1 �
�
a
p�d1c� d2c� c1 � c2q2 � 4cpd1d2c� c1d2 � c2d1q � pd1 � d2qc� c1 � c2

c
.

(11)

Equivalently:
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Ut�1 � gpd1, c, d2, c1, c2q

It is important to observe that (11) gives at most 2 different mechanisms 2 ,each of
them characterized by a different root of (11). Furthermore, note that cpKt, Ut, ztq, d1pUtq,
d2pUtq and the rest of the parameters in (11) depend on zt . Thus, Ψ2 is given by:

Ut�1 � gpd1, c, d2, c1, c2q �: Ψ2pxtq.

In order to show the continuity of Ψ (on Kt and Ut), provided that the discriminant
in g is positive, it suffices to verify the continuity of C, d1, d2 (on Kt and Ut).

2.3 Discussion

Translating this, we just wrote Kt�2 in terms of pKt, Kt�1, ztq; ie,

Kt�2 � gpKt, Kt�1, ztq.

Though g might be awful, it is still explicit and, even more, continuous (of course, this
representation has economic content if we can assure that the discriminant in g is positive
under reasonable parameterizations for any x P X).

The (numerical) cost of this representation is the enlargement of the state space with
respect to the natural one (i.e. pKt, ztq). As discussed in [9], enlarging the state space
might provide a recursive representation. Unfortunately, the results in that paper does
not address the continuity of the mechanism; an aspect that has severe consequences for
the steady state of the model as discussed in [6].

This paper shows that it is possible to obtain a continuous selection from a corre-
spondence based on a recursive representation. Moreover, this example shows that the
restrictions implied by [15] or [3] may not always be necessary as it is possible to have
multiple equilibria and continuous mechanisms. In particular, as Ut :� Kt�1, we have
now the following iterative system:

Take first an arbitrary initial condition pK0, U0, z0q and a drawn tznu, then

Kt�1 � Ut

Ut�1 � gpKt, Ut, ztq,

2Note that (8) implies that this model does not have a trivial solution at Kt � 0 as u � ln and
investment is not allowed to be negative. This fact in turn implies that the parameters in (8) are all
bounded away from 0. Of course, in order to have two non-trivial solutions it suffice to impose conditions
on the discriminant of (11)
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provides a sequence tXnu. Such a sequence defines a Feller mechanism, with compact
state space X.

Thus, it has an ergodic invariant measure (see [8]), which guarantees that the process
Kt has an invariant measure as well. Moreover, using standard results on laws of large
numbers for markov processes (see [17]), it can be shown that choosing an appropriate
initial condition it suffices to guarantee that:

¸
tP0,...,T

hpXtq

T
converges almost surely to Eµphq,

where h is a σX-measurable function and µ is one of the possibly many ergodic invariant
measures described above.

It is worth mentioning that this ”trick” can also be done in the case of discrete shocks
if the number of total states is 3 or 4. This relies on the fact that there are explicit
expressions for the roots of a polynomial in terms of its coefficients whenever the degree
of the equation is smaller or equal than 4. Thus, it is possible to obtain an expression
similar to (11) even if we allow for a more realistic exogenous state space.

3 A numerical exploration

The results in section 2.2 provide a unique oportunity to test the predictive power of
minimal state space (MSS) methods. As any solution obtained from a well defined MSS
recursive equilibrium must satisfy equations (6) and (7), the simulations generated by a
MSS method must converge to one of the possible multiple ergodic distributions obtained
from these equations. This section presents a standard recursive competitive MSS algo-
rithm that numerically converges to a fixed point between the perceived and actual law
of motion. Then, the equilibium policy function is simulated and the results compare
with those obtained from equation (11). We find a severe bias in the simulations ob-
tained from the MSS method which, in turn, affects the long run distribution of capital.
These findings provides evidence in favor of the results in [2] and [7] which suggests the
importance of theoretical results in the recursive numerical literature. That is, without
sufficient conditions that insure the equivalence between numerical and actual simulations
of the model, a convergent algorithm does not guarantee by itself the absence of biases.

3.1 The Reasons Behind the Bias

In order to rationalize these results, it is possible to borrow from 2 branches of the the-
oretical literature. First, [5] suggests that a MSS recursive equilibrium for the model
described in this paper can’t be computed using a standard state of the art algorithm.
On the contrary, the existence of a well defined recursive equilibrium calls for a ”two
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step method”, which has never been implemented in pactice. Second, the results in [11]
and [15], both based on an extension of [14], indicate that even if the model has an invari-
ant ergodic measure and thus a law of large numbers, there maybe a bias between actual
and numerical simulations. The results in section 2 insures that neither of these facts are
a reason of concern, provided an appropriate enlargement of the state space, as equation
(11) provides a closed form solution.

The rest of this section will discuss in detail these 2 claims. Let us begin with the
connection between the lack of existence of a MSS recursive equilibrium and state of the
art algorithms. The minimal state space version of the model described in section 2 can
be written as follows:

Vn pk,K,Z;Hjq �MaxyPΓpk,K,Zq upgτ pk,K,Zq�yq�β
¸
Z1

Vn�1py,HjpK,Zq, Z
1;HjqppZ,Z

1q

(12)
Where the feasibility correspondence is given by:

Γpk,K,Zq � ry P K; 0 ¤ y ¤ πpK,Zq � p1 � τpK,ZqqrpK,Zqk � T pK,Zqs

Capital is allowed to fluctuate in a compact set, r0, KUBs � K. The function gτ
represent disposible income and is defined by:

gτ pk,K,Zq � πpK,Zq � p1 � τpK,ZqqrpK,Zqk � T pK,Zq

Where πpK,Zq and τpK,Zq are defined in (2) and T pK,Zq in (5). The policy function
for (12) is given by hn�1,jpk,K,Zq, which belongs to the set defined below:

argmax

#
upgτ pk,K,Zq � yq � β

¸
Z1

Vn�1py,HjpK,Zq, Z
1, HjqppZ,Z

1q s. t. y P Γpk,K,Zq

+

Note, remarkably that: i) the household take a guess at the evolution of the aggregate
states using a perceived law of motion denoted Hj. ii) The value and the policy function
in the dynamic programming problem have to converge in j, which is associated with the
rational expectation nature of the problem (i.e. the perceived and the actual law of mo-
tion must be equal when k � K), and in n, that is guarenteed by the contractive nature
of the Bellman operator in (12). iii) The dependence of disposible, gτ pk, ., .q, on prices,
rp., .q, justifies the presence of equilibrium states which are represented by capital letters.
In particular, they affect the household problem through the firm’s decisions, given by
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(4), and market clearing conditions which are contained in the definition of recursive com-
petitive equilibrium, which is given below.

Definition 1: Minimal State Space Recursive Equilibrium (MSSRE)

A MSSRE is a value function V�, a policy function h�,� and a perceived law of motion
H� such that:
i) the household solves equation (12) obtaining V�pk,K,Z;H�q and h�,�pk,K,Z;H�q for
any feasible state k,K,Z.
ii) The firm solves (4)
iii) Markets clear. That is, k � K
iv) Expectations are fulfilled. That is, h�,�pK,K,Z;H�q � H�pK,K,Zq for any pK,Zq
v) The public sector runs a balanced budget. That is, equation (5) holds.

Before computing a MSSRE we must characterize it in order to undertand the differ-
ence with respect to the generalized Markov equilibrium described in section 2. Under
standard curvature and smoothness assumptions on the return function u, which are
all satisfied imposing the parametrizations used in section 2, together with the con-
vexity in the graph of the feasibility restriction Γ, for an interior optimal solutions,
h�,j p., K, .;Hjq P Γ p., K, .q, we can use the envelope theorem in [16]. Then, a solution to
the dynamic programming problem in Definition 1 for any pair of individual states pk, Zq
and given the aggregate level of capital K must satisfy:

u1 rApZqfpk,Kq � h�,js � γEZ tu
1 rAfpHj, h�,jq � h�,jph�,jqsAf

1pHjqp1 � τpHjqqu (13)

Where the dependence of h�,j on pk, Zq for each K and of Hj on pK,Zq have been
omitted for expositional purposes. Also, equation (13) includes the equilibrium version of
gτ , the disposible income, which explains the dependence of f jointly on pk,Kq.

Note that (13) defines a mapping T from Hj to h�,j. In fact, it is easy to see that any
fixed point on this map is a MSSRE. Define the function space B on K�Z � S as follows:

BpSq � tHpsq such that H : S Ñ K with 0 ¤ Hpsq ¤ ApZqfpKq, H measurableu

That is, a MSSRE is a fixed point in the functional T as the measurable maximum
theorem insures that h�,j P B when k � K. As mentioned before, any attempt to prove
the existence of a fixed point in a function space has to circunvent the problem associated
with the lack of sufficient conditions which insure a convex graph in tractable frameworks.
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That is, T pHjq may not be convex for models with a finite number of agents or finite shocks
(see [11] for a detailed discussion). Thus, the literature has turned to the lattice dynamic
programming framework because it works in non-convex models. Moreover, contrarily to
the Fan - Gliksberg theorem, it gives us a constructive fixed point theorem which gener-
ates an algorithmic proceadure naturaly. In fact, the numerical procedure in [12] can be
proved to be convergent endowing B with an order topololgy if T is a monotone operator ;
which in turn insures the existence of a MSSRE. That is, in order to prove the existence
of a MSSRE and the convergence of the algorithm in [12] for any H

1

j ¥� Hj we must have

T pH
1

jq � h
1

�,j ¥� h�,j � T pHjq where ¥� is the pointwise order in B.

In order to prove the desired properties in T we can borrow from [1]. These authors
proved that it is sufficient to show that V�pk,K,Z;Hjq has increasing differences in pk;Kq
for each pZ,Hjq (see lemma 12 and theorems 3 to 6). Using a standard envelope theo-
rem, this condition is equivalent to show that V�,1pk,K,Z;Hjq � u1pgτ pKq�h�,jpKqqp1�
τpKqqrpKq is increasing in K, where the dependence of V�,1 on pk, Z;Hjq has been omit-
ted in the right hand side of the equation and V�,1 is the derivative of V� with respect to
k. Note that p1�τpKqqrpKq is decreasing in K if τ is increasing and undefined otherwise.
Moreover, gτ pKq � h�,jpKq � CpKq is increasing in K. In order to show this last claim
let us define the objective function in (12):

upcq � β
¸
Z1

V�py,HjpK,Zq, Z
1;HjqppZ,Z

1q � qpc, a,Kq

Where y � c � fpKq. Using standard results, it is possible to show that q is con-
cave in pc, aq. From Lemma 2 in [1], it is also increasing in K. Let ŷpKq P h�,jpKq,
ĉpKq � fpKq� ŷpKq and K 1 ¡ K. Then, qpĉpKq, ŷpKq, K 1q belongs to the upper contour
set of qpc, a,Kq. Call this set A. By the concavity of qp., ., Kq for any K, A is convex.
Moreover, as f is increasing in K, it is posible to pick c1 ¡ ĉpKq and y1 ¡ ŷpKq. Thus,
αrĉpKq, y1s�p1�αqrc1, ŷpKqs ¥� rĉpKq, ŷpKqs and qpαrĉpKq, y1s�p1�αqrc1, ŷpKqs, K 1q ¥�

qprĉpKq, y1s, K 1q ¥� gprĉpKq, ŷpKqs, Kq where the first inequality follows from the concav-
ity of qp., ., Kq and the second from the monotonicity of qpc, ., .q. As a similar inequality
holds for qprc1, ŷpKqs, K 1q, we know that any optimal policy must satisfy rĉpK 1q, ŷpK 1qs ¥�

rĉpKq, ŷpKqs as desired.

Thus, we have shown that, when k � K, u1pgτ pKq � h�,jpKqq is decreasing in K. As
p1 � τpKqqrpKq is either undefined or decresing, we cannot have increasing differences.
This last fact implies in turn that it is not possible to insure that a sequence of func-
tion tHjuj converging to H� will ”hit” h�.� as required by definition 1. Moreover, any
numerical procedure based on iterations through T using the uniform metric, as the one
described in [12], cannot be proved to be convergent to a MSSRE as the induced topology
is stronger than the order topology.
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We now turn to the second source of ”problems”, the one related with the convergence
of numerical simulations. Taking into account the difficulties mentioned above with the
MSSRE, we must define a robust recursive equilibrium notion in order to generate well
defined simulations. We call this equilibrium Generalized Markov.

Definition 2: Generalized Markov Equilibrium (GME)

A GME is a correspondence Ψ : X Ñ X with X compact such that for any x P X,
the vector px,Ψpxqq:
i) satisfies the optimality conditions for the household problem, equation (1) s.t. (2) - (3).
ii) The firm solves (4)
iii) Markets clear
iv) The public sector runs a balanced budget. That is, equation (5) holds.

In section 2.2 we show that the sequential version of the model presented in this paper
has a GME representation. Moreover, Ψ has 2 continuous selections. Let Ψi be any of
the 2 possible selections. Using standard results (see [16]), we can show that PΨi

px,Aq
defines a Markov kernel with PΨi

px, .q being a probability measure for any x P X and
PΨi

p., Aq being a measurable function for any A P BorelpXq. An invariant measure is any
fixed point of Ψi. Call one of the possible many fixed point µi.

Let Ψj
i be any numerical approximation to Ψi and PΨj

i
px,Aq, µji the associated Markov

kernel and invariant measure respectively. Since [14], it is known that even if Ψj
i converge

to Ψi, the simulations obtained from Ψj
i may differ from the exact ones, generated using

Ψi. If Ψi is continuous and defined over a compact state space, these authors showed that
numerical simulations will match the exact long run behabior of the model. If Ψi is not
continuous, which is tipically but not always the case if there are multiple equilibria, [11]
provided sufficient conditions which insure that numerical simulations replicate the actual
model. Unfortunately, these conditions depend on the cardinality of Z, the set containing
exogenous shocks, and will not hold in this framework. In other words, using the Law
of Large numbers defined in section 2.3, we know that any cummulative average con-
structucted iteratively using Ψi and Ψj

i will converge to µi and µji , respectively. However,
without requiring additional conditions, it is not possible to show that µji Ñ µi.

The virtue of the results in section 2 is that it allows us to circunvent the 2 mentioned
problems. On one hand, we show that a GME exist for the problem at hand and thus,
it is possible for us to compute it. This is not the case for the MSSRE. Moreover, using
(6) and (7), we show that Ψi has a continuous closed form representation, which in turn
eliminates the problem associated with the lack of convergence of numerical simulations.
The next sub-section will use Ψi, i P t1, 2u to measure the size of the possible bias in state
of the art MSSRE methods.
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3.2 Numerical Simlations

We now turn to measure the numerical bias. We will briefly describe the algorithm tipy-
cally used to compute a MSSRE, which was presented in definition 1. The numerical
procedure associted with the computation of a GME is contained in the discussion in
sections 2.2 and 2.3 and thus will be omitted.

The task is to compute definition 1 using a concrete tax function based on the model
in [13] and a standard algorithm borrowed from [12]. Let τ in equation (5) be given by:

τpKq �

0.1 if K¤0.160002
0.05�10pK�0.1652q if 0.160002¤K¤0.170002

0 if K¡0.170002
(14)

Note that τ is decreasing in K. Thus, the discussion in section 3.1 implies that the
operator T is not monotonic and, consequently, it is not possible to prove that a numer-
ical procedure based on iterations using T will converge to a MSSRE. The rest of the
parameters are contained in the table below. We are carefully following the preferences
and technology structure in [13]. Thus, we are able to center the state space in the stable
steady state found in that paper (i.e. 0.165002). As the model in [13] is non-stochastic,
we set the values for the exogeneous shock state space Z and transitions probabilities pLH
and pHL arbitrarily.

y � ApZqfpKq � eZK1{3 ZH � 0.35
upcq � lnpcq ZL � 0.25

δ � 1 pLH � 0.5
β � 0.99 pHL � 0.2

Table 1: Parameters

We now turn to the numerical results. We computed a MSSRE as described in def-
inition 1 using the operator T , which follows from equation (13). It is standard in the
literature (see for instance, [12]) to pick an arbitrary function H0 from B and look for
uniform convergence. However, as mentioned in section 3.1, theoretical results do not
support such a strong convergence notion. Instead, it is only possible to show that any
iteration starting from a lower or upper bound on T (i.e. H P B such that H ¤ T pHq or
T pHq ¤ H respectively) will converge in the order topology. That is, take a sequence of
increasing functions generated iteratively from T , tHju with Hj�1 � T pHjq. We say that
Hj Ñ¥�

H� , meaning tHju converge in the order topology to H�, if for any j, Hj ¤ H�

and H� P B. Unfortunately, under this parametrization, we show in section 3.1 that T is
not a monotonic operator and thus it is not possible to generate an increasing sequence
of functions using T .
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The discussion in the above paragraph is enterily theoretical. We do not have known
sufficient conditions which insure the convergence to a MSSRE. However, starting from
an upper bound on T , we found numerically a fixed point for T in the sup norm. If this
heuristic result ”hits” any MSSRE, the simulations obtain from it must match any of the
GME as this last type of recursive notion computes all possible sequential equilibria and
gives us a closed form, ergodic and Feller recursive representation, which in turn insures
that the 2 sources of bias are absent. In particular, the proceadure described below was
found to be convergent using the sup norm for acceptable relative error levels (in the order
of 10�2)

H0 ÑEquation(12) h�,0 ÑDefinition1 h�,0pK,K,Zq � H1pK,Zq Ñ p...q

Where the first Ñ means that we are solving equation (12) using H0 as a guess for
the perceived law of motion. The second Ñ stands for the fact that we are computing
the policy function h�,0 along the equilibrium path according to definition 1 and using
that object as an update for a perceived law of motion for aggregates states. Finally,
Ñ p...q means that we are starting the loop again if convergence using the sup norm is
not achieved.

The table below contains the result of the simulations using the above proceadure
and the one described in section 2, which does not depend on a numerical solution. The
parameters used are listed in Table 1 and equation (14).

Model Mean STD CV

NR 1.5169 0.0232 0.0153
PR 0.5451 0.5452 1.0002

Num 0.3087 0.0267 0.0865

Table 2: Simulation Results. Statistics for aggregate capital

The ”empirical” distributions are constructed as follows: take as an initial condition
the non-stochastic steady state of the model in [13]. Simulate a path of 5000 observations
for aggregate capital. Store the last observation. Replicate the proceadure 1000 times.
Then, the computed distribution is taken from the relative frequency of 25 grid positions
out of 1000 observations 3. The proceadure is repeated for any of the 3 listed distributions.

The numerical solution, ”Num” in Table 2, has a significant bias as measured by the
difference in mean with respect to one of the possible ”true” distributions. In particular,

3For any of the GME we simulate the model for various possible K1 with K0 being the Santos non-
stochastic steady state and the empirical distributions do not change significantly
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”NR” stands for negative root in Table 2 and represent one of the possible equilibrium
selections from a GME as presented in definition 2. Note that ”STD” stands for standard
deviation and ”CV” for coefficient of variation. Thus, it can be seen from Table 2 that
there is also a significant bias as measured by the difference in dispersion with respect to
the other ”true” distribution, labaled ”PR” which means positive root. The table below
presents these deviations with respect to any of the ”true” distributions.

Model Mean CV

NR 4.9 0.18
PR 1.8 11.6

Table 3: Relative Bias

From Table 3 it is clear that the mean of one of the true distributions is almost 5
times bigger than its numerical approximation (MeanpNRq{MeanpNumq � 4.9). More-
over, the dispersion of the other true distribution is 12 times bigger than its numerical
approximation. Thus, despite the fact that the algorithm for the MSSRE converge using
a strong criteria (i.e. the sup norm an a tolerance level of 0.02 for the relative error), the
numerical distribution will present a severe bias with respect to the exact model distri-
butions.

As discussed in section 3.1, this bias could be generated either by the lack of conver-
gence of the percieved to the actual law of motion (i.e. Hj Ñ H� Ñ h�,�) or by any
difference between the numerical and the actual steady state (i.e. µji Ñ µi for any selec-
tion i P 1, 2). As the regards the former, note that any MSSRE must satisfy equation
(13) for Hj � h�,j � H� which in turn insures that any path generated using h�,� along
the recursive equilibrium will also be a sequential equilibrium. In other words, any path
generated from a MSSRE satisfies equations (6) and (7). The lack of coincidence between
the percieved and the actual law of motion will generate a distribution of capital that does
not belong to any possible sequential competitive equilibrium, which explains part of the
bias. Moreover, as a MSSRE may not exist for this model, we cannot insure the existence
of a well behaved steady state for this type of equilibria (i.e. µMSSRE may not exist).
If that is the case, any numerical distribution, namely µjMSSRE, could be arbitrarily far
away from µi as it is not possible to show that µMSSRE Ñ µi.

We now test the accuracy of the numerical approximation when it is used to asses the
effects of a TFP or a preference shock.

‖ β | TFP
Model Mean CV Mean CV

NR 0.0 0.7 4.2 9.1
PR 4.1 0.0 0.0 0.0

Num 9.4 -5.9 4.3 3.0

15



Table 4: Comparative statics. Difference w.r.t. the benchmark in % points

We simulate a 5% decrease in β and a 10% increase in each of the 2 possible values of
z, the TFP shock. We then compute for each of these changes the long run distribution
for the approximated MSSRE, ”Num” in Table 4, and for every possible root in the GME.
Finally, we compare the mean and coefficient of variarion of the obtained distributions
with respect to the benchmark case presented in Table 2.

The lack of sensitivity of the positive root can be explained by a ”peak of mass” in a
corner solution. As investment is irreversible by assumption and δ � 1, capital must be
non-negative. For some parameters, the ergodic distribution associated with the positive
root accumulate mass in this value. Thus, the change in the mean and in any dispersion
measure will be affected by this fact.

Turning to the results in Table 4, the ”numerical comparative statics” also suggest
a striking difference in the sensibility of the distribution with respect to any of the true
possible outcomes. Moreover, there is a difference in the sign of the variation. While in
any of the 2 shocks, both distributions increase their dispersion after a preference shock,
in the numerical case it decreases.

Finally, since [6] the notion of ”sunspots” was used to convexify the space of multiple
GME, generating a unique outcome. In this case, the following question arises then: is
it possible to interpret the unique numerical MSSRE as a convexification of any of the 2
true equilibria?. Figure 1, in the appendix provides a negative answer to this question.
The numerical distribution is not ”centered” between the 2 roots, it lies to the left of the
2 of them. Thus, the simulations obtained from a numerical MSSRE cannot be a convex
combination of the 2 possible GME for each node.

4 Conclusions

This note presents an example of an economy with multiple equilibria and continuous
policy functions (i.e. Ψ is not unique). This type of equilibrium is useful for accurately
assessing the predictions of the model as it allows to generate reliable simulations. These
simulations can be used to generate counterfactuals which are useful to evaluate alterna-
tive economic policies.

The paper also connects two branches of the recursive literature: the one concerned
with the existence of a steady state (see for instance [14]) and the one concerned with the
existence of a recursive representation of the sequential equilibria ( [9]). We show that
there is no equivalence between the continuity of the equilibrium and its uniqueness, a
fact that is useful for simulating the model reliably.

We use the closed form nature of the recursive equilibrium and the induced Feller
mechanism to test the accuracy of MSS methods. As the results in this paper does not
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depend on any numerical procedure, they constitute a unique opportunity to asses the
performence of state of the art algoritms.

It is clear that the results in this note have to be generalized. In particular, it is
necessary to understand the connection between the number of possible exogenous states
and the number of distinct economically meaningful recursive equilibria. That is, as
the degree of the polynomial in g is increasing in the number of exogenous states and
each root of the polynomial defines a different mechanism (provided that the root is
real and positive), there is a trade off between a realistic shock process and the predictive
performance of the model as more than one possible mechanism generates a less conclusive
model.
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5 Appendix

5.1 Figures
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Figure 1: Ergodic Distributions
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