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Abstract 

 

This paper present conditions to guarantee the convergence of simulations to a 

stochastic steady state, characterized by an invariant probability distribution, in an 

endowment economy with a finite number of heterogeneous agents, aggregate 

uncertainty and uncountable shocks. The results are robust to the presence of 

multiple discontinuous equilibria and do not require ad-hoc convexification 

techniques, like "sunspots". Thus, our results are numerically implementable. We 

work on a Markov environment with an enlarged state space, applied to an 

incomplete markets model, to characterize ergodic equilibria and differentiate them 

with respect to time-independent, and stationary ones. We show that, by imposing a 

mild restriction on the discontinuity set, every measurable time-independent 

selection can be used to approximate the stochastic steady state of the model. 

Considering the common practice of clustering agents according to, for instance, 

deciles of the wealth and assuming uncountable income shocks, the results in this 

paper can help to design calibration and estimation methods for heterogeneous 

agent models based on unconditional moments.  
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1 Introduction 

 

Frequently, researchers seek to investigate the long and short run effects of 

economic policies on dynamic equilibria. To achieve this objective, the variables in 

the model are often simulated. This is done to characterize the stochastic structure 

of the model and possibly its steady state. Unfortunately, in non-optimal 

economies, there is no general method which guarantee this sort of 

characterization. The commonly used procedures generate different outcomes (see 

Hatchondo, et. al., (2010), De Groot, et. al., (2013), among others) and the 

simulations obtained from them may not provide accurate representations of the 

economies depicted by the models (see for instance Feng, et.al., (2014)). With 

complete markets, the contraction mapping theorem provides a unified framework 

as it generates a constructive proof that shows the existence of a unique 

equilibrium with continuous a transition function. In this context, the stochastic 

steady state exists, and simulations converge to it, which is all guaranteed by 

standard results (see Stokey, Lucas and Prescott (1989)). In heterogenous agents 

models with incomplete markets uniqueness are rarely shown. In the absence of it, 

characterizing the relationship between simulations and the steady state can be 

very challenging due to the possible discontinuity of transition functions and the 

presence of multiple equilibria. 

This paper present conditions to guarantee the convergence of simulations to a 

stochastic steady state, characterized by an invariant probability distribution, in an 

endowment economy with a finite number of heterogeneous agents, aggregate 

uncertainty, and uncountable shocks. The results are robust to the presence of 

multiple equilibria and discontinuous selections and do not require ad-hoc 

convexification techniques, like "sunspots". Thus, our results are numerically 

implementable. We show that, by imposing a mild restriction on the discontinuity 

set, every measurable selection can be used to approximate a stochastic steady 

state of the model. In this sense, we are solving jointly the problems associated 
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with the lack of a unique equilibrium (i.e., the presence of multiple and 

discontinuous transitions) as we are characterizing those selections that 

approximate the stochastic steady state. Up to now, the literature showed the 

existence of at least one of these selections without a addressing the qualitative 

properties of it. Considering the common practice of clustering agents according 

to, for instance, deciles of the wealth and assuming uncountable income shocks, 

the results in this paper can help to design calibration and simulation-based 

estimation techniques for heterogeneous agent models. 

Formally, we provide a framework for the characterization and simulation of non-

optimal economies. Moreover, we give conditions which guarantee the ergodic 

behavior of endogenous variables for at least some selection. We work on a 

generalized (i.e., with an expanded state space), possibly discontinuous, Markov 

environment applied to an incomplete markets model with 1 period real assets 

offered in zero net supply to characterize ergodic equilibrium selections and 

differentiate them with respect to time-independent, and stationary ones. While 

ergodic equilibria are path-independent, stationary representations generate 

simulations affected by the history of shocks and the initial portfolio distribution. 

The existence of these 2 types of equilibria require a mild restriction on the 

discontinuity set and every time-independent selection under this assumption is at 

least stationary, as the requirements for stationarity are milder with respect to the 

sufficient conditions for ergodicity. Thus, the latter are easier to get but they are 

not useful to calibrate or estimate the model as they generate path-dependent 

simulations. To solve this problem, we show that “averaging” appropriately across 

paths is sufficient to ensure that stationary transitions generate simulations that 

can approximate the stochastic steady state of the model. That is, it is possible to 

use an arbitrary selection to characterize the long run behavior of the model.  

Our results go beyond the existence of a stochastic steady state (as in Dufffie, at. 

al. (1994)) as we can identify qualitative properties of selections connected with 

ergodicity and, in the absence of them, we can still have a sharper characterization 
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of the long run of the model. While stationarity follows from the compactness of 

equilibrium and a mild assumption on the discontinuity set, ergodicity requires 

additional restrictions on either: a) the number of possible endogenous states, or b) 

the type of selections that are admissible to construct the Markov kernel.  

As the restrictions required to show ergodicty are specific to the model described 

in this paper and we need to refine the selection process substantially, our results 

suggest that in a more general setting heterogenous agent models will only be 

stationary, which in turn produce path dependent simulations. We mentioned that 

to eliminate this dependence it suffices to average multiple time paths. However, 

as the presence uncountable shocks is essential, the numerical implementation of 

this procedure is not immediate. Thus, the results in this paper indicate that 

simulations of computed heterogenous agent models with aggregate uncertainty 

are frequently sensitive to the initial conditions of the economy; a fact which 

implies that heterogeneity may have long lasting effects and may explain the 

different outcomes found by distinct methods in practice. In the absence of a sharp 

characterization of ergodic selections, the presence of multiple equilibria can 

explain the dependence of simulations on the method used because each one of 

them may capture a different selection, and no one could be ergodic; generating 

history-dependent paths. We show that, if the support of the stationary 

distribution is unknown, numerical simulations may depend on initial conditions 

and, thus, cannot approximate the steady state.   

For expository purposes, we apply our results to a workhorse model in the 

literature. We use a stochastic endowment economy with incomplete markets, 

finitely many heterogeneous agents, 1 period real assets and uncountable 

exogenous states as in Mas-Colell and Zame (1996). It is a matter of further 

research to investigate if our results can be extended to another model with a finite 

number of heterogeneous agents, incomplete markets and uncountable shocks.        
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1.1 Literature Review 

 

We provide a unified theoretical framework to characterize non-optimal 

heterogenous agent models with aggregate uncertainty. The necessity of it comes 

from the failure of methods frequently used (i.e., Kydland and Prescott, 1982, 

Krusell and Smith, 1998, Cooley and Quadrini, 2001, Chari, Kehoe and McGrattan, 

2002, among others) in providing simultaneously: (i) an adequate representation of 

the stochastic steady state that is compatible with an empirical test for the model, 

(ii) a well-defined time-independent law of motion for the endogenous variables 

and (iii) a characterization of stationary and ergodic selections in the presence of 

multiple equilibria. This paper fills the gap in the literature by dealing with facts (i) 

to (iii) at the same time and provide identifiable conditions related to ergodicity. In 

optimal economies, all these pieces came together with the contraction mapping 

theorem. If the welfare theorems fail do not hold, Kubler and Schmedders (2002) 

and Santos (2002) showed that there is a tension between time-independence and 

continuity of the recursive equilibrium.  This fact is associated with the presence of 

multiple equilibria. If it is not possible to show uniqueness, we need to give up on 

continuity, which in turn implies a specific machinery to derive an ergodic, 

stationary and/or time-independent recursive representation.  

Duffie, et. al. (1994) and Blume (1982) showed the existence of an ergodic invariant 

measure for some non-optimal economies, but they did not characterize selections, 

which is the first step towards the computation of the equilibria. Feng, et. al. (2014) 

derived a time invariant recursive representation, but they did not prove ergodicity.  

The most closely related papers to this one in the literature are Santos and Peralta 

Alva (2013 and 2015), Brumm, et. al (2017), and Cao (2020) (see also Duggan 

(2012), and He and Sun (2017)). In these papers there are features of the model that 

are used to achieve either ergodicty of the Markovian equilibrium or the existence 

of a recursive representation. Assumptions relate to a continuum of households in 
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Cao (2020) or to restrictions on exogenous shocks in Duggan (2012), Santos and 

Peralta Alva (2013 and 2015), Brumm et. al. (2017) and He and Sun (2017).  

With respect to Santos and Peralta (2013 and 2015), our paper identifies selections 

taken from the equilibrium correspondence and characterize them to obtain an 

ergodic, a stationary, and a time-independent equilibrium. In Santos and Peralta, 

although it is proved that such equilibrium exists, they do not characterize a 

particular ergodic selection nor differentiate it with respect to a stationary one. 

They show that there exist at least one ergodic selection and characterize the 

properties of the Markov kernel associated with it. We go further in this direction 

and found that ergodicity relates to the continuity of the selection with respect to 

exogenous shocks, allowing for a large discontinuity set with respect to 

endogenous states as it is found in the literature (see for instance Kubler and 

Schmedders 2002). We provide a selection mechanism associated with ergodicty 

and show that also a restriction in the number of available assets suffices to 

achieve it. We then characterize stationary selections and show how to eliminate 

the history dependence of stochastic path. 

Cao (2020) showed the existence of an ergodic recursive equilibrium as a selection 

from an equilibrium correspondence. Neither the author can characterize the 

ergodic selections, nor differentiate them from stationary and non-stationary ones. 

The existence of a recursive representation is a first step but not sufficient to 

guarantee the stability of simulations in the long run. This is the main difference 

with respect to Duggan (2012), Brumm et. al. (2017) and He and Sun (2017).  

The strategies used for the proofs differ from previous results. One of the 

consequences of allowing for multiple equilibria is that the selected transitions 

may not be continuous. This fact causes a serious problem for the existence of an 

invariant measure.  The literature has circumvented this problem by using a fixed-

point theorem for correspondences. Unfortunately, this approach requires 

conditions which affect the computability of transitions (like the convexification 

technique used in Duffie, et. al. or the impossibility to identify an appropriate 
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selection in Blume). The strategy in this paper is to derive verifiable conditions on 

each computable transition that restore the continuity of the Markov process.  

There is another branch of the literature that derived results to show the ergodicity 

of recursive equilibria with incomplete markets using an “irreducible atom”. The 

papers of Zhu (2020) and Pierri and Reffett (2021) assume the presence of a finite 

number of shocks and occasionally binding inequality constraints. Although these 

papers can circumvent the numerical problems associated with uncountable 

shocks, they are not useful for models with ex-ante heterogenous agents.   

 

 

2. Recursive equilibrium in heterogenous agent models 

 

This section uses an infinite horizon general equilibrium model with incomplete 

markets to introduce a recursive equilibrium concept, discussed its existence and 

several properties. We choose the simplest representation of an incomplete 

markets model with aggregate uncertainty and a finite number of heterogeneous 

agents. Despite its simplicity, this structure can contain both major obstacles to 

derive a stationary and ergodic representation: multiplicity and discontinuity.      

 

2.1 Structure of the Economy 

 

The model is a standard infinite horizon discrete time pure exchange economy. A 

Markov chain defines the law of motion for the exogenous state variable2. For every 

period 𝑡 , a shock 𝑠𝑡  occurs; 𝑠𝑡  ∊ 𝑆  and 𝑆 =  (1,2, … , S) . To model the evolution of 

uncertainty, an event tree approach is assumed. Each tree 𝔗 has a unique root, 𝜎0 =

 
2 The set of exogenous shocks is assumed to be finite in all the equilibrium concepts mentioned in this section. This is done 
because the conditions to guarantee the existence of the sequential equilibria are well known. The Time Homogeneous 
Markov Equilibrium in Duffie, et. al. (1994), Kubler and Schmedders’ Markov equilibrium and Feng’s Recursive equilibrium 
can be defined for an arbitrary set of exogenous shocks (see Duffie, et.al. page 749 and Santos and Peralta Alva page 6 
respectively). The conditions for the existence of the sequential equilibria with an uncountable, atomless and iid shocks, 
which is essential for the results in sections 3 and 4, are presented in section 5. 
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 𝑠0 . A typical element will be denoted 𝜎𝑡 = (𝑠0, 𝑠1, … , 𝑠𝑡) . Each 𝜎𝑡  has a unique 

predecessor 𝜎𝑡
∗ = (𝑠0, 𝑠1, … , 𝑠𝑡−1)  and S  sucessors, 𝜎𝑡𝑠 , for each 𝑠 ∊ S . Since the 

exogenous shocks follow a first order Markov process, when 𝑆  is finite, the 

evolution of {𝑠𝑡}𝑡=0
∞  can be characterized by a transition matrix, 𝑝 = [𝑝(𝑠𝑖, 𝑠𝑗)]. When 

postpone the details for uncountable shocks to section 3. For any given 𝑠0, the 

probability of 𝜎𝑡  is 𝜇𝑡(𝜎𝑡) = ∏ 𝑝(𝑠𝑡−1, 𝑠𝑡)
𝑡
𝑡=1  and 𝜇0(𝜎0) = 𝛿𝑠0 , where 𝛿𝑠0  is the Dirac 

measure at 𝑠0. 

The number of agents is assumed to be finite, with a typical element denoted 𝑖 ∊ 𝐼. 

Each agent is endowed with 𝑒𝑖(𝜎𝑡)  units of the single consumption good. For 

simplicity, the endowment process is supposed to be iid: 𝑒𝑖(𝜎𝑡𝑠) = 𝑒
𝑖(𝑠), with 𝑒𝑖: 𝑆 →

 ℝ++ . The vector of endowments at any node is denoted (𝜎𝑡) = {𝑒
𝑖(𝜎𝑡)}𝑖=1

𝐼
 . Each 

agent has an additively separable well behaved3 utility function which is used to 

evaluate consumption streams, 𝑐 = {𝑐(𝜎𝑡)}𝜎𝑡 ∊𝔗 : 

𝑈𝑖(𝑐) =  ∑(𝛽𝑖)𝑡∑[𝑢𝑠
𝑖(𝑐𝑖(𝜎𝑡

∗𝑠))]𝜇𝑡(𝜎𝑡
∗𝑠)

𝜎𝑡
∗𝑠

∞

𝑡=0

 

The asset structure is characterized by J one period numeraire real assets, offered 

in zero net supply, and traded at each node of the tree, 𝜎𝑡 ∊ 𝔗. An asset held by 

agent 𝑖  is denoted 𝜃𝑗
𝑖(𝜎𝑡 ) ∊  ℝ  and pays dividends 𝑑𝑗(𝜎𝑡 𝑠) ∊  ℝ+ , only at the 𝑆 

immediate successors of 𝜎𝑡 
4. The portfolio of agent 𝑖 at node 𝜎𝑡  will be denoted 

𝜃𝑖(𝜎𝑡) ∊ ℝ
𝐽. It is assumed that the dividend process is also iid: 𝑑𝑗(𝜎𝑡

∗𝑠) = 𝑑𝑗(𝑠), where 

𝑑𝑗: 𝑆 →  ℝ+5. Further, the 𝐽 × 𝑆 payoff matrix, 𝑑, is supposed to have full row rank 

 
3 To the conditions stated in Duffie, et. al. (1994) page 765, Kubler and Schmedders (2002) implicitly added the assumption 
that 𝑢𝑠

𝑖  has uniformly bounded gradients.  This is done to satisfy a terminal condition on the discounted expected marginal 
utility (see equation 1 in page 288) which in turn is used to obtain a definition of equilibria based on first order and market 
clearing conditions. This last definition is essential for the recursive equilibrium literature as can be seen in sections 2.3, 2.5 
and the appendix. 
4 Agents are allowed to short sale every asset 𝜃𝑗. To define a Time Homogeneous Markov Equilibrium, Duffie, et. al. assumed 

that there are no short sales and a different asset structure (J Lucas trees). However, Braido (2013) showed that the 
equilibrium concepts in Duffie, et. al. still holds if short sales are permitted for a general asset structure, which includes one 
period real assets offered in zero net supply, provided that marginal utilities are uniformly bounded above.     
5 Except in section 2.4, where the equilibrium has closed form, for economies with #𝑆 < ∞, it will be assumed that the 
dividend structure has a riskless bond as in assumption A.6 in Magill and Quinzii (1994) (i.e., 𝑑𝑗(𝑠) = 1 for any 𝑠 ∈ 𝑆 and 𝑗 ∈

{1,… , 𝐽}.    
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and a column of 𝑑  will be denoted 𝑑(𝜎𝑡). Consequently, market incompleteness 

follows directly from 𝐽 <  𝑆 . Finally, the price of security 𝜃𝑗  at node 𝜎𝑡  will be 

denoted 𝑞𝑗(𝜎𝑡 ) ∊  ℝ+, asset prices will be collected at the vector 𝑞(𝜎𝑡 ) ∊  ℝ+
𝐽
. 

 

2.2 Sequential Competitive Equilibrium 6 

 

An economy Ɛ  is characterized by the endowments, payoffs, the structure of 

preferences and the initial distribution of assets: Ɛ = [𝑒, 𝑑, {𝑈𝑖}
𝑖=1

𝐼
, {𝜃−

𝑖 }
𝑖=1

𝐼
] . A 

sequential equilibrium for Ɛ can then be defined as follows, 

 

Definition 1. A sequential competitive equilibrium for Ɛ is a collection of: 

i) consumption vectors [{𝑐𝑖(𝜎𝑡)}𝑖=1
𝐼
]
𝜎𝑡 ∊𝔗

,  

ii) portfolio holdings [{𝜃𝑖(𝜎𝑡)}𝑖=1
𝐼
]
𝜎𝑡 ∊𝔗

,  

iii) asset prices [ 𝑞(𝜎𝑡 )]𝜎𝑡 ∊𝔗  

Such that for 𝑠0 ∈ 𝑆 and {𝜃−
𝑖 }
𝑖=1

𝐼
 satisfy: 

a) (Feasibility) For all 𝜎𝑡 ∊ 𝔗, ∑ 𝜃𝑖(𝜎𝑡)
𝐼
𝑖=1 = 0⃑ , where 0⃑ ∊ ℝ𝐽. 

b) (Optimality) For each agent 𝑖 ∈ 𝐼 and prices [ 𝑞(𝜎𝑡 )]𝜎𝑡 ∊𝔗: 

[𝑐𝑖(𝜎𝑡), 𝜃
𝑖(𝜎𝑡)]𝜎𝑡 ∊𝔗

  ∈ argmax { 𝑈𝑖(𝑐) subject to  𝑐(𝜎𝑡) = 𝑤
𝑖(𝜎𝑡 ) − 𝜃

𝑖(𝜎𝑡). 𝑞(𝜎𝑡) for all 𝜎𝑡 ∊

𝔗 and 𝑠𝑢𝑝𝜎𝑡 ∊𝔗|𝜃
𝑖(𝜎𝑡). 𝑞(𝜎𝑡)| < ∞}. 

 

As the payoff matrix does not depend on prices, its (row) rank is constant for any 

period 0 ≤ 𝑡 ≤ ∞. Consequently, the excess demand function of all agents can be 

shown to be continuous7. To establish the existence of equilibria, an implicit debt 

constrained is added in condition b). Magill and Quinzii (1994) showed that this 

 
6 This concept is analogous to the Financial Market Equilibrium in Magill and Quinzii (1996), page 228, extended to an infinite 
horizon economy.   
7 See Magill and Quinzii 1996, exercise 3, page 276 for a counterexample for the case of long-lived assets. 
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condition rules out Ponzi schemes, it is never binding and is sufficient for 

existence. 

 

2.3 Correspondence Based Recursive Equilibria 

 

The modern recursive literature allows for multiple equilibria and requires a 

correspondence in order to capture the first order dynamic behavior of the 

economy. There are 3 seminal papers in this branch of the literature: Duffie, et. al. 

(1994), Kubler and Schmedders (2003) and Feng, et. al. (2014). All these papers 

show the existence of a time independent first order recursive structure under 

mild assumptions.  

Section 2.3.1 introduces the results in Duffie, et. al. and discusses its usefulness 

and limitations for the purposes of this paper. As the recursive structure in Kubler 

and Schmedders (2003) uses Duffie, et. al.’s results, it shares the same properties 

and thus will be omitted8. Section 2.3.2 discusses the recursive equilibrium in Feng, 

et. al., which is the starting point of the results in this paper. As before, for the 

sake of concreteness, details are left to the appendix.  

 

2.3.1 Duffie’s et. al. (1994) Time Homogeneous Markov Equilibria 

 

This section illustrates how Duffie, et. al.’s results can be used to: i) show the 

existence of a sequential equilibrium (fact 2.3.2), a result that will be used in 

applications in section 5; ii) derive a time invariant recursive structure and to 

generate a stationary Markov process9; iii) simulate the process (fact 2.3.1).  

 
8 One of the main contributions of Kubler and Schmedders (2003) is a correspondence based recursive structure, called 
Markov Equilibria, with minimal state space. As this paper is not concern with the numerical properties of the algorithms 
involved in the computation of the recursive structure, Kubler and Schmedders’ results could be replaced with Feng, et. al.’s 
which are not affected by the problems in Duffie, et. al. but may have a larger state space. It would be interesting to derive 
Kubler and Schmedders’ Markov equilibria from Feng, et. al.’s structure.   
9 See definition 4 in the appendix, page 18.
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This section also discusses the limitations of the results in Duffie, et. al., most of 

them concern simulations. These facts are essential to understand how the results 

in Feng, et. al. (2014) fit the purposes of this paper as they solve all the problems in 

Duffie, et. al. but preserves all its useful properties. 

Two facts are worth mentioning from Duffie, et. al.’s equilibrium notion: 

  

Fact 2.3-1): the state space 𝐽 is the smallest10 set that can be used to define an 

equilibrium correspondence as it contains all initial states of any infinite horizon 

sequential competitive equilibrium and is time independent. It can be used to 

iterate forward a first order dynamic stochastic process with a time invariant 

state space. This property is frequently called “self-justification” and is weaker 

than its analogous in games with endogenous states called “self-generation” 11. If 

the equilibrium is uniformly compact, then 𝐽  is the cartesian product of 

rectangles formed by the upper and lower bounds of the variables in the state 

space. 

 

Fact 2.3-2): The existence of 𝐽 requires the existence of a temporary equilibrium 

for a truncated economy with finite time and all these equilibria must be 

uniformly compact. Then the former is typically extended to infinity by 

induction (see lemmas 3.4 and 3.5, page 768), the latter follows from the 

existence of uniform bounds on endogenous variables. The non-emptiness of the 

temporary equilibria is directly connected to the “consistency” requirement in 

the game theory as, for instance, in Phelan and Stacchetti (2001).   

 

These 2 facts combined with an argument on the optimality of the sequences 

generated from 𝐽 using the equilibrium correspondence (see section 3.4 in Duffie, 

 
10 In the temporary equilibrium framework of Hildenbrand and Grandmont (1974) it is possible to set  𝐽 = 𝑍 as overlapping 
generation agents only live 2 periods. In this type of economies, agents live infinitely many periods and thus it is possible 
that the backward induction procedure implied by equations 1 and 2 converges to an empty set. Fact 2.5.1) show that this is 
not the case for economies with compact 𝐾 and 𝐶𝑗 ≠ ∅ for 𝑗 ≥ 1.    
11 I would like to thank K. Reffett for pointing this out to me. See Phelan and Stacchetti (2001). 
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et. al.) can be used to show the existence of a sequential competitive equilibrium. 

Although this result has already been applied to other incomplete market 

economies for the case of finite shocks (see Kubler and Schmedders, 2003, Lemma 

2), it is not generally used in economies where 𝑆 is assumed to be uncountable and 

compact. For the results in this paper, the last structure of exogenous shocks turns 

out to be important12. Thus, this type of existence proof will be discussed in section 

II of the appendix which involves applications. In the model presented in section 

2.1 and 2.2, the Mas-Colell and Zame (1996) framework allows showing the 

existence of 𝐽  and the compactness of equilibria. The optimality argument in 

section 3.4 of Duffie, et. al. can be straightforwardly extended in that model to the 

case of uncountable shocks.     

A time invariant Markov process is constructed using 2 building: a state space and 

a Markov operator. In the context of Duffie, et. al., the state space is 𝐽  13. The 

Markov operator is denoted 𝜋 and is a selection of the equilibrium correspondence 

𝐺 (denoted 𝜋~𝐺) such that 𝜋: 𝐽 →  𝒫(𝐽), where 𝒫 is the space of measures generated 

by 𝐽. A pair (𝐽, 𝜋) is called Time homogeneous Markov Equilibria (THME).  Even 

though the results in Duffie, et. al. can be used to guarantee the existence of a 

recursive structure, a THME is not a computable representation of the sequential 

competitive equilibrium as the time invariant transition functions of the recursive 

equilibrium depend on unobservable variables, which are part of the selection 

devise. This fact is illustrated by the following lemma.  

Suppose that the state space, 𝐽 ⊆ 𝑍𝐷 , can be written as 𝑍𝐷 = 𝑆 × 𝑍̂ , where 𝑍̂ =

 {[𝜃−, 𝑐, 𝑞, 𝜃] ∊  ℝ
𝐼𝐽 × ℝ𝐼 × ℝ𝐽 × ℝ𝐼𝐽| ∑ 𝜃−

𝑖𝐼
𝑖=1 = 0⃑ , ∑ 𝜃𝑖𝐼

𝑖=1 = 0⃑ }. Considering the exogeneous 

 
12 Fact 2.5.2) implies that any truncated economy (𝑗 ≤ 𝑇 < ∞) which has uniformly bounded endogenous variables (contained 
in 𝐾) can be used to prove the existence of a sequential infinite horizon equilibria. That is, any recursive equilibrium is a 
sequential equilibrium. However, there may be some sequential equilibria that are not recursive or that do not have a 
terminal debt level equal to 0. So, fact 2.5.2) can be used to prove the existence of a subset of all possible sequential 
equilibria. I would like to thank A. Manelli for pointing this out to me.     
13 It is standard to assume that 𝑍 is a Borel Space. As the Cartesian product of a finite set and a finite dimensional Euclidean 
space is a complete, separable and metric space, the product space is a Polish space. Thus, 𝑍 is a measurable subset of a 
Polish space. If ℬ[𝑍] is the Borel sigma-algebra generated from 𝑍, (𝑍, ℬ[𝑍]) is a Borel Space.  Consequently, measurable will 

always mean Borel measurable and any measure will be a Borel measure. 
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nature of 𝑆, this assumption can be imposed without loss of generality. The 

equilibrium correspondence 𝐺 maps 𝑍𝐷 ↦ 𝜇 with 𝜇 ∈ 𝒫(𝑍𝐷). Then,  

 

Lemma 1: If (𝐽, 𝜋) constitute a THME any realization of a process {𝑧𝑡} satisfies as 

𝑧̂𝑡+1 = 𝑓(𝑠𝑡+1, 𝛼𝑡+1, 𝑧𝑡) where 𝑓 is a measurable function and 𝛼𝑡+1 ∊ [0,1] is uniformly 

distributed and i.i.d. 

Proof: See Lemma 2.22 page 34 In Kallenberg (2006). 

 

Duffie, et. al. (1994) interprets 𝛼𝑡+1 as sunspots. Note that lemma 1 implies that for 

each state 𝑧𝑡, any exogenous shock 𝑠𝑡+1 could be associated with a continuum of 

possible continuation states in 𝑍̂, each one of them derived from the realization of 

an unobservable variable (𝛼𝑡+1). Consequently, a tree structure would not be an 

appropriate representation of {𝑧𝑡}𝑡=0
∞ .  

A THME has limited predictive power about the evolution of the process. Thus, a 

“refinement” is required to obtain a computable object. Duffie, et. al. also provided 

sufficient conditions for the existence of this refined equilibria. If 𝑆 is a finite set, a 

subset of 𝐺, denoted 𝑔, is also an equilibrium correspondence. 𝑔 induces a compact 

state space 14  for a Markov process that has realizations without sunspots.  

For the purposes of this and Duffie, et. al.’s papers, this refinement is insufficient as 

the Markov process associated with (𝐽, 𝜋) may not be stationary nor ergodic.   

The concept of conditionally spotless THME was introduced to address this topic 

and to derive a notion of steady state, called ergodic measure15. This equilibrium 

refines the notion of self-generation in fact 2.3.1 to transitions without sunspots. 

An invariant measure guarantees that the Markov process associated with the 

THME is stationary and the ergodicity of the steady state implies that the process 

generates convergent sample paths.  

 
14 The expectation correspondence 𝑔 ⊂ 𝐺  is obtained by restricting 𝜇 in equation 2 to the set 𝒫𝐹(𝑆 × 𝑍̂) ⊂ 𝒫(𝑍) defined in 

setion A.1.1 in the appendix. The set of conditions on K and 𝐶𝑗 mentioned above can still be used to guarantee the existence 

of a self-justified set for g.  
15 See Theorem 1.1 and Proposition 1.3 in Duffie, et. al., page 750 and 757. 
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The authors argued that this last type of equilibrium, called conditionally spotless 

THME, implies that any sequence {𝑧𝑡}𝑡=0
∞  in 𝐽 can be described by a random variable 

representation of the expectations correspondence: a function 𝑓  that satisfies 

𝑧̂𝑡+1 = 𝑓(𝑠𝑡+1, 𝛼𝑡, 𝑧𝑡)  for any 𝑡 , where 𝛼𝑡 ∊ [0,1]  is uniformly distributed, i.i.d and 

represents another type of sunspot which is used to convexify the equilibrium 

correspondence. As 𝑓  is not a computable object, because of the presence of 

sunspots at 𝑡, it is inappropriate for this paper. However, as described in Duffie, et. 

al.16, facts 2.3-1) and 2.3-2) can still be used to characterize sunspots-free paths 

𝑧̂𝑡+1 = 𝑓(𝑠𝑡+1, 𝑧𝑡). 

 

2.3.2 Feng, et. al.’s Recursive Equilibria  

 

The virtue of Feng, et. al. approach is to derive a recursive structure that exists 

even in the presence of multiple equilibria as in Duffie, et. al. but at the same time 

generates computable time invariant transitions. These facts imply that the results 

in Feng, et. al. can be used to derive laws of motion for the endogenous variables 

that do not depend neither on unobservable variables nor time. This is a 

consequence of the definition of the expectation correspondence, which now maps 

to the space of random variables directly. Besides, this structure sometimes has a 

lower dimensional state space when is compared to Duffie, et. al.’s, a property that 

is desirable from a numerical point of view.  

In order to obtain these results, it is necessary to restrict the number of possible 

recursive equilibria and derived a correspondence Φ: 𝑍̃ × 𝑆 ⇉ 𝑍̃  that maps 

(𝑧̃𝑡, 𝑠𝑡+1) ⟼ 𝑧̃𝑡+1, which can be used to construct the analogous of Duffie, et. al.’s 

equilibrium correspondence, 𝐺 17  but with a different image. The state space, 

denoted 𝑍𝐹 and defined in the appendix, is composed by a subset of the state space 

in Duffie, et. al, 𝑍𝐹 ⊆ 𝑍𝐷, and an auxiliary variable 𝑚. This additional variable relates 

 
16 See sections 3.1 and 3.2. 
17 The procedure to derive the analogous of 𝐺 in Duffie, et. al. from Φ will be presented at the beginning of section 3. 
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to the derivative of the value function in the sequential problem and under some 

conditions can be shown to be envelopes of a recursive problem, connecting both 

types of equilibrium directly through the Euler equation. Thus, 𝑧̃ ∈ 𝑍̃ is of the form 

[𝑧𝐹 , 𝑚(𝑧𝐹)]. Typically, [𝑧𝐹 , 𝑚(𝑧𝐹)] can be mapped to a subset of the state space in 

Duffie, et. al. using the definition of an envelope. As the image of Φ is in the space 

of realizations, an additional state variable (𝑆) must be added to the domain of the 

correspondence. 

A procedure like the one described in Duffie, et. al. can be used to refine the state 

space from 𝑍̃  to 𝐽 , where 𝑧̃ ∈ 𝑍̃  contain all the possible initial variables, 𝑧̃0 =

[𝑠0, 𝑞0, 𝜃0, 𝑚0], each of them associated with a different SCE. As noted by Duffie, et. 

al., under compactness this procedure is not necessary. The state space in Feng, et. 

al. does not contain neither portfolios "yesterday" nor consumption but includes 

envelopes. These facts increase the numerical efficiency of the algorithms and 

helps describing the global dynamics of the economy as 𝑚 is easily characterized in 

terms of exogenous shocks, prices and portfolios using the definition of the 

envelope, the utility function and the compactness of the state space. 

Below we present 4 relevant facts for this equilibrium: 

 

Fact 2.3-3): The realizations of the process depend only on observable variables. 

 

Fact 2.3-4): The equilibria in Feng, at. al. is a subset of those in Duffie, et. al.  

 

Fact 2.3-5): For some models which fit definition 1, there is a selection 𝜑~Φ 

which can be chosen to be continuous in 𝑠+ for each 𝑧̃ ∈ 𝐽. This fact does not 

imply the uniqueness of the equilibrium and will be extensively discussed in 

section 4.1. 

 

Fact 2.3-6): The state space in Feng, et. al. is smaller than the one in Duffie, et. al. 
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3. Stationarity and Ergodicity  

 

To obtain empirically meaningful simulations some notion of stationarity is 

required. Time homogeneity is desirably, but it is not enough. A reliable procedure 

requires an invariant measure. This section formally proves first the existence of 

an invariant measure and later its ergodicity for a computable recursive structure.  

 

 

  

  

  

  

  

  

 

 

 

  

Figure 1 

 

Sections 3.1 and 3.2 together establish the existence of an invariant measure for 

models with at most a finite number of exogenous shocks that fit into Feng, et. al’s 

framework. Sections 3.1 and 3.3 show the existence of an invariant (theorem 1) and 

of an ergodic (theorem 2) measure for models with an uncountable number of 
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shocks18. Section 3.4 provides sufficient conditions for stationarity (associated with 

an invariant measure, proposition 1) and ergodicity (proposition 2).  

The figure above implies that theorems are proved given some properties, which 

are associated with conditions. The relationship between conditions and properties 

are stated in lemmas. Conditions and properties are stated in terms of endogenous 

variables and operators, respectively. Then, assumptions are based on primitives 

and connected with conditions through propositions. Stationarity and ergodicity 

follow from primitive assumptions 3-i), 3-ii) and 3-iii), 3-iv) respectively. Conditions 

are associated with numbers (1, 2, ..., etc.), properties with lowercase letters (a, b, ..., 

etc.) and assumptions with roman numbers (i, ii, ..., etc.). To complement figure 1, 

we present the following table. 

 

Result Implications Requirements 

Theorem 1 Existence of an invariant Measure 
Assumptions 1) and 2). Properties a) and b) for 

atomless measures. 

Theorem 2 
Existence of an ergodic invariant 

Measure 
Assumptions 1) and 2). Properties a), b) and c) for 

absolutely continuous measures. 

Lemma 3 
(finite 

shocks) 

Properties a) and b) for atomless 
measures. 

Assumption 1). Conditions 1) and 2) 

Lemma 4 
(Uncountable 

Shocks) 

Properties a) and b) for atomless 
measures. Properties a), b) and c) for 

abs. cont. measures 

Assumptions 1) and 2). Condition 3), associated with 
properties a) and b) for atomless measures. Condition 

4), associated with properties a), b) and c) for abs. 
cont. measures. 

Proposition 1 Condition 3  Assumptions 1, 3-i) and 3-ii) 

Proposition 2 Condition 4 Assumptions 1, 3-iii) and 3-iv) 

Table 1 

 
18 Economies with an infinite but countable number of shocks are intentionally left out as they represent a particularly 
challenging case for the purpose of this paper: the existence of equilibria requires the same strength of assumptions as in 
the case of uncountable shocks (see Mas Collel and Zame, 1996) and the existence of an invariant measure is as difficult to 
show as the case of a finite number of shocks.    
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3.1 Theorems 1 and 2: Existence of an Invariant Measure and Ergodicity 

 

The starting point of this section is a Markov operator for exogenous shocks, 

𝑝(𝑠, 𝐴) ≥ 0 defined for all 𝑠 ∈ 𝑆 and 𝐴 ∈ ℬ𝑆, where 𝑆 is compact and ℬ𝑆 denotes the 

Borel sets in 𝑆 , together with the equilibrium correspondence in Feng, et. al., 

discussed in section 2.3.2. This correspondence is assumed to satisfy: 

 

Assumption 1: Let Φ: 𝐽 × 𝑆 ⇉ 𝐽 be the equilibrium correspondence in section 2.5.2. 

Then, 𝐽 is compact and Φ is upper hemi continuous and compact valued. 

 

These properties can be obtained from mild assumptions on the primitives of the 

model discussed in section 2, both for finite (Magill and Quinzii, 1994, page 858, 

assumption 1 to 5) and infinite (Araujo, et. al. 1996, page 122, assumptions 1 and 

3) shocks. A detailed discussion is postponed to section II in the appendix.    

Assumption 1 together with the following lemma allows defining a Markov 

operator.  

 

Lemma 2: Let Φ satisfy assumption 1. Then, 𝜑~Φ is a ℬ𝐽×𝑆 -measurable selection of Φ 

and 𝑃𝜑(𝑧̃, 𝐴) ≥ 0 is a Markov operator on (𝐽, ℬ𝐽), where 𝑃𝜑 is given by: 

  5)  𝑃𝜑(𝑧̃, 𝐴) = 𝑝(𝑠, {𝑠
′ ∈ 𝑆|𝜑(𝑧̃, 𝑠′) ∈ 𝐴}), where 𝑧̃ = [𝑠, 𝑧̂]  

Proof: See Lemma 1 in Hildenbrand and Grandmont (1974), page 260, and section 

4.1.    

 

Lemma 2 implies the existence of a ℬ𝐽×𝑆  - measurable function 𝜑 , which is the 

natural candidate to construct the time invariant transition function of the process 

defined by (𝐽, 𝑃𝜑) with typical realization {𝑧̃𝑡}𝑡=0
∞  as it satisfies 𝑧̃𝑡+1 = 𝜑(𝑧̃𝑡, 𝑠𝑡+1) for 
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any initial condition19. We postponed a detailed discussion of this issue to section 

4.1. Remarkably, fact 2.3-2) presented above coupled with the structure of the 

sequential equilibrium, inherited from 1 period real securities and only 1 

consumption good, allows us to extend the existence of a measurable selection for 

temporary equilibrium models in Hildenbrand and Grandmont (1974) to infinite 

horizon economies. As discussed in Feng and Hoelle (2017), there is an 

“indeterminacy” problem associated with a continuum of possible selections of the 

equilibrium correspondence in Feng, et. al. (2014). The stationary state space 𝐽 is 

constructed using all these possible selections. The uniform compactness of 

equilibrium and the results in Duffie, et. al (see lemmas 3.4 and 3.5, page 768), 

allows us to construct stationary selections that represent an infinite horizon 

equilibrium out of the truncated economy by induction. Then, we derive a selection 

mechanism that is directly related with ergodicity. Feng and Hoelle (2017) 

proposed a similar refinement for overlapping generation models, connecting each 

selection with a different steady state. We go a step further and show that it is 

possible to characterize these steady states using simulations.      

Let 𝐵(𝐽) and 𝒫(𝐽) be the space of bounded ℬ𝐽-measurable functions and the space 

of probability measures on 𝐽 respectively. Let 𝑃̂𝜑: 𝐵(𝐽) → 𝐵(𝐽) and 𝑃𝜑
∗: 𝒫(𝐽) → 𝒫(𝐽) be 

the semigroup and adjoint operators defined by 𝑃̂𝜑𝑓(𝑧̃) = ∫𝑓(𝑧̃
′)𝑃𝜑(𝑧̃, 𝑑𝑧̃′)  and 

𝑃𝜑
∗𝜇(𝐴) = ∫𝜇(𝑑𝑧̃)𝑃𝜑(𝑧̃, 𝐴). Standard results20 imply that 𝑃̂𝜑𝑓(𝑧̃) ∈ 𝐵(𝐽) and 𝑃𝜑

∗𝜇(𝐴) ∈ 𝒫(𝐽) 

provided that 𝑓 ∈ 𝐵(𝐽) and 𝜇 ∈ 𝒫(𝐽), respectively.  

Theorem 1 establishes properties which guarantee that the Markov process (𝐽, 𝑃𝜑) 

has an invariant measure, 𝜇 ∈ 𝒫(𝐽) with 𝜇 = 𝑃𝜑
∗𝜇, provided that under assumption 1 

𝜑 may not be continuous. An invariant, not necessarily ergodic, measure is a fixed 

point of 𝑃𝜑
∗ and implies the stationarity of (𝐽, 𝑃𝜑). 

 
19A careful definition of the stochastic process associated with (𝐽, 𝑃𝜑) will be given in section 4.  
20 Stokey, Lucas and Prescott, 1989, page 213 to 216 
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The discontinuity of 𝜑 is at the heart of the problem as it breaks the continuity of 

the adjoint operator. Theorem 1 restores this property by restricting  𝜇 and 𝜑 such 

that the discontinuities in the transition function are negligible in an appropriate 

sense.  The following assumption formally states the mentioned restriction on 𝜑.  

 

Assumption 2: Let 𝜑~Φ be a ℬ𝐽×𝑆  – measurable selection of the correspondence 

defined in assumption 1 and ∆𝜑 its discontinuity set. Then, ∆𝜑 is a collection of at 

most a countable number of points. 

 

Under assumption 1, the range of 𝜑 is uniformly bounded. Thus, assumption 2 

allows 𝜑 having at most a countable number of jump discontinuities. To argue in 

favor of the mildness of this last assumption, we borrow from Hildenbrand (1974) 

and Santos and Peralta Alva (2015). From the former we use the following results 

which characterizes the discontinuities of selections in upper-hemi continuous 

compact valued correspondences. Let 𝐶(𝜑, 𝜀)  be the set of implosions and 

explosions of size 𝜀 > 0:  

 

1) 𝐶(𝜑, 𝜀) = {(𝑧̃, 𝑠)  ∈ 𝐽 × 𝑆 |∃ 𝑈(𝑧,𝑠) 𝑤𝑖𝑡ℎ 𝑆𝑈𝑃𝑥∈𝑈(𝑧̃,𝑠)𝛿(𝜑(𝑥), 𝜑(𝑧̃, 𝑠)) < 𝜀} 

 

Where 𝑈(𝑧,𝑠) is a neighborhood and 𝛿 is the Hausdorff distance. If 𝑥 ∈ 𝐶(𝜑, 𝜀) for all 

(𝑧̃, 𝑠) ∈ 𝐽 × 𝑆 and 𝜀 > 0 then 𝜑 is continuous. Assumption 1 implies that 𝜑  is only 

upper-hemi continuous. Fortunately, under this assumption, 𝐶(𝜑, 𝜀) is a “big” set: 

 

Lemma I (Hildenbrand (1974), page 31): Let 𝜑 map a metric space (𝐽 × 𝑆) into a 

totally bounded metric space (𝐽). 𝜑 is compact valued and upper-hemi continuous. 

Then, for all 𝜀 > 0 𝐶(𝜑, 𝜀) is an open and dense subset of  𝐽 × 𝑆. 
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Moreover, using a result in Santos and Peralta Alva (2005), we can ignore this dense 

set as far as the continuity of the Markov kernel is concerned:  

 

Claim I (Santos and Peralta Alva (2005) page 1942): Let 𝑧̃𝑗 → 𝑧̃. Then: 

2) ∫ 𝑓(𝑧̃′)𝑃𝜑(𝑧̃𝑗, 𝑑𝑧̃′) = ∫ 𝑓 (𝜑(𝑧̃𝑗 , 𝑠
′)) 𝑝(𝑠, 𝑑𝑠′) → ∫ 𝑓(𝜑(𝑧̃, 𝑠′))𝑝(𝑠, 𝑑𝑠′) = ∫ 𝑓(𝑧̃′)𝑃𝜑(𝑧̃, 𝑑𝑧̃′) 

This assumption is also satisfied in the presence of discrete jumps and further 

discontinuities of 𝜑(. , 𝑠′) that are smoothed out after integrating over 𝑠′. 

 

These results are relevant for the weak convergence of measures, which in turn is 

at the heart of the existence proofs for an invariant and ergodic measure. As 

𝑝(𝑠, 𝑑𝑠′) is a density, lemma I and claim I imply that, if assumption 2 is violated, 

then there must be a positive measure discontinuity set which does not belong to 

𝐶(𝜑, 𝜀) and is in the frontier of 𝐽 × 𝑆. These facts imply that if the results in this 

paper are applied to a price-dependent occasionally binding inequality constraints 

problem, which typically hits the constraint with positive probability, assumption 2 is 

relevant. However, in the model described in section 2, inequality constraints are 

price-independent short sale restrictions, which in turn imply that we can set them 

to be arbitrarily large and may not bind frequently. Inequality constraints are not 

essential for this model, and they are imposed only to guarantee the compactness 

of the equilibrium. Based on lemma I and claim I, in section 4.1, we will describe a 

selection mechanism for the model presented in section 2 which illustrates that 

assumption 2 is only relevant in the frontier of the state space. We will show that it 

is always possible the construct a selection of Φ that is continuous along 𝑠′ if we 

are in the interior of 𝐽 × 𝑆. 

 

Note that the Markov process defined by (𝐽 × 𝑆, 𝑃𝜑) may not be irreducible. That is, 

the state space which defines it, 𝐽 × 𝑆, is not entirely stable and may contain islands 

and unstable (transient) points. If the process is irreducible, we know that 𝐽 × 𝑆 is 
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convex as it is formed by rectangles. Thus, as convex sets have a frontier with zero 

measure, we can dispense with assumption 2 under lemma I and claim I21. For the 

purpose of this paper, assumption 2 is useful as it provides an alternative way to 

characterize non-irreducible ergodic chains. As can be seen in Pierri and Reffett 

(2021), irreducibility may be obtained in representative agent incomplete market 

models but are rather hard to prove once we add heterogeneity into the picture.                  

 

Now it is possible to state one of the main results in this paper: 

 

Theorem 1 (Existence of an Invariant Measure-Stationarity of the Process): 

Let 𝜑~Φ satisfies assumptions 1 and 2. Suppose additionally that a) 𝑃𝜑
∗: 𝒫0(𝐽) → 𝒫0(𝐽) 

and b) 𝒫0(𝐽) is weak* closed, where 𝒫0(𝐽) is the set of atomless measures in 𝒫(𝐽). 

Then there is a measure 𝜇 ∊ 𝒫0(𝐽) such that 𝜇 = 𝑃𝜑
∗𝜇. 

Proof: see the online the appendix. 

 

Note that a) and b) are “properties” of the process (𝐽, 𝑃𝜑) and together imply that 

the discontinuity set of 𝜑 is negligible. That is, 𝜇𝑛 ⟶𝑤𝑒𝑎𝑘∗ 𝜇 and 𝜇(∆𝜑) = 0. Sections 

3.2 to 3.4 relate these properties with verifiable “conditions” on 𝑃𝜑 , 𝜑 and 𝑆 . If 

property a) is satisfied, it suffices to assume that the set {𝜇𝑛|𝜇𝑛 = 𝑃𝜑
∗𝜇𝑛−1, 𝜇0 ∈  𝒫0(𝐽)} 

is weak* closed. This is the strategy taken here and is concerned with the 

variability of the image of the transition functions, which cannot accumulate mass 

at any given point. This property requires variability in the image of a possible 

vector valued function as we move through the coordinates in the domain (see the 

supplementary material for section 5.1 in the appendix).  

Let 𝐼𝑀(𝜑,𝒫1) = {𝜇 ∊ 𝒫1(𝐽)|𝜇 = 𝑃𝜑
∗𝜇}, where 𝒫1(𝐽) ⊆ 𝒫0(𝐽) . That is, 𝐼𝑀(𝜑,𝒫1) is a set of 

invariant measures of (𝐽, 𝑃𝜑) which belong to 𝒫1(𝐽), the set of absolutely continuous 

measures with respect to the Lebesgue measure on 𝐽 , denoted 𝜃 . Under 

 
21 I would like to thank Juan Pablo Rincón Zapatero for pointing out this to me.  



23 
 

assumptions 1) and 2), if properties a) and b) hold for 𝒫1(𝐽), the non-emptiness of 

𝐼𝑀(𝜑,𝒫1) can be assured using theorem 1 as long as 𝜇 ∈ 𝒫1(𝐽), 𝜇(∆𝜑) = 0 and 𝜇 is the 

weak* limit of a sequence of measures generated by 𝑃𝜑
∗. To show that 𝐼𝑀(𝜑, 𝒫1) is 

compact, which is essential for the existence of an ergodic measure, it is necessary 

to impose stronger conditions on 𝑃𝜑, and consequently on 𝜑, than the ones that are 

required for from theorem 1. Once this strengthening has been made, the 

closedness of {𝜇𝑛|𝜇𝑛 = 𝑃𝜑
∗𝜇𝑛−1, 𝜇0 ∈  𝒫1(𝐽)} follows from the same result used for 𝒫0 

which insures the non-emptyness of 𝐼𝑀(𝜑,𝒫1). This result cannot be applied to 

show the compactness of 𝐼𝑀(𝜑,𝒫1). A suitable proof of this result is available in the 

appendix. A discussion of these issues can be found in the supplementary material 

to sections 3.1, 3.3 and 3.4 in the appendix.    

A set 𝐴 ∈ ℬ𝐽 is called invariant under 𝑃𝜑 if 𝑃𝜑(𝑧, 𝐴) = 1 for any 𝑧 ∈ 𝐴. Let 𝐼𝑀(𝜑) be the 

set of invariant measures associated with selection 𝜑 . We say that 𝜇 ∈ 𝐼𝑀(𝜑) is 

ergodic if either 𝜇(𝐴) = 0  or 𝜇(𝐴) = 1  for any invariant set under 𝑃𝜑 . The next 

theorem presents properties of 𝐼𝑀(𝜑) which guarantee that there exists an ergodic 

measure. 

 

Theorem 2 (Existence of an Ergodic Measure-Ergodicity of the Process):  

Let 𝜑~Φ  satisfies assumptions 1 and 2. Suppose additionally that 𝐼𝑀(𝜑,𝒫1) ≠ ∅ , 

where 𝒫1 is the set of absolutely continuous measures with respect to the Lebesgue 

measure. If c) 𝐼𝑀(𝜑, 𝒫1) is closed, then 𝐼𝑀(𝜑,𝒫1) contains an ergodic measure. 

 

Proof:  The closedness of the set implies its compactness from proposition 2.8 in 

Futia (1982, page 385). As 𝐼𝑀(𝜑, 𝒫1)  is convex, the Krein-Milman theorem (see 

Simon, 2011, theorem 8.14, page 128) implies that the set of extreme points of 

𝐼𝑀(𝜑,𝒫1), denoted ℰ(𝐼𝑀(𝜑, 𝒫1)), is non-empty. Remark 6.3 in Varadhan (2001, page 

190) implies that if 𝜇 ∈ ℰ(𝐼𝑀(𝜑,𝒫1)), then 𝜇 is ergodic. 
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Theorems 1 and 2 are the first attempt to show separately the existence of an 

invariant and an ergodic measure for a computable correspondence based 

recursive equilibrium. For the case of uncountable shocks, we found sufficient 

conditions for stationarity and ergodicity by characterizing a particular selection 

and connecting it with primitive conditions of the model (see section 3.4 and fact 

2.3-5 in section 2.3 with the associated supplementary appendixes). These facts 

ensure that our results can be used for computation and estimation of 

heterogenous agent models with aggregate uncertainty and incomplete markets.    

Sections 3.2 and 3.3 identify conditions on 𝑃𝜑 which guarantee properties a), b) and 

c) associated with theorems 1 and 2. These conditions will be traced back to the 

primitives of certain type of economies in sections 3.4.     

 

 3.2 The case of a finite number of shocks 

 

Theorem 1 requires 2 properties. Namely, that the adjoint operator associated with 

some Markov process (𝐽, 𝑃𝜑) maps the set of atomless measures, 𝒫0(𝐽), into itself 

(property a) and that 𝒫0(𝐽) is closed (property b).  The relationship between these 

properties and certain conditions of the Markov operator  𝑃𝜑 allows connecting the 

existence of an invariant measure with primitive assumptions in the model (i.e., 

restrictions on preferences, shocks, etc) as they affect 𝜑~Φ and thus 𝑃𝜑.    

This section takes the first step towards that direction by restricting 𝑆, the set 

which contain the exogenous shocks, to be of finite cardinality. Let 𝜇𝑛,𝜃  be a 

sequence of measures generated by applying 𝑃𝜑
∗ iteratively on some 𝜃 ∈ 𝒫(𝐽). Then, 

the following lemma states conditions on  𝑃𝜑 which guarantee properties a) and b).  

 

Lemma 3 (Conditions for stationarity in models with finite shocks):  

Let Φ satisfy assumption 1 and #𝑆 < ∞. Then, the measurable space (𝐽, ℬ𝐽) has an 

atomless measure 𝜃. Let {𝑎} be any point in 𝐽. Suppose that for some 𝜑~Φ:  
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1) 𝜃({𝑎}) = 0 implies 𝑃𝜑(𝑧, {𝑎}) = 0  𝜃-almost everywhere 

2) 𝑆𝑢𝑝𝑛𝜇𝑛,𝜃({𝑎}) = 0.  

Then, properties a) and b) in theorem 1 are satisfied. 

Proof: see the online appendix. 

 

Note that lemma 3 requires conditions 1 and 2 to hold simultaneously to guarantee 

properties a) and b). Condition 1 is associated with property a) and condition 2 

with property b). While the supplementary material for section 5.1, in the appendix, 

presents mild sufficient conditions on the primitives of the economy presented in 

section 2.1 which guarantee condition 1, it is still an open question how to assure 

that condition 2 holds in a general equilibrium non-optimal economy with 

heterogenous agents 22 . Thus, a strong assumption on endogenous variables, 

condition 2, is required to assure the weak*-closedness of  𝒫0(J̃) when the state 

space is of the form  𝐽 = 𝑆 × 𝑍̂, 𝑆 is finite and 𝑍̂ is uncountable. 

 

3.3 The case of an infinite number of shocks 

 

This section presents conditions on the Markov operator 𝑃𝜑 for economies with an 

uncountable number of shocks 𝑠. Lemma 4 below is analogous to lemma 3 for this 

type of models. However, there are 3 important differences with respect to the case 

presented in section 3.2. First, the existence of an invariant measure follows only 

from 1 requirement, a strengthening with respect to condition 1) in lemma 3. 

Second, it is possible to define conditions on 𝑃𝜑 which guarantee the ergodicity of 

the invariant measure separately (i.e., condition 4). Third, we can connect 

properties a), b) and c) in theorems 1 and 2 respectively with assumptions on the 

set of shocks, its distribution and 𝜑~Φ. This last fact will be proved in section 3.4. 

 
22 Ito (1964, page 177) gave an example of a discontinuous function 𝜑~Φ satisfying conditions 1)-2). However, it is not clear 
how to derive sufficient conditions on the primitives or how to characterize selections to ensure that condition 2) holds. 
However, this can be done if we assume an uncountable number of shocks as we do in section 3.3 and 3.4. 
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Lemma 4 (Conditions for stationarity and ergodicity with uncountable shocks):  

Let Φ  satisfy assumption 1 and 2. Further, suppose that 𝑆  be an uncountable 

compact set. Then, the measurable space (𝐽, ℬ𝐽) has an atomless measure 𝜃. Let {𝑎} 

and 𝐵 be, respectively, any point and a Borel measurable set in 𝐽. Suppose that for 

some 𝜑~Φ:  

3) Stationarity: 𝜃({𝑎}) = 0 implies 𝑃𝜑(𝑧, {𝑎}) = 0  for any  𝑧 ∈ 𝐽 and 𝑧 ∉ ∆𝜑.  

4) Ergodicity: ∀𝜀 > 0, ∃𝛿 > 0 such that 𝜃(𝐵) < 𝛿 implies 𝑃𝜑(𝑧, 𝐵) < 𝜀 for any  𝑧 ∈ 𝐽.  

If condition 3) holds, then properties a) and b) in theorem 1 are satisfied. 

If condition 4) holds, then property c) in theorem 2 is satisfied. 

Proof: see the online appendix. 

 

Remark 1: Condition 4) implies condition 3). Further, lemma 4 showed that 

{𝜇𝑛|𝜇𝑛 = 𝑃𝜑
∗𝜇𝑛−1, 𝜇0 ∈  𝒫1(𝐽)} is weak* closed. Thus, assumption 2) can be replaced with 

the following, milder version:  

 

Assumption 2’): Let 𝜑~Φ be a ℬ𝐽×𝑆–measurable selection of the correspondence in 

assumption 1 and ∆𝜑 its discontinuity set. Then, ∆𝜑 has zero Lebesgue measure23. 

 

The discussion in section 3.1 implies that this assumption is only relevant for the 

frontiers of the stable state space.  

Condition 3) states that 𝑃𝜑(𝑧, . ) is an atomless measure for any 𝑧 in the state space 

which does not belong to the discontinuity set ∆𝜑24. Note that condition 1) in 

lemma 3 only requires 𝑃𝜑(𝑧, . ) to be atomless almost everywhere. Thus, condition 3) 

 
23 As any point in  𝐽 has zero Lebesgue measure, the result follows from Billingslley (1995, see equation 32.4 in page 422). 

The possibility to replace assumption 2 by 2’ once condition 4 has been imposed follows from the fact that 𝜇(∆𝜑) = 0 if 𝜇 is 

the Weak* limit of {𝜇𝑛|𝜇𝑛 = 𝑃𝜑
∗𝜇𝑛−1, 𝜇0 ∈  𝒫1(𝐽)} and ∆𝜑 has zero Lebesgue measure. 

 
24 The equilibrium correspondence in Feng, et. al. has an image in a separable finite dimensional space. Thus, it suffices to 
consider at most a countable set of selections (see Hildenbrand and Grandmont, 1974). This fact in turn implies that 
𝑃𝜑(𝑧, {𝑎}) = 0 for any 𝑧 ∈ ∆𝜑 as ∆𝜑 is a finite set and there is an uncountable number of exogenous shocks. The existence of an 

atomless measure 𝜃 in models where condition 4 is not guaranteed to hold is shown in the proof of lemma 3 in section IV of 
the appendix.   
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is stronger than 1). The supplementary material for this section presents an 

example of a Markov process which satisfies condition 1) but the adjoint operator 

is not closed in the space of atomless measures. In that sense, condition 2) is 

essential. However, in this example condition 3 is violated. As shown in lemma 3, 

condition 3 is sufficient to show that the adjoint operator is closed in the space of 

atomless measures, ensuring the existence of an invariant measure under the 

assumption of uncountable shocks. The supplementary material for section 5, in 

the appendix, illustrates how to verify this condition on the economy defined in 

section 2. Condition 4) states that 𝑃𝜑(𝑧, ) is absolutely continuous w.r.t. 𝜃 uniformly 

in 𝑧 ∈ 𝐽. As it is discussed in the supplementary appendix for this section, condition 

4 is milder than the Doeblin condition (see for instance Stokey, Lucas and Prescott 

(1989)) and, as will be discussed in sections 3.4 and 4.1, can be traced back to 

restrictions on the selection of the equilibrium correspondence or on the state 

space.  

The discussion below highlights a tension between the existence of a time invariant 

recursive equilibrium, the stationarity and the ergodicity of the associated Markov 

process. With finite shocks, the existence of the sequential equilibria can be proved 

by imposing mild requirements on the primitives, but the existence of an invariant 

measure involves the absence of heterogeneous agents. With uncountable shocks, 

ergodicity follows from the requirements presented in section 3.4 below.   

The difference between conditions 1) and 3) (i.e., 𝜃({𝑎}) = 0 implies 𝑃𝜑(𝑧, {𝑎}) = 0  𝜃-

almost everywhere and uniformly in all continuity point respectively) has 2 

important consequences. First, condition 1) allows 𝑆  being a finite set. The 

existence of a sequential equilibrium follows from mild assumptions for this type 

of economies. This is the bright side. On the other hand, proving the existence of 

an invariant measure requires condition 2), which is very challenging to derive 

from primate conditions. If #𝑆 < ∞, the existence of the sequential equilibrium and 

of the recursive structure in Feng, at. al. can be derived from primitive 

assumptions of the model. As can be seen in Zhu (2020) or Pierri and Reffett 
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(2021), the assumptions needed to prove the existence of an invariant measure 

when #𝑆 < ∞ imply the existence of a representative agent. As this paper deals with 

heterogeneity, those results cannot be applied. Second, condition 3) allows proving 

the existence of an invariant measure imposing only this additional requirement to 

assumptions 1) and 2). Under this strengthening, condition 2 can be replaced by 

the closedness of the set of atomless measures under the adjoint operator, which 

is proved in the online appendix. This condition follows from assuming that 𝑆 is 

uncountable and from a mild requirement on its distribution, as it only requires 

variability along one coordinate of the selection 𝜑 (see the supplementary appendix 

of section 5). However, showing the existence of a sequential equilibrium and of an 

appropriate recursive structure requires restrictions on endogenous variables. This 

last fact is discussed in sections 2.5.1 (see fact 2) and 5.    

In summary, there is a tradeoff between the mildness of the assumptions required to 

prove the existence of a sequential equilibrium and to prove the existence of an 

invariant measure. In this sense, if the goal is to show the existence of a recursive 

stationary structure, we must impose strong assumptions to show the existence of 

sequential equilibria and then recursiveness and stationarity comes almost for free.    

From the preceding discussion the crucial step in the existence of an invariant 

measure and its ergodicity is to ensure that the non-atomicity / absolute continuity 

of a sequence of measures is preserved under weak* limits. This can be seen by 

noting that properties b) and c) in theorems 1 and 2 requires, respectively, the 

closedness of 𝒫0  and 𝒫1  and that, as was shown in lemmas 3 and 4, these 

properties impose restrictions on the Markov operator. Section 3.4 discussed how 

these restrictions reflect on 𝜑 and the primitives of the model. The example in the 

supplementary appendix to this section illustrate the problem at hand. 
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3.4 Sufficient conditions for stationarity and ergodicity 

 

The conditions stated in lemma 4 allow to guarantee that the properties associated 

with the existence of an invariant and an ergodic measure (properties a) to c) in 

theorems 1 and 2) hold. However, they are based on the restrictions on endogenous 

variables. This section goes a step forward and connects these conditions 

(numbered 3) and 4) in lemma 4) with primitives in the model (assumptions 3-i,ii 

and iv) and with a mild continuity requirement on selections (assumption 3-iii). 

 

Assumption 3: Let 𝑆  be the set containing the exogenous shocks, 𝑝(𝑠, . )  its 

distribution, Φ: 𝐽 × 𝑆 ⇉ 𝐽 the equilibrium correspondence presented in definition 5 (see 

the technical appendix of section 2.3.2) and ∆𝜑 the discontinuity set of 𝜑~Φ. Assume 

that: 

i) 𝑆 is uncountable and compact 

ii) 𝑝(𝑠, . ) is atomless ∀𝑠 ∈ 𝑆 

iii) Suppose that assumption 2 holds. Let (𝑧̃, 𝑠′) ∈ ∆𝜑 and {𝑠𝑛} a sequence 

with 𝑠𝑛 → 𝑠. In addition, suppose that 𝑙𝑖𝑚
(𝑧,𝑠𝑛

′ )→(𝑧,𝑠′)
𝜑 (𝑧̃, 𝑠𝑛

′ ) = 𝜑(𝑧̃, 𝑠′)  ∀𝑧̃ ∈ 𝐽  

iv) 𝑝(𝑠, . ) = 𝑈[𝑠, 𝑠] ∀𝑠 ∈ 𝑆, where 𝑈[𝑠, 𝑠] is the uniform distribution on [𝑠, 𝑠], 

a closed bounded interval of  ℝ. 

 

Assumption 3-iii) allows for some path (𝑧̃𝑛, 𝑠𝑛
′ ) to be discontinuous. For any (𝑧̃, 𝑠′) ∈

∆𝜑  there may exist (𝑧̃𝑛, 𝑠′) with 𝑙𝑖𝑚(𝑧𝑛,𝑠′)→(𝑧,𝑠′) 𝜑 (𝑧̃𝑛, 𝑠′) ≠ 𝜑(𝑧̃, 𝑠′)  but continuity is 

required on 𝑆 for each 𝑧̃ ∈ 𝐽. This assumption allows us to connect rectangles in the 

range of 𝜑(𝑧̃, . ) with closed sets in 𝑆. Then, in proposition 2 below, the countable 

union of these rectangles will be associated with a small measure set to derive 

condition 4. As it was discussed in section 3.1, for the model described in section 

2, assumption 3-iii), the continuity on 𝑠+  for each 𝑧̃ ∈ 𝐽 , follows from mild 

restrictions on the recursive equilibrium in Feng, et. al. The procedure in Feng, et. 



30 
 

al. can be used to construct a selection 𝜑 which satisfies assumption 3-iii). Section 

4 explains how to choose the selection to satisfy this assumption for the model 

with multiple assets.   

The next 2 propositions connect assumption 3 with conditions 3 and 4. 

 

Proposition 1 (Sufficient Condition for Stationarity):  

Suppose that assumption 1, 3-i) and 3-ii) hold. Then, condition 3) is satisfied: 𝜃({𝑎}) =

0 implies 𝑃𝜑(𝑧, {𝑎}) = 0 for any  𝑧 ∈ 𝐽 for an arbitrary point {𝑎} ∈ 𝐽      

Proof: see the online appendix.  

 

Proposition 2 (Sufficient Condition for Ergodicity):  

Suppose that assumption 1, 3-iii) and 3-iv) hold. Then, condition 4) is satisfied. That 

is, ∀𝜀 > 0, ∃𝛿 > 0 such that 𝜃(𝐵) < 𝛿 implies 𝑃𝜑(𝑧, 𝐵) < 𝜀 for any  𝑧 ∈ 𝐽.   

Proof: see the online appendix. 

 

Clearly, proposition 2 calls for stronger assumptions than proposition 1. This is 

because it involves verifying not only the non-atomicity of 𝑃𝜑(𝑧, . ), which requires 

only taking care of points in 𝐽 ⊂ ℝ𝐾 , but also its absolute continuity, which 

demands proving that sets of the form {𝑎1} × [𝑎2, 𝑏2] × …× [𝑎𝐾, 𝑏𝐾] also have zero 

Lebesgue measure. Each of these sets can be “matched” with a sequence of 

rectangles which can be traced back to 𝑝(𝑠, . ) under assump. 3-iii).   

 

Remark 2: proposition 2 holds under a different version of assumption 3-iv). 

Assumption 3-iv’): Let (𝑠, . ) = 𝑈[𝐿𝐵(𝑠), 𝑈𝐵(𝑠)] ∀𝑠 ∈ 𝑆, where 𝑈[𝐿𝐵(𝑠), 𝑈𝐵(𝑠)] is the 

uniform distribution on [𝐿𝐵(𝑠), 𝑈𝐵(𝑠)]. 

See the online appendix for a discussion. 
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Assumption 3-iv’) is weaker than 3-iv) as it allows the exogenous states to follow a 

Markov process instead of being i.i.d. However, the theorem which guarantees 

existence of an equilibrium correspondence for an economy with uncountable 

shocks requires assumption 3-iv). This result will be shown latter in section 5.  

 

 

4 Characterization of the recursive economy and of simulations 

 

In this section we further describe the equilibrium correspondence in framework of 

Feng, et. al.  and characterize the selections which satisfy the critical requirement 

to achieve ergodicity (i.e., assumption 3-iii). Moreover, we explain the implications 

of stationarity and ergodicty for simulations. In the first case, for models that 

satisfy assumption 2 and the requirements in proposition 1, we show that the 

frequently used cumulative average will converge to random variable, which 

realizations depend on the entire observed path. Thus, not only the time limit of 

any cumulative average is history-dependent but also it is affected by the initial 

distribution of portfolios. To connect simulations with a well-behaved steady state 

for this case, we show that it is possible to “average” across paths to relate 

simulations with a history-independent stochastic steady state (i.e., an invariant 

measure for stationary models that is shown to exist in theorem 1). In the second 

case, for models that satisfy assumption 2 and the requirements in proposition 2, 

we show that it is possible to extend stationarity to ergodicty and, thus, cumulative 

averages will be history-independent, and each time limit will relate to a well-

behaved steady state (i.e., an invariant measure which exists under theorem 2). 

 

4.1 Characterization of recursive equilibria 

 

The state space, 𝑍,̃ can be decomposed in 2 parts: payoff relevant variables 𝑍𝐹 and 

auxiliary variables 𝑚. In particular, let 𝑍𝐹 ≡ {[𝑠, 𝑞, 𝜃] ∊  𝑆 × ℝ
𝐽 × ℝ𝐼𝐽| ∑ 𝜃𝑖𝐼

𝑖=1 = 0⃑ }, 𝑚𝑖,𝑗 ≡
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𝑑𝑗(𝑠) (𝑢𝑠
𝑖(𝑐𝑖))

′

, where 𝑚 is the vector of shadow values of the marginal return to 

investment for all assets and all agents. Assume, additionally to the hypothesis 

stated in section 2.1, that there exists a short sale constraint 𝐵̅ > 0 such that 𝜃𝑖,𝑗 ≥

−𝐵̅ . Using the budget constraint, equation 1, it is possible to define a 

correspondence  𝑉  that maps (𝑧) ↦ 𝑚  as follows: for each 𝑧 ∈ 𝑍𝐹 , 𝑐𝑖 ∈ [𝑒𝑖(𝑠) +

𝜃𝑖𝑑(𝑠) − 𝐼𝐵̅𝑞, 𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) + 𝐼𝐵̅𝑞]  defines a selection 𝑚~𝑉(𝑧)  which is obtained by 

taking some 𝜃+
𝑖,𝑗
≥ −𝐵̅ for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. Provided, as discussed in section 2.5.1, 

that all endogenous variables in the model are (uniformly) contained in a compact 

set 𝐾, 𝑉 is compact valued and 𝐺𝑟(𝑉) is compact.   

Then, as in the previous subsection, it is possible to derive a time invariant 

compact state space, which is analogous to Duffie, et. al.’s self-justified set. Let 𝐾̃ ⊂

𝐾 and 𝐾̃ ≡ 𝐺𝑟(𝑉0). The first order conditions of the model can be written as: 

3) 𝑐𝑖 = 𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) − 𝜃+
𝑖 𝑞 

4) [𝑞 (𝑢𝑠
𝑖(𝑐𝑖))

′

− 𝛽𝐸𝑝(𝑠,.)(𝑚+
𝑖 )] [𝜃+

𝑖 − 𝐵̅] = 0⃑  

Where 𝐸𝑝(𝑠,.) is the expectation with respect to 𝑝(𝑠, . ), the conditional distribution of 

𝑠+ given 𝑠, and 𝑚+
𝑖 (𝑠+)~𝑉(𝜃+, 𝑞+, 𝑠+). Thus, 4) is defined using the expected value 

with respect to 𝑝(𝑠, . ) over [𝜃+, 𝑞+](𝑠+).  

4.1.1 Time independent State Space 

Let 𝐺𝑟(𝑉𝑗) = 𝐶𝑗. Iterating on 𝐺𝑟(𝑉1), it is possible to derive a sequence of nested sets 

{𝐶𝑗}  for 𝑗 ≥ 1  where 𝐶𝑗  contains all 𝑧̃0  of any j-period economy. Note that this 

procedure defines an operator 𝐺𝐾: 𝐺𝑟(𝑉) → 𝐺𝑟(𝑉), where 𝑉 is some set … 𝑉𝑗 …𝑉0. The 

non-emptiness and compactness of each 𝐶𝑗 follows from the arguments in section 

2.5.1 as, respectively, equations 3) and 4) are identical to the optimality conditions 

implied by the definition of “equilibrium with explicit debt constraint” in Magill 
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and Quinzii (page 862) and the recursive equilibria in Feng, at. al. are a subset of 

those in Duffie, et. al.25 

As 𝐺𝐾 maps compact sets to compact sets, Feng, et. al. showed (theorem 2.1 in page 

6) that 𝑉𝑛 → 𝑉∗, where 𝑉∗ is the analogous of Duffie, et. al.’s self justified set. Thus 

𝐺𝑟(𝑉∗) = 𝐽 contains all possible first period payoff relevant variables 𝑧̃0(𝜎0) for the 

sequential competitive equilibrium in definition 1.  

Finally, Φ: 𝐽 × 𝑆 ⇉ 𝐽 is defined as follows: take any 𝑧̃ = [𝑠̃, 𝜃̃, 𝑞̃, 𝑚̃] ∈ 𝐽 , 𝑧̃+ ∈ Φ(𝑧̃, 𝑠̃+) if 

𝑧̃+ ∈ 𝐽  and (𝑧̃, 𝑧̃+)  satisfy equations 3) and 4) with 𝑚(𝑠+)~𝑉
∗(𝜃+, 𝑞+, 𝑠+)(𝑠+) . The 

following definition summarizes this discussion: 

Definition 2 (Feng, et. al.’s recursive equilibrium): Let 𝐽 = 𝐺𝑟(𝑉∗) and 𝐽 ⊆ 𝐾̃. Φ: 𝐽 × 𝑆 ⇉

𝐽  is an equilibrium correspondence if 𝑧̃𝑡+1 ∈ Φ(𝑧̃𝑡, 𝑠𝑡+1)  and {𝑧̃𝑡}𝑡=0
∞  satisfy the 

optimality conditions in equations 3)-4) and the feasibility restrictions in the 

definition of  𝑍.  

The procedure described above can be repeated an infinite number of times as 𝐽 

contain all possible initial conditions 𝑧̃0(𝜎0) for any 𝑇 ∈ ℕ period economy. A time 

invariant transition function is obtained by taking a selection of Φ, denoted 𝜑~Φ. 

This function is measurable, as Φ has closed graph and is compact valued (see 

Stokey, Lucas and Prescott, page 60 theorem 3.4 and 184 theorem 7.6), and does 

not depend on unobservable variables. 

4.1.2 Selection Mechanism (Continuity along 𝐬+)  

The functions 𝜃+ and 𝑞+, mapping 𝑠+ ↦ 𝜃+ and 𝑠+ ↦ 𝑞+ respectively, can be chosen 

to be continuous provided that 𝑆 in an uncountable set. Each of these functions is 

associated with a predecessor in 𝑍̃. 

 
25 Section 5.1 will provide some additional details about these facts. 
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Now it is possible to define the analogous of a “self-justified set” in Feng, et. al. 

framework. To begin with, the set of all states, 𝑧̃ ∈ 𝐾̃, of any 2-period economy is 

contained in:  

𝐺𝑟(𝑉1) = {𝑧̃ ∊ 𝐾̃| ∃ 𝑧̃+ ∊ 𝐺𝑟(𝑉0) 𝑤𝑖𝑡ℎ 𝑧̃, 𝑧̃+ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑒𝑞. 3) 𝑎𝑛𝑑 4) } 

That is, [𝑠, 𝑞, 𝜃,𝑚] ∊  𝐺𝑟(𝑉1) if 𝑐
𝑖(𝜃+

𝑖 ) obtained from 3) for all 𝑖 ∈ 𝐼 satisfy equation 4) 

for some 𝑚+
𝑖 (𝑠+)~𝑉(𝜃+, 𝑞+, 𝑠+)  with [𝜃+, 𝑞+, 𝑠+] ∈ 𝑉026 . For any arbitrary iteration 𝑗 , 

notice that for each 𝑠+ ∈ 𝑆  there could be more than 1 possible pair (𝜃+, 𝑞+ ). 

However, as 𝜃+ is chosen at time “𝑡”, to satisfy the restrictions of the SCE, it must 

be 𝑠𝑡-measurable, where 𝑠𝑡 is a branch of the tree 𝔗 defined in section 2.1. Thus, 

𝜃+(𝑠+) can be chosen to be constant and thus continuous for each 𝑧̃ ∈ 𝐾̃. Moreover, 

any possible discontinuity in 𝑞+(𝑠+) can be ruled out by appropriately changing 𝜃++ 

in [𝑒𝑖(𝑠+) + 𝜃+
𝑖 𝑑(𝑠+) − 𝐼𝐵̅𝑞+, 𝑒

𝑖(𝑠+) + 𝜃+
𝑖 𝑑(𝑠+) + 𝐼𝐵̅𝑞+]  with 𝜃++ ∈ [−𝐼𝐵̅, 𝐼𝐵̅].  Suppose 

without loss of generality that 𝑙𝑖𝑚𝑠𝑛
′→𝑠′𝑞+(𝑠𝑛

′ ) < 𝑞+(𝑠′).  This is possible as the 

equilibrium is compact. Then:  

𝑙𝑖𝑚𝑠𝑛
′→𝑠′  𝑚+

𝑖 (𝑠𝑛
′ ) = 𝑢′[𝑙𝑖𝑚𝑠𝑛

′→𝑠′𝑒
𝑖(𝑠𝑛

′ ) + 𝜃+
𝑖 𝑙𝑖𝑚𝑠𝑛

′→𝑠′𝑑(𝑠𝑛
′ ) − 𝜃⃗++

𝑖 𝑙𝑖𝑚𝑠𝑛
′→𝑠′𝑞+(𝑠𝑛

′ )] 

Where 𝑙𝑖𝑚𝑠𝑛
′→𝑠′𝜃++

𝑖 (𝑠𝑛
′ ) = 𝜃⃗++

𝑖  is defined by the original selection 𝑚+
𝑖 (𝑠+)~𝑉(𝜃+, 𝑞+, 𝑠+) 

as there must be at most 1 value for each 𝑠+ ∈ 𝑆27. Then, it suffices to set 𝜀 > 0 such 

that [𝑙𝑖𝑚𝑠𝑛
′→𝑠′𝑞+(𝑠𝑛

′ )]𝜀=𝑞+(𝑠′)  and multiply 𝜃⃗++
𝑖  by 1/𝜀 . Thus, we preserve budget 

feasibility (equation 3), optimality (equation 4) and market feasibility (as 𝜀 can be 

chosen to be uniform across agents).         

As discussed in section 3.1, equations 1 (in lemma I) and 2 (in claim I) implies that 

for interior points the discontinuities along 𝑠′  can be ignored. The paragraphs 

above are simply an application of those results. That is, the upper hemi-continuity 

 
26 As 𝑉0 is a correspondence, [𝜃+, 𝑞+, 𝑠+] ∈ 𝑉0 refers to elements in the domain of 𝑉0. For the sake of simplicity and as there is 
no confusion, we prefer this notation to [𝜃+, 𝑞+, 𝑠+] ∈ 𝑑𝑜𝑚(𝑉0).   

27 As the equilibrium is compact, we know that 𝑙𝑖𝑚𝑠𝑛
′→𝑠′[𝜃++

𝑖 (𝑠𝑛
′ )𝑞+(𝑠𝑛

′ )] = 𝑙𝑖𝑚𝑠𝑛
′→𝑠′𝜃++

𝑖 (𝑠𝑛
′ )𝑙𝑖𝑚𝑠𝑛

′→𝑠′𝑞+(𝑠𝑛
′ ). 
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and compact valuedness of 𝑉 implies that “explosions and implosions” are small 

enough to be ruled out by any perturbation in [−𝐼𝐵̅, 𝐼𝐵̅]. Not surprisingly, it is only 

possible to ensure the continuity of [𝜃+, 𝑞+](𝑠+) for an interior path for any 𝑧̃ ∊ 𝑉∗.  

Note that this procedure can be defined for each [𝜃+, 𝑞+, 𝑠+] ∈ 𝑉0 but, as we may 

have 𝑉∗ ⊂ 𝑉0, it is possible that the required “perturbed” portfolio 𝜃⃗++
𝑖 /𝜀 may not 

belong to 𝑉∗. Moreover, this restriction concerns only to ergodic selections. These 

facts has 2 implications, one involving ergodic and the other stationary selections. 

As regards the latter, as in Duffie, et. al. (1994), if the equilibrium is compact, we 

can choose 𝑉∗ = 𝑉0 . As assumption 3-iii) is imposed on time-independent 

selections, as it must guarantee condition 4) in lemma 4 that involves the Markov 

kernel, it suffices to verify the continuity of 𝑞+ on 𝑠+ for 𝑉0. However, in dynamic 

applications, as the stochastic process is not irreducible, it is possible that 𝑉∗ ⊂ 𝑉0. 

In this case, the selection mechanism described may require to “pick” assets such 

that 𝜃++
𝑖 (𝑠) ∉ 𝑉∗28. In this case, the selection belongs to an 𝜀-equilibrium which, as 

discussed in Kubler and Schmedders (2003), is a suitable stationary equilibrium 

concept for models with collateral constraints. In this sense, we go a step further 

with respect to these authors and show that the 𝜀-equilibrium can generate an 

ergodic equilibrium. With respect to stationary selections, notice that 𝜃++ can be 

chosen to depend only on 𝑠+ . As definition 2 implies that the Markov process 

iterates from [𝜃, 𝑞, 𝑠, 𝑠+] to [𝜃+, 𝑞+, 𝑠+], unless we require some regularity on 𝑞+ as in 

the ergodic equilibrium, we are free to chose 𝜃++ . Thus, the measurability 

requirement of the stationary selections, provided the uniform compactness of the 

equilibrium, follows from standard results. This may not be the case in more 

general models as noted by Feng and Hoelle (2017) who derive their results for 

overlapping generation models. The discipline imposed by the infinite dimension 

 
28 Heuristically, in an irreducible process, every positive measure set is “hit” by the chain with positive probability starting 
from any initial condition. Thus, 𝑉∗ = 𝑉0. During the construction of the ergodic selection described above because the 

process may not be irreducible, it may happen that 𝜃⃗++
𝑖 /𝜀 ∉ 𝑉∗ as 𝑉∗ ⊂ 𝑉0. Thus, we are dealing with an  𝜀-equilibrium as 

defined in Kubler and Schmedders. 
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of the optimization problem in definition 1 is critical to extend the stationarity of 

the temporary equilibrium to an infinite horizon problem. This is noted by Duffie, 

et. al.29 who use the temporary equilibrium framework and uniform compactness to 

show the optimality of a sunspot-free stochastic process generated by a stationary 

transition of a generalized version of the equilibrium correspondence in definition 

2. More to the point, the “indeterminacy” described in Feng and Hoelle (2017) is 

generated by an equilibrium characterized by a system with more unknowns than 

equations. This generates a non-stationary “indeterminacy” as it is associated with 

the system of equations that characterized the sequential equilibrium. In this 

paper the “indeterminacy” is associated with the equilibrium correspondence 

described in definition 2. That is, the “indeterminacy” is generated by a stationary 

system of equations and thus solved after picking a measurable selection. After 

selecting 𝑚+
𝑖 (𝑠+)~𝑉(𝜃+, 𝑞+, 𝑠+) and thus 𝜃++(𝑠+), the system has the same number of 

unknows than equations as there is 1 Euler equation for each asset in 𝜃 and 1 

market clearing condition for each price 𝑞.    

 

4.2 Convergent Simulations. 

 

The main result in this section is a direct application of Birkhoff’s ergodic theorem 

and the ergodic decomposition theorem for Markov process. Thus, the results will 

be stated without proof. This section follows closely chapter 6 of Varadhan (2001). 

The technical details are contained in the appendix of this section.  

As in Santos and Peralta-Alva (2013), Kamihigashi and Stachurski (2015) or chapter 

14 of Stokey, Lucas and Prescott, a simulation is convergent if it obeys a strong law 

of large numbers. In contrast to what is stated in those papers, convergence will be 

achieved only for a subset of all possible initial conditions. This is because the 

assumptions necessary to guarantee convergence starting from an arbitrary initial 

 
29 See proposition 3.2 in page 768. 
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condition are too strong for the purpose of this paper (see the appendix for 

details).  

The conditions for stationarity (i.e., the existence of an invariant not necessarily 

ergodic measure) are milder with respect to the ones required to achieve ergodicity, 

can be traced back to primitives and do not require to construct a tailor-made 

selection or a restriction to the number of assets as in the case of an ergodic 

equilibrium. These facts imply that in practice we may not found this last class of 

equilibrium, which in turn has an important implication as regards the predictions 

of the model: because the strong law of large numbers for this class of processes 

(see Meyn and Tweedie, 1993, chapter 17) implies that simulations will not 

converge to time-invariant expected values, they will converge to a history 

dependent random variable; which is different for any possible initial condition. 

Contrarily, ergodic Markov processes hit the time invariant mean computed using 

the ergodic measure. We will first assume in this section that assumptions 1), 2’), 3-

iii) and 3-iv’) hold which ensure that the process is ergodic. Then, we will address 

the stationary case separately. Remark 2 allows {𝑠𝑡} to be generated by a Markov 

process (𝑆, 𝑝) if 𝑆 is an uncountable compact set of ℝ. 

Let 𝑷𝜑,𝑧0 and 𝑷𝜑,𝜇 the measures defined in the technical appendix of section 4.2. 

The following facts follow from Varadhan (2001, pages 179 and 187-192): 

 

Fact 4.2-i): 𝜇 ∈ 𝐼𝑀(𝜑) then 𝑷𝜑,𝜇 is stationary and the process (𝐽, 𝑃𝜑) is stationary. 

 

Fact 4.2-ii): 𝜇 is ergodic if and only if 𝑷𝜑,𝜇 is ergodic 

 

Fact 4.2-iii): 𝑷𝜑,𝜇 = ∫𝑷𝜑,𝑣𝑄(𝑑𝑣), where 𝑣 is an ergodic measure in 𝐼𝑀(𝜑) and 

𝑄:𝒫(𝐽) → [0,1] a measure on  ℰ(𝐼𝑀(𝜑)), the set of extreme points of  𝐼𝑀(𝜑). 
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Fact 4.2-iv): 𝑙𝑖𝑚𝑛→∞[∑ 𝑓(𝑧𝑡)
𝑛
𝑡=1 ]𝑛−1 = ∫𝑓(𝑧)𝜇(𝑑𝑧)  for almost every {𝑧𝑡}  with 

respect to 𝑷𝜑,𝑧0 if 𝑧0 belong to a set of positive 𝜇-measure and 𝜇 ∈ 𝐼𝑀(𝜑). 

 

Fact 4.2-iv) follows from the previous 2 facts: as the ergodicity of 𝜇 is equivalent to 

the ergodicity of 𝑷𝜑,𝜇 (fact 4.2-ii), theorem 2 suffices to show the existence of a 

Markov ergodic process (Ω, ℱ, 𝑷𝜑,𝜇). Then fact 4.2-iii), the ergodic decomposition 

theorem for Markov processes, implies that Birkhoff’s ergodic theorem can be 

applied to any initial condition in a positive 𝜇-measure with 𝜇 ∈ 𝐼𝑀(𝜑). That is, 𝜇 

can be assumed to be ergodic w.l.o.g. 𝐼𝑀(𝜑) must have an ergodic measure, 𝑣 , 

which is guaranteed by the compactness of the set of invariant measures.  

The stochastic process derived directly from a sequential equilibrium may not be 

stationary. Fact 4.2-i) illustrates the importance of the results in section 3: even if 

an invariant measure cannot be shown to be ergodic, it suffices to prove the 

existence of a stationary process associated with the sequential equilibrium, which 

typically follows from mild requirements. This is because assumptions 3-i) and 3-ii) 

can be verified from primitive conditions of the model. However, the results in 

Durret (2019, see section 7.2) imply that the convergence in fact 4.2-iv) cannot be 

achieved.  

 

If the process is stationary but not ergodic, the cesaro average will converge to a 

random variable which realizations depends on the initial condition of the model. 

In particular, 𝑍0, 𝑍1, …  is stationary if {𝑍0, 𝑍1, … , 𝑍𝑚}  and {𝑍𝑘 , 𝑍𝑘+1, … , 𝑍𝑘+𝑚}  has the 

same distribution for each 𝑚  and 𝑘 > 0 . A Markov process with an invariant 

measure 𝜇 and 𝑍0 distributed according to it is stationary30. Let (Ω, ℱ, 𝑷𝜑,𝜇) be the 

state space, sigma-algebra and measure presented before, where 𝜇 is an invariant 

not necessarily ergodic measure. A measure preserving map ℎ  satisfies 

𝑷𝜑,𝜇(ℎ
−1(𝐴)) = 𝑷𝜑,𝜇(𝐴)  with 𝐴 ∈  ℱ . If ℎ  is the shift operator (i.e., ℎ(𝜔0, 𝜔1, … ) =

 
30 see Durret 2019, page 279 example 7.12 
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𝜔1, 𝜔2, …) and (Ω, ℱ, 𝑷𝜑,𝜇) is stationary, then ℎ is a measure preserving map. Then we 

have the following result: we say that a set 𝐴 ∈  ℱ is invariant if 𝑷𝜑,𝜇(𝐴∆ℎ
−1(𝐴)) = 0, 

where ∆ is the symmetric difference between 2 sets31. Moreover, if 𝑷𝜑,𝜇(𝐴) > 0 and 𝜇 

is an invariant measure, 𝐴 is an invariant set. Let 𝜔 ∈ Ω. Then, 𝑍𝑡: Ω → 𝐽, 𝜔(𝑡) = 𝑧𝑡 =

𝑍𝑡(𝜔) and 𝑍(ℎ𝑚(𝜔)) = 𝑍𝑚(𝜔). Then, we have the following result: 

 

𝑙𝑖𝑚𝑛→∞ [∑ 𝑓(𝑧𝑡)
𝑛

𝑡=1
] 𝑛−1 = 𝑙𝑖𝑚𝑛→∞ [∑ 𝑓 ( 𝑍(ℎ𝑛(𝜔)))

𝑛

𝑡=1
] 𝑛−1 →𝑷𝜑,𝜇 𝑎.𝑒. 𝐸[𝑓(𝑧)|𝕀] 

 

Where 𝐸[𝑓(𝑧)|𝕀] is an expectation conditional on the sigma-algebra of invariant sets 

𝕀 as ℎ is measure preserving and 𝑍 is measurable with respect to 𝕀32. Intuitively, the 

measure preserving property implies that the only relevant sets almost everywhere 

are invariant. 𝐸[𝑓(𝑧)|𝕀]  is a random variable which realizations depend on a 

particular event 𝜔 ∈ 𝐴 ∈ 𝕀, with 𝜔0 ∈ 𝐴0 and 𝜇(𝐴0) > 0. Thus, any history 𝜔 and initial 

condition 𝜔0 implies that the cesaro average [∑ 𝑓(𝑧𝑡)
𝑛
𝑡=1 ]𝑛−1 converge to a different 

value. To solve this problem, it is possible to use the law of iterated expectations. 

In particular, 𝐸𝑷𝜑,𝜇[𝐸[𝑓(𝑧)|𝕀]] = 𝐸𝑷𝜑,𝜇[𝑓(𝑧)] = 𝐸𝜇[𝑓(𝑧)], where the first equality follows 

from the fact that the trivial sigma-algebra {∅,Ω} is included in 𝕀 and the second 

follows from 𝜇 being an invariant measure.  

 

These results have an important takeaway point: either if a model is ergodic, if it 

satisfies assumptions 1, 2, 3-iii) and 3-iv), or only stationary, if it satisfies the 

milder set of assumptions 1, 2, 3-i) and 3-ii), it is possible to hit the stochastic 

steady state of the model. In the last case, we need to average across histories:   

 

 
31 The symmetric difference between 𝐴 and 𝐵 is the collection of elements in 𝐴 and 𝐵 but not in both sets. It is also called the 
disjoint union. 
32 See Durret (2019) page 281, exercise 7.11. 
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𝑙𝑖𝑚𝑗→∞ [𝑙𝑖𝑚𝑛→∞ [∑ 𝑓 ( 𝑍 (ℎ𝑛(𝜔𝑗)))
𝑛

𝑡=1
] 𝑛−1] 𝑗−1

= 𝑙𝑖𝑚𝑗→∞ [𝑙𝑖𝑚𝑛→∞ [∑ 𝑓(𝑧𝑛
𝑗
)

𝑛

𝑡=1
] 𝑛−1] 𝑗−1 

 

 Using this procedure we can eliminate the effect of the lack of ergodicity on 

simulations. The intuition goes as follows: the difference between stationary and 

ergodic selections comes from the behavior of densities in the limit. As the set of 

invariant measures in an ergodic equilibrium must be weakly compact, densities 

must be bounded. To guarantee that property, we need to impose an additional 

assumption on selections to show that the absolute continuity of the Markov 

kernel can be preserved under limits. Even if this assumption is not satisfied, as we 

can show under milder requirements that the set of invariant measures is not 

empty, weak compactness is not far away. As stationarity implies that the steady 

state of the model is history dependent, by averaging across histories, it is possible 

to restore the ergodicity of the equilibrium. Because there is an uncountable 

number of shocks and invariant measures are atomless, the law of iterated 

expectations allows us to prove that the set of steady states with unbounded 

densities has zero-measure. In other words: unbounded densities in a compact 

sequential equilibrium can only be generated by the convergence of the process to 

an absorbing state, a singleton, which has zero measure under the equilibrium 

distribution of the process in the stationary case 𝑷𝜑,𝜇.  

 

5 Applications 

 

We apply the theoretical results presented before to a concrete parametrization of 

the economy in section 2. Following figure 1, the requirements to achieve the 

existence of an ergodic measure can be categorized in 3: properties (a-c), 
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conditions (1-4) and assumptions (1-3). Section 3.2 and 3.3 connected conditions, 

mostly on the Markov operator 𝑃𝜑, with properties of the associated process (𝐽, 𝑃𝜑).  

Section 3.4 shows that conditions 1-4 can be generated by assumptions for the case 

of uncountable shocks. While most of these assumptions, 3-i), 3-ii) and 3-iv), are 

stated in terms of the primitives of the model, there are 2 which are still stated in 

terms of endogenous variables: 2 and 3-iii). Section 3.1 and 4.1 relate these 2 

assumptions and show how they interact between each other, generating mild 

restrictions on the model presented in section 2.  

The first step in the applications section is to prove the existence of a compact 

sequential equilibria in definition 1. This fact leads to the existence of an 

appropriate recursive structure in the sense of Feng, et. al. as stated in assumption 

1 and definition 2. As in Mas-Collel and Zame (1996), the presence of uncountable 

shocks requires imposing additional assumptions with respect to the canonical 

model with incomplete markets. This assumption requires total wealth (i.e., 𝑒𝑖(𝜎𝑡) +

𝜃𝑖(𝜎𝑡
∗). 𝑑(𝜎𝑡) , 𝜎𝑡 ∈ 𝔗) to be bounded away from zero. Due to the presence of short sale 

constraints, this requirement is mild.  

Once this additional hypothesis holds, by carefully refining selections from the 

recursive equilibrium correspondence in definition 2 as shown in section 4.1, there 

is an important gain in terms of the predictive power of the model as the theory 

developed in this paper allows showing not only that the model has a well-behaved 

steady state (theorem 1) but also that it is ergodic (theorem 2) and that simulations 

converge to a time independent stochastic steady state without for any time path. 

Refining selections implies knowing the discontinuity set. To avoid this problem, 

we show that it is possible to satisfy assumption 3-iii) by restricting the number of 

real assets in the model. As the results in section 4.2 show, it is possible to 

eliminate the time-dependence of simulations by averaging across multiples 

histories. Considering the discussion which follows lemma I and claim I in section 

3.1, assumption 2 is mild. Thus, following proposition 1, lemma 4 and theorem 1, 

we can extend our results to any measurable selection of the equilibrium 
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correspondence in definition 2. To complete the description of the model, we 

present 2 additional subsections containing all the requirements necessary to show 

the existence of a compact sequential equilibrium, something that is taking as 

given by assumption 1.     

 

5.1 Finite shocks and implicit function theorem for condition 3  

The model is the same as the one described in section 2.1. Following figure 1, the 

first step to prove the stationarity of the model is to derive a recursive 

representation for the sequential equilibria. As discussed in section 2.5.2 and 4.1, 

the existence of a recursive structure is guaranteed by the existence of the sequential 

competitive equilibria and the compactness of the equilibrium set.  In the present 

framework, these properties will be shown to be implied by the assumptions listed 

in this subsection. Moreover, for the sake of completeness, all the assumptions 

required for the existence of an invariant measure are presented below.  

Assumptions 4.1-i) to 4.1-v) ensure the existence of a non-empty compact 

equilibrium set which will be shown to be sufficient to derive a Markov 

representation of equilibria. Provided this representation, to show the existence of 

an invariant measure, it suffices to impose assumption 2, property a) and property 

b) (presented in section 3.1, theorem 1). The first and the last are stated as a 

hypothesis below (assumptions 4.1-vi and 4.1-vii respectively) and the second one 

will be derived from primitive conditions of the model which are implicit in 

assumptions 4.1-i) to 4.1-v).   

Assumption 4.1). Suppose an incomplete market economy as the one described in 

section 2.1.  To that structure add the following assumptions: 

i) The utility function in the optimality condition of definition 1 is: 

𝑈𝑖(𝑐) =  ∑(𝛽)𝑡∑[𝑢𝑠
𝑖(𝑐𝑖(𝜎𝑡

∗𝑠))]𝜇𝑡(𝜎𝑡
∗𝑠)

𝜎𝑡
∗𝑠

∞

𝑡=0
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Where 𝑢𝑠
𝑖 [𝑐𝑖(𝜎𝑡

∗𝑠)] = 1 − 𝑒−𝜆𝑐
𝑖(𝜎𝑡

∗𝑠) with 𝜆 > 0. 

ii) The realizations of the exogenous shock 𝑠𝑡 lie in set 𝑆 of finite cardinality 

for any time period = 0,1, … . 

iii) Endowments satisfy:  𝑒𝑖(𝜎𝑡) > 0  and ∑ 𝑒𝑖(𝜎𝑡) < 𝐾
𝐼
𝑖=1  with 𝐾 > 0  for any 

agent 𝑖 ∈ {1, … , 𝐼}  and node 𝜎𝑡 . Idiosyncratic endowments are strictly 

positive and aggregate endowments are uniformly bounded. There is 

aggregate and idiosyncratic uncertainty.   

iv) There is a finite number, 𝐽 , of numerarie short lived assets with 

(uniformly) bounded dividends and short sale constraints. That is, for 

each agent 𝑖 and any node 𝜎𝑡 the portfolio is given by  𝜃𝑖(𝜎𝑡) ≥ −𝐵, 𝐵 ∈

ℝ+
𝐽

, the associated dividends by 𝑑(𝜎𝑡𝑠) ∈ 𝑀 ⊂ ℝ+
𝐽

, where 𝑀  is uniformly 

bounded, and the budget equation by  

𝑐𝑖(𝜎𝑡) = 𝑒
𝑖(𝜎𝑡) + 𝜃

𝑖(𝜎𝑡
∗). 𝑑(𝜎𝑡) − 𝜃

𝑖(𝜎𝑡). 𝑞(𝜎𝑡) 

Where 𝑞(𝜎𝑡) is the price of the portfolio in terms of the numerarie for 

every node 𝜎𝑡 and 𝜎𝑡
∗ is the predecessor of 𝜎𝑡. 

v) There is a riskless bond. There is an asset 𝑙  which has associated 

dividends given by 𝑑𝑙(𝜎𝑡𝑠) = 1 for any 𝑠 ∈ 𝑆 and any node 𝜎𝑡. 

vi) Assumption 2 holds (i.e., the discontinuity set of any measurable selection 

of the equilibrium correspondence has at most finite cardinality). 

vii) Condition 2 holds (i.e., provided that the adjoint operator maps the set of 

atomless measures into itself, this set is weakly closed). 

Except the assumption on 𝑢𝑠
𝑖 , the short sale constraints, 4.1-vi) and 4.1-vii), the rest 

are standard in the literature. The results in Magill and Quinzii (1994) imply that 

under assumptions 4.1-i) to 4.1-v), excluding the restriction on 𝑢𝑠
𝑖 , the economy 

describe in section 2.1 has a non-empty compact equilibrium set33.  

 
33 See assumption A.1 to A.6 and the discussion that follows in pages 858-60. 
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The chosen instantaneous return function 𝑢𝑖 on assumption 4.1-i) guarantees that 

marginal utility is bounded on the entire feasible consumption set which, because 

of assumption 4-iii), is given by [0, 𝐾]. Kubler and Schmedders (2002) shows that 

assumptions 4.1-i) to 4.1-v), including the restriction on the return function but 

excluding the short sale constraints, imply that any sequence of consumption 

bundles {{𝑐𝑖(𝜎𝑡)}𝑖∈𝐼}𝜎𝑡∈𝔗, portfolios {{𝜃𝑖(𝜎𝑡)}𝑖∈𝐼}𝜎𝑡∈𝔗 and prices {𝑞(𝜎𝑡)}𝜎𝑡∈𝔗  which satisfy the 

feasibility requirement ∑ 𝜃𝑖(𝜎𝑡)
𝐼
𝑖=1 = 0⃑ , where 0⃑ ∊ ℝ𝐽  for any 𝜎𝑡 ∈ 𝔗 , and the Kuhn 

Tucker conditions listed in equation 3 and 4 (see the technical appendix to section 

2.5.2) meet the optimality and feasibility conditions in definition 1 and thus 

constitutes a sequential equilibrium. The compactness of the equilibrium set 

follows from Magill and Quinzii (1994). 

Short sale constraints are standard in the recursive literature since Duffie, et. al. 

(1994). Braido (2013) showed that a recursive equilibrium in the sense of Duffie, et. 

al. exists even if explicit short sale constraints are removed. This is possible as 

Magill and Quinzii (1994) showed that there is a uniform bound on assets even in 

the absence of short sale constraints. However, the theoretical results in this paper 

depend on Feng, et. al. recursive equilibria which, as discussed in section 2.5.2, are 

a subset of all possible recursive equilibria in Duffie, et. al. It is not clear that 

Braido’s results hold in Feng, et. al.’s framework. Thus, short sale constraints are 

imposed to guarantee the existence of an appropriate (sunspots free) recursive 

equilibrium.     

As seen in section 2.5.2 (see also Feng, et. al. section 2.2), if the equilibrium set is 

compact and can be generated by the set of equations implied by the Kuhn Tucker 

and feasibility conditions, the equilibrium correspondence Φ  in definition 2 

satisfies the assumptions in lemma 2 and thus 𝑃𝜑  is a well-defined Markov 

operator. These facts imply that (𝐽, 𝑃𝜑) defines a (compact) Markov process with 

typical state 𝑧̃ = [𝑠, 𝜃, 𝑞,𝑚] ∈ 𝐽 and 𝑚𝑗
𝑖 = 𝑑𝑗(𝑠)(𝑢𝑠

𝑖(𝑐𝑖))′. 
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While assumptions 4.1-i) to 4.1-vi) are relatively mild, assumption 4.1-vii) is strong 

as it directly implies the weak-closedness of  𝒫0(𝐽) (i.e., property b). Further, this 

assumption cannot relate to primitive conditions of the model. Fortunately, it is 

possible to obtain properties a) and b) jointly by strengthening condition 1. This is 

done by lemma 4, that requires only condition 3, which strengthens condition 1 by 

requiring it to hold uniformly in all continuity points. Proposition 1 shows that 

condition 3 holds if the model is allowed to have uncountable exogenous shocks 𝑠. 

Considering the distinctive nature of this type of economies, they must be treated 

separately. Section 5 in the body of the paper and II.2 below addresses this point. 

 

5.2 Uncountable Shocks 

The discussion in the preceding section sets a tradeoff: to get rid of unverifiable 

assumptions like property b), the structure of exogenous shocks must be modified. 

Unfortunately, proving the existence of the sequential equilibria (and thus the 

existence of an appropriate recursive structure in the sense of Feng, et. al.) with 

uncountable shocks requires imposing an additional assumption on 4.1-i) to 4.1-v). 

This assumption, labeled 4.2-ii) below, was extensively discussed in the literature 

(see for instance Mas-Colell and Zame, 1996, or Araujo, et. al. 1996). Assumption 

4.2-ii) implies the existence of a positive wealth in each node. Given the presence of 

short sale constraints, the boundedness of dividends and endowments, in the 

present context, it is rather mild. 

Assumption 4.2 contained all the sufficient conditions to show the existence of an 

ergodic invariant measure in the model discussed in section 2, except assumption 

3-iii) which will be treated separately in a lemma below. 

Assumption 4.2). Suppose an incomplete market economy as the one described in 

section 2.1.  To that structure add the following assumptions: 
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i) Assumptions 6.1-i), 6.1-iii) and 6.1-iv) hold. 

ii) 𝑒𝑖(𝜎𝑡) + 𝜃
𝑖(𝜎𝑡

∗). 𝑑(𝜎𝑡) > 0 , 𝜎𝑡 ∈ 𝔗 

iii) Assumptions 3-i) and 3-iv) hold (i.e., the set of exogenous shocks is  𝑆 =

[𝑆, 𝑆] ⊂ ℝ  and 𝑝(𝑠, . ) = 𝑈[𝑆, 𝑆], where 𝑈 is the uniform distribution). 

iv) Assumption 2’ holds (i.e., the discontinuity set is at most of zero 

lebesgue measure). 

Assumptions 4.2-i) to 4.2-iii) guarantees the existence of the sequential equilibria. 

The proof follows immediately by extending the induction argument in Mas-Colell 

and Zame (1996) for 𝑇 = ∞ as in Duffie, et. al. (1994, see fact 2.5-2 in section 2.5.1). 

Theorem 4.1 in Mas-Colell and Zame allows proving the non-emptiness 𝐶𝑗 for 1 ≤

𝑗 ≤ 𝑇 < ∞, where 𝐶𝑗 is the set of initial states of a 𝑗 + 1 period economy defined in 

section 4.1. The compactness of 𝐾, the set that includes all payoff relevant states, 

follows from theorem 4.2 also in Mas-Collel and Zame. The induction argument in 

section 5 of that paper can be used to set 𝑇 = ∞. The optimality argument in 

Duffie, et. al. (section 3.4) can be immediately extended to the Mas-Colell and Zame 

framework as theorem 4.1 and 4.2 hold 𝜇𝑠
∞(𝑠0, . )-a.e. for 𝑠0 ∈ 𝑆  and 𝜃−

𝑖  satisfying 

assumption 4.2-ii), where (Ω, ℱ, 𝜇𝑠
∞(𝑠0, . )) is the stochastic process defined in section 

4.2 but restricting the state space Ω  to contain only an infinite sequences of 

exogenous shocks {𝑠𝑡}. 

The compactness of 𝐾  and the upper hemi continuity (in 𝑧+ ) of the system of 

equations defined by 3), 4) and the feasibility of assets guarantees that the 

equilibrium correspondence, Φ in definition 2, satisfies the assumptions required 

by lemma 2. Thus, there is at least 1 measurable selection 𝜑~Φ and (𝐽, 𝑃𝜑) defines a 

Markov process.   

Once an appropriate Markov process have been shown to exist, proposition 2 

implies that assumptions 4.2-iii), 4.2-iv) and 3.iii) are sufficient to show the 

ergodicity of the process (𝐽, 𝑃𝜑). The following lemma shows that if there is only 1 
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asset or the recursive equilibrium notion in Feng, et. al. is appropriately restricted 

(see fact 2.5-5 in section 2.5.2), assumption 3-iii) can be omitted.  

Lemma 5: Suppose that fact 2.5-5 holds or 𝐽 = 1 (i.e., there is 1 asset). Then, under 

assumptions 4.2-i) to 4.2-iv),  (𝐽, 𝑃𝜑) has an ergodic invariant measure. 

Proof: see the online appendix.  

 

6 Conclusions and directions for future research 

 

This paper develops the theoretical foundations for the characterization of the 

dynamic behavior through simulations in incomplete markets models with 

aggregate uncertainty and heterogeneous agents. The results in this paper are 

relevant as they provide a set of assumptions which ensure that empirically 

relevant models can be taken to data. The parameters obtain are then reliable to 

perform policy experiments which could be welfare enhancing. 

The paper provides a set of results which allow characterizing incomplete markets 

general equilibrium models beyond existence. Further, it distinguishes between the 

predictive performances of models with different degree of uncertainty as 

measured by the cardinality of the set which contains exogenous shocks. Also, this 

article presents a set of sufficient conditions and procedures that guarantee that 

simulations reflect the long and short run behavior of general equilibrium models. 

Although the assumptions rather mild, because the results are specific to the 

model described in this paper, there is scope for future research both in models 

with a finite number or with uncountable shocks. For the former, condition 2, 

which ensures the existence of an invariant measure, must relate to primitive 

conditions. The results in Zhu (2020) or Pierri and Reffett (2021) are not 

appropriate as they rely either on the partial equilibrium nature of the model, the 

lack of aggregate uncertainty or the existence of a representative agent. Further, 
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condition 2 must also be modified to guarantee the ergodicity of the measure as 

theorem 2 requires even stronger assumptions than theorem 1 as illustrated by 

properties b) and c). For the case of uncountable shocks, an extensive numerical 

test must be performed as the typical “discretization” of the state space may not 

be adequate.      
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Appendix 

 

Supplementary Material for section 3.3 

 

Example 1 (non-uniform boundness of densities): Let 𝑃: 𝑆 × ℬ𝑆 → [0,1] be a transition 

function with 𝑆 = [0,1] , 𝑃(𝑠, {𝑠 2⁄ }) = 1  and 𝜃 = 𝑈[0,1] . Condition 1 is satisfied as 

𝑃(𝑠, {𝑎}) = 0 except for 𝑠 = 2𝑎 with 𝜃({2𝑎}) = 0. Thus, under lemma 3, 𝑃𝜑
∗: 𝒫0([0,1]) →

𝒫0([0,1]), where 𝜑(𝑠) = 𝑠/2. Note then that property a) in theorem 1 holds. However, 

property b) will not be satisfied. Let 𝜇1 = 𝑃𝜑
∗𝜃  and 𝐴 = [0, 𝑎] with 0 < 𝑎 < 1 . Then 

𝜇1(𝐴) = 2𝑎, that is, 𝜇1 = 𝑈[0,1/2] which has a density of 2. In general, 𝜇𝑛 = 𝑈[0,1/2
𝑛]  

with 𝜇𝑛 = 𝑃𝜑
∗𝜇𝑛−1. Thus, {𝜇𝑛} has an associated sequence of densities of {2𝑛}, which 

is not a uniformly bounded sequence of functions. Kempton and Persson (2015, 

page 11) show that absolutely continuity is preserved under weak* limits if the 

sequence of densities associated with {𝜇𝑛} is uniformly bounded.  

This paper proved that that absolutely continuity is preserved under weak* limits 

by imposing condition 4), that is slightly weaker than the uniform integrability of 

densities (see Diestel, 1991 for a detailed discussion), which is in turn weaker than 

the mentioned uniform boundness.   

Example 1 shows that 𝒫0([0,1]) , the subset of atomless measures in 𝒫([0,1]) 

generated under the action of 𝑃𝜑
∗ , is not closed as it contains a sequence of 

measures weakly converging to a Dirac measure at 0. Note that condition 3) is not 

satisfied in example 1 as 𝑃𝜑(𝑧, {𝑎}) = 0 must hold uniformly in 𝑧, not a.e.    

Condition 2), by lemma 3, and condition 3), by lemma 4, guarantee the closedness 

of 𝒫0 for the case of finite and uncountable shocks respectively.   

As lemma 4 shows, condition 4) assures the closedness of 𝒫1 . This condition 

implies that the family of measures {𝑃𝜑(𝑧, . )|𝑧 ∈ 𝐽} is absolutely continuous w.r.t. 𝜃 
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and that sets with a 𝜃 -measure smaller than 𝛿  have 𝑃𝜑(𝑧, . ) -measure uniformly 

bounded by 𝜀 , where uniformity means that 𝜀  is independent of 𝛿 . This last 

condition is weaker than the uniformly integrability of densities, denoted by 

𝑝̅𝜑(𝑧, 𝑧′), as the latter requires ∫𝐵|𝑝̅𝜑(𝑧, 𝑧′)|𝜃(𝑑𝑧′) < 𝜀  while the former only implies 

∫𝐵𝑝̅𝜑(𝑧, 𝑧′)𝜃(𝑑𝑧′) < 𝜀  (see Diestel, 1991). Although the distinction is subtle, it has 

important consequences: if ∫𝐵𝑝̅𝜑(𝑧, 𝑧′)𝜃(𝑑𝑧′) < 𝜀 implies ∫
𝐵
|𝑝̅𝜑(𝑧, 𝑧′)|𝜃(𝑑𝑧′) < 𝜀 for any 

𝑧 ∈ 𝐽, then 𝑝̅𝜑(𝑧, 𝑧′) is bounded away from zero in 𝐽 × 𝐽. But in this case, exercise 11.4 

in Stokey, Lucas and Prescott implies that 𝑃𝜑 satisfies the Doeblin condition (i.e. 

𝜃(𝐵) < 𝛿 implies ∫𝐵𝑝̅𝜑(𝑧, 𝑧′)𝜃(𝑑𝑧′) < 1 − 𝜀  for any 𝑧 ∈ 𝐽), which is a sufficient for the 

existence of an ergodic invariant measure (see page 345-8 for a discussion). A 

similar result holds if 𝑝̅𝜑(𝑧, 𝑧′) is uniformly bounded above in 𝐽 × 𝐽.  

By the discussion in example 1 and in the preceding paragraph, in this paper it will 

not be assumed that densities are neither bounded nor uniformly integrable as it 

suffices to restrict the Markov operator only to condition 4. 

Note that assumption 2’, like assumption 2, represents an upper bound on the 

genericity of the multiple equilibria problem discussed in section 2.4. Condition 4 

is stronger than condition 3. Thus, as any invariant measure under condition 4 is 

absolutely continuous with respect to the Lebesgue measure, the constraint 

imposed by 𝜇(∆𝜑) = 0  in theorem 1 is now less restrictive: ∆𝜑  can be an 

uncountable set if it has zero Lebesgue measure.  

The strategy in lemma 4 is different from the one used to show the closedness of 

𝒫0  under the adjoint operator. Since Futia (1982), ergodicity requires the 

compactness of the set of invariant measures. As 𝐼𝑀(Φ,𝒫0) may contain unbounded 

density functions, compactness can’t be guaranteed 34 . Lemma 4 shows how 

condition 4 implies that small 𝜃-measure sets have arbitrary small 𝜇𝑛 -measure, 
 

34  Condition 4) implies that the Markov operator is absolutely continuous which, it is well known, implies the 
existence of densities 𝑝̅𝜑(𝑧, 𝑧′), which are bounded uniformly in 𝑧 (as required by condition 4) and a.e. in 𝑧′. These facts 

cannot be assured by imposing condition 3) as the Radon–Nikodym theorem cannot be applied.    
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where {𝜇𝑛} is any sequence in 𝐼𝑀(Φ,𝒫1), and that this latter property guarantees that 

absolute continuity is preserved under weak* limits of {𝜇𝑛}. 

 

Supplementary Material for section 3.3 

 

Remark on the local convergence of the Law of Large Numbers 

Santos and Peralta Alva (2013) require that condition 4) holds for any selection of 

Φ𝑗  and Φ. Kamihigashi and Stachurski (2015) requires that 𝜑 be continuous and 

Breiman’s theorem in Stokey, Lucas and Prescott require a unique ergodic measure. 

In contrast, the results in this paper require only that condition 4 holds for some 

selection {𝜑𝑗}  and 𝜑 . Moreover, we characterize these selections and connect the 

restrictions on the Markov kernel with characteristics of the selections; proving a 

refinement mechanism. Further, theorems 1 and 2 allow 𝜑 to be discontinuous and 

(𝐽, 𝑃𝜑) to have multiple ergodic measures. In this kind of setting, there are no results 

that guarantee the global almost sure convergence of simulations. Thus, a local 

theorem, like Birkhoff’s, must be used. 

Details of the Stochastic Process 

To present the results for this section some additional definitions are required. Let 

(𝐽, ℬ𝐽)  be a measurable space and (𝐽𝑡, ℬ𝐽
𝑡) = (𝐽 × …× 𝐽, ℬ𝐽 ×…× ℬ𝐽)  the associated 

product space. Let 𝐴 = 𝐴1 × …× 𝐴𝑡 be a measurable rectangle (see Stokey, Lucas and 

Prescott page 195 for a definition) in ℬ𝐽
𝑡. Let 𝜑~Φ and 𝑧0, … , 𝑧𝑡 ∈ 𝐽. As long as 𝑡 is 

finite, by virtue of the Caratheodony and Hahn theorems and theorem 7.13 in 

Stokey, Lucas and Prescott (1989), the measure 𝜇𝑡(𝑧0, 𝐴),  defined by 𝜇𝑡(𝑧0, 𝐴) =

∫.
𝐴1
…∫.

𝐴𝑡
𝑃𝜑(𝑧𝑡−1, 𝑑𝑧𝑡)…𝑃𝜑(𝑧0, 𝑑𝑧1) , can be uniquely extended to a probability 

measure in any set of ℬ𝐽
𝑡, where ∫.

𝐴𝑖
 denotes integration w.r.t. 𝑃𝜑(𝑧𝑖−1, 𝑑𝑧𝑖).  
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Analogously, let 𝐵 = 𝐴1 ×…× 𝐴𝑇 × 𝐽 × …be a finite measurable rectangle (see page 

221 of Stokey, Lucas and Prescott for a definition) and ℒ its power set. Let ℳ be 

the algebra generated by finite unions in ℒ and ℱ = ℬℳ  (i.e., ℱ is the sigma field 

generated by ℳ). Then 𝜇∞(𝑧0, 𝐵) = ∫.𝐴1
…∫.𝐴𝑇

𝑃𝜑(𝑧𝑇−1, 𝑑𝑧𝑇)…𝑃𝜑(𝑧0, 𝑑𝑧1) can be shown to 

be extended to ℱ in 2 steps. First, using the Caratheodony and Hahn theorems it is 

possible to extend 𝜇∞(𝑧0, 𝐵) to ℳ and then to ℱ. Later, using standard arguments 

for processes with a finite dimension distribution (see Shiryaev 1996, Ch. 9), 

𝜇∞(𝑧0, 𝐵) can be shown to be countably additive.  

Standard results (see for instance exercise 8.6 in Stokey, Lucas and Prescott) imply 

that  (Ω, ℱ, 𝜇∞(𝑧0, . )) is a Markov process with stationary transitions 𝑃𝜑 . Let Ω =

𝐽 × 𝐽 × … with typical realization 𝜔 ∊ Ω. As Ω is the space of sequences, it is natural 

to define a ℱ𝑡-measurable random variable 𝑧𝑡: Ω → 𝐽, where 𝜔(𝑡) = 𝑧𝑡 = 𝑧𝑡(𝜔) denotes 

a typical realization and {ℱ𝑡} is a sequence of nested sigma algebras on {×𝑖=1
𝑡 𝐽(𝑖)}, 

where 𝐽(𝑖) = 𝐽 for 𝑖 ≥ 1. The shift operator is denoted by 𝑇:Ω → Ω. A set 𝐴 ∈ ℱ  is 

called 𝑇-invariant if 𝑇𝐴 = 𝐴35.   

Let 𝜇∞(𝑧0, 𝐵) ≡ 𝑷𝜑,𝑧0(𝐵). Under the same assumptions, 𝑷𝜑𝑗,𝑧0(𝐵) can be analogously 

defined if 𝐽 is replaced by 𝐾, which was supposed to be compact in assumption 4-i). 

Further, 𝑷𝜑,𝜇 ≡ ∫𝐴0𝑷𝜑,𝑧0𝜇(𝑑𝑧0) can be used to define a stochastic process (Ω, ℱ, 𝑷𝜑,𝜇) 

which allows to randomize 𝑧0 as 𝜇 is a measure on (𝐽, ℬ𝐽). (Ω, ℱ, 𝑷𝜑,𝜇) is said to be 

stationary if 𝑷𝜑,𝜇[𝐶(𝑡, 𝑛)] = 𝑷𝜑,𝜇[𝐶(𝑡′, 𝑛)]  for all 𝑛 ≥ 0  and 𝑡 ≠ 𝑡′  with 𝐶(𝑡, 𝑛) =

{𝜔 ∈ Ω: [𝑧𝑡+1(𝜔), . . , 𝑧𝑡+𝑛(𝜔)] ∈ 𝐶} . (Ω, ℱ, 𝑷𝜑,𝜇)  is said to be ergodic if  𝑷𝜑,𝜇(𝐴) ∈ {0,1} , 

where 𝐴 is a 𝑇-invariant set.     

 

 

 

 
35 Exercise 6.2 in Varadhan shows that this definition can be used w.l.o.g. 
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Supplementary Material for section 5.1 

 

Given the existence of a Markovian representation (𝐽, 𝑃𝜑), theorem 1 implies that to 

prove the existence of an invariant measure, it suffices to impose assumption 2, 

condition a) and condition b). The first and the last are listed in assumptions 4.1-

vi) and 4.1-vii).  

Property a), namely that the adjoint operator associated with  𝑃𝜑 maps the space of 

atomless measures into itself, holds if the implicit function theorem can be applied 

to the system of equations defined by equations 3, 4 and ∑ 𝜃𝑖𝐼
𝑖=1 = 0⃑   in a full 

lebesgue measure set 36 . Let 𝑧 = [𝑠, 𝜃, 𝑞]  and 𝐹(𝑧, 𝑧+) = 0⃑  be the system of 𝐽 + 𝐽 × 𝐼 

equations that can be obtained by replacing equation 3 into 4 and considering only 

interior solutions37.  Section V.1 in this appendix will show that, under assumptions 

4.1-i) to 4.1-v), 𝐷𝑧+𝐹(𝑧, 𝑧+) has full rank a.e. in 𝑧, where 𝐷𝑧+𝐹 is the Jacobian matrix 

of 𝐹 with respect to 𝑧+.  

Once this property has been established, it suffices to apply lemma 3. That is, 

lemma 3 connects condition 1 (i.e., 𝜇({𝑎}) = 0 implies 𝑃𝜑(𝑧, {𝑎}) = 0 𝑧-a.e. with respect 

to an atomless measure 𝜇) with property a) (i.e., 𝑃𝜑
∗: 𝒫0(𝐽) → 𝒫0(𝐽) where 𝑃𝜑

∗  is the 

adjoint operator, 𝐽 is the state space of the process and 𝒫0(𝐽) the space of atomless 

measures in 𝒫(𝐽)). The arguments below show that the full rank of  𝐷𝑧+𝐹(𝑧, 𝑧+) is 

sufficient to guarantee condition 1. 

We now argue that under assumptions 4.1-i) and 4.1-vi) the implicit function 

theorem can be applied to the system of equations that is equivalent to the 

sequential competitive equilibrium in definition 1. The result can be applied a.e. 

and uniformly in any continuity point of the state space. Jump discontinuities 

 
36 See the discussion in the preliminary remark of lemma 3 in section III of this appendix implies for details. 
37 The discussion in section A.2.1 in the appendix connects Φ with 𝐹 and 𝑧̃ with 𝑧. Once Φ is defined, it suffices to note 
that 𝑧̃ = [𝑧,𝑚] and 𝑚 is defined by the additional equation given above. 



58 
 

under assumption 2, because of lemma I and claim I, cannot generate “flat” 

selections and, thus, can be excluded of the analysis. 

The results in Magill and Quinzii (1994) and Kubler and Schmedders (2003) imply 

that under assumptions 4.1-i) to 4.1-v) the following system of equations defines a 

sequence of consumption bundles {{𝑐𝑖(𝜎𝑡)}𝑖∈𝐼}𝜎𝑡∈𝔗, portfolios {{𝜃𝑖(𝜎𝑡)}𝑖∈𝐼}𝜎𝑡∈𝔗 and prices 

{𝑞(𝜎𝑡)}𝜎𝑡∈𝔗 which satisfy the feasibility and optimality requirements in definition 1: 

A.1) ∑ 𝜃+
𝑖𝐼

𝑖=1 = 0⃑   with 0⃑ ∈ ℝ𝐽 

A.2) 𝑞𝑗𝑢𝑠
𝑖 (𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) − 𝜃+

𝑖 𝑞)′ − 𝛽 ∑ 𝑑𝑗(𝑠+)𝑝(𝑠, 𝑠+)𝑢𝑠
𝑖(𝑒𝑖(𝑠+) + 𝜃+

𝑖 𝑑(𝑠+) − 𝜃++
𝑖 𝑞)′𝑠+∈𝑆 = 0, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 

Let 𝑧 = [𝑠, 𝜃, 𝑞]  with ∑ 𝜃𝑖𝐼
𝑖=1 = 0⃑  and 𝑚𝑖 = 𝑑(𝑠)𝑢𝑠

𝑖 (𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) − 𝜃+
𝑖 𝑞)′ . Also let 𝐹(𝑧, 𝑧+) = 0⃑  be 

the system of equations defined by A.1) and A.2), where 0⃑ ∈ ℝ𝐽+𝐽×𝐼.  

The discussion in section 2.5.2 and the definition of an expectation 

correspondence, definition 2, imply that under assumptions 4.1-i) to 4.1-v) [𝑧+,𝑚+] ∈

𝐽 if [𝑧,𝑚] ∈ 𝐽, where 𝐽 is the state space in definition 2. Moreover, the same results 

imply that each 𝜃++ implicit in 𝑚+ define a different selection 𝑚+~𝑉
∗(𝑧+), where 𝐽 =

𝐺𝑟(𝑉∗). Thus, as A.1) and A.2) can be used to define a particular selection 𝜑~Φ, 𝜃++ 

can be assumed to be constant throughout the analysis.   

Further, because: a) 𝑠, 𝑠+ ∈ 𝑆 and #𝑆 < ∞ and condition 1 is required to hold a.e. in 

an atomless measure 𝜇 and b) for the case of uncountable shocks, condition 3 must 

hold uniformly in all continuity points, the discussion in the preliminary remark of 

lemma 3 in the online appendix implies that it suffice to show that 𝐷𝑧+𝐹(𝑧, 𝑧+) has 

full rank. That is, if the mentioned full-rank condition holds a) 𝜇 -a.e. in 𝑧 for the 

case of finite shocks and b) for all continuity points in 𝐽  for the case of 

uncountable shocks, it implies that we get 𝜇(𝐷) = 0; where 𝐷 = {[𝑧,𝑚] ∈

𝐽: 𝑃𝜑([𝑧,𝑚], {𝑎}) > 0 𝑖𝑓 𝜇({𝑎}) = 0} is the set containing the “flat” parts of the selection 

which in turn implies that the adjoint operator may fail to map the space of 
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atomless measures into itself. Moreover, assumption 4.1-vi) guarantees that 

𝐷𝑧+𝐹(𝑧, 𝑧+)  is well defined  𝜇  -a.e. in 𝑧  and for all continuity points as the 

discontinuity set of 𝜑 is allowed to have up to finite cardinality and 𝐹 is defined for 

interior solutions only. To complete the proof, it suffices to write 𝐷𝑧+𝐹(𝑧, 𝑧+) 

explicitly to note that this matrix has full rank under assumptions 4.1-i) and 4.1-v) 

if there is more than 1 asset38.  

Notice that the implicit function theorem is required to hold a.e. in 𝑧 in condition 1 

and in every 𝑧 which does not belong to the discontinuity set ∆𝜑. Thus, there is no 

contradiction between this property and the possible discontinuity of 𝜑  as, 

considering assumption 2, the discontinuity set of 𝜑 has finite cardinality. This 

property implies that: a) ∆𝜑 has zero measure on 𝜇 and thus can be excluded from 

the states 𝑧 in condition 1, b) we can exclude ∆𝜑 from 𝐽 in condition 3 without loss 

of generality as the equilibrium correspondence can be fully characterized by a 

countable number of selections (constructed for a given point in the domain) as its 

image is contained in a finite dimensional compact set (see Hildenbrand and 

Grandmont, 1974) and claim I and lemma I implies that we are dealing with jump 

discontinuities which are a “non-constant” part of the selection by definition. Thus, 

if 𝑧 ∈ ∆𝜑 and 𝑃𝜑(𝑧, 𝐵), then 𝐵 has at most a countable number of elements and thus 

has zero atomless measure.  

 

 

 

 

 

 
38 𝐷𝑧+𝐹(𝑧, 𝑧+) is available under request. 
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Online Appendix: Proofs and Related Comments  

 

Theorem 1 

Heuristic description of Theorem 1 

Let 𝐶(𝐽) be the space of continuous functions on 𝐽. 𝑃𝜑 has the Feller property if the 

semigroup operator maps 𝐶(𝐽) into itself. Lemma 9.5 in Stokey, Lucas and Prescott 

(page 261) shows that if 𝑓 ∈ 𝐶(𝐽), 𝑃̂𝜑𝑓(𝑧̃) ∈ 𝐶(𝐽). The absence of the Feller property 

also affects the continuity of the adjoint operator, which is critical to guarantee the 

existence of a fixed point of it. As 𝑃𝜑
∗ is defined over an infinite dimensional space, 

to discuss its continuity, it is necessary to select an adequate topology. The weak* 

topology, the coarsest topology that makes the linear functional {𝜇 ↦ ∫𝑓𝑑𝜇,  𝑓 ∈

𝐶(𝐽)} continuous, is frequently chosen. This is because 𝑃𝜑
∗ generate sequences of 

weak* convergent measures under mild assumptions39. Under assumption 1, 𝐽 is a 

compact subset of a finite dimensional Euclidean space. Thus, Helly’s theorem 

(Stokey, Lucas and Prescott, page 374) implies the existence of a weak* - 

convergent subsequence in 𝒫(𝐽) , which is the starting point of most existence 

theorems.   

As discussed in Aliprantis and Border (2006, page 47), the choice of a weak 

topology implies a tradeoff: there are a lot of weakly convergent sequences but 

there are few weakly continuous functionals. Thus, the Feller property is used to 

guarantee the weak* continuity of 𝑃𝜑
∗: 𝜇𝑛 →𝑊𝑒𝑎𝑘∗ 𝜇 implies 𝑃𝜑

∗𝜇𝑛 →𝑊𝑒𝑎𝑘∗ 𝑃𝜑
∗𝜇 if 𝑃̂𝜑 has the 

Feller property (see Stokey. Lucas and Prescott, page 376). 

If 𝜑 can be shown to be continuous, under assumption 1, Theorem 2.9 in Futia 

(1982, page 383) would imply the existence of an invariant measure for 𝑃𝜑
∗. It only 

 
39 This is not the case of the strong topology, which is the topology generated by the total variation norm. Stokey, 
Lucas and Prescott (page 335 to 337) provides an example of a Markov process that generates sequences that 
converge in the weak* topology but not in the strong (norm) topology. 
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suffices to take a sequence of measures generated by applying 𝑃𝜑
∗ iteratively on 

some 𝜇0 ∈ 𝒫(𝐽) that is robust to cyclical behavior and fits into the framework of 

Helly’s theorem. Let 𝜇𝑛𝑘 →𝑊𝑒𝑎𝑘∗ 𝜇 be the subsequence generated by Helly’s theorem. 

The continuity of 𝑃𝜑
∗ implies 𝑃𝜑

∗𝜇𝑛𝑘 →𝑊𝑒𝑎𝑘∗ 𝑃𝜑
∗𝜇. Subtracting both subsequences, the 

desired result follows. Theorem 1 in this paper shows the existence of an invariant 

measure for (𝐽, 𝑃𝜑) even if 𝜑 is allowed to have (a certain type of) discontinuities.               

The strategy of the proof for Theorem 1 goes along the lines of Hildenbrand and 

Grandmont (1974). It borrows from theorem 12.10 in Stokey, Lucas and Prescott 

(1989) (page 376), theorem 3.5 in Molchanov and Zuyev (2011, page 15) and 

proposition 1 in Ito (1964, see page 155). The following subsection contains a 

detailed description of the procedures used up to now to prove the existence of an 

invariant measure and the reasons that make them unsuitable for this paper. 

Using proposition 1 in Ito and theorem 3.5 in Molchanov and Zuyev it is possible to 

restore the continuity of 𝑃𝜑
∗  without the Feller property. As 𝑃𝜑

∗  and 𝑃̂𝜑  can be 

interchanged (see for instance Stokey, Lucas and Prescott page 216), if 𝜇𝑛𝑘 →𝑊𝑒𝑎𝑘∗ 𝜇, 

for some 𝑓 ∈ 𝐶(𝐽): 

∫𝑓(𝑧̃)𝑃𝜑
∗𝜇𝑛𝑘(𝑑𝑧̃) =∫ 𝑃̂𝜑𝑓(𝑧̃)𝜇𝑛𝑘(𝑑𝑧̃) ↛∫𝑓(𝑧̃)𝑃𝜑

∗𝜇(𝑑𝑧̃) =∫ 𝑃̂𝜑𝑓(𝑧̃)𝜇(𝑑𝑧̃) 

As 𝑃̂𝜑𝑓(𝑧̃) may not be continuous. 𝑃̂𝜑𝑓(𝑧̃) is bounded and ℬ𝐽-measurable. Theorem 

3.5 in Molchanov and Zuyev implies that  ∫ 𝑃̂𝜑𝑓(𝑧̃)𝜇𝑛𝑘(𝑑𝑧̃) → ∫ 𝑃̂𝜑𝑓(𝑧̃)𝜇(𝑑𝑧̃) if 𝜇(∆𝑃̂𝜑𝑓) = 0, 

where ∆𝑃̂𝜑𝑓 is the set of discontinuities of  𝑃̂𝜑𝑓.  

Thus, it only suffices to show that the discontinuity set generated by 𝜑 is sufficiently 

small under the limiting measure. To achieve this property, proposition 1 in Ito is 

used to show that 𝑃𝜑
∗ maps the set of atomless measures, which will be denoted 

𝒫0(𝐽) ⊂ 𝒫(𝐽), into itself. The proof will be complete if it can be shown that 𝜇 ∈ 𝒫0(𝐽) 

and 𝜇(∆𝑃̂𝜑𝑓) = 0. As a measure is atomless if and only if 𝜇({𝑎}) = 0, {𝑎} ∈ 𝐽 (i.e. it 
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assigns zero measure to points, see Hildenbrand and Grandmont 1974, page 45), it 

suffice to restrict the cardinality of ∆𝑃̂𝜑𝑓 to be at most countable and to show that 

𝒫0(𝐽) is closed. The latter property will be insured by imposing conditions on 𝑃𝜑 in 

section 3.2 and 3.3.  The former will be guaranteed by restricting the discontinuity 

set of 𝜑 as in assumption 2 and 2’. 

Related results on the existence of Invariant measures. 

Because the expectation correspondence in Duffie, et. al. 𝐺 is defined as map 𝑧 ↦ 𝜇, 

with  𝜇 ∊ 𝒫(𝑍), using the arguments presented in section 2.5.1 and 3.1 it is easy to 

show that a THME (𝐽, 𝜋) can be used to define a sequence of measures {𝜆𝑡}𝑡=0
∞  in 

𝒫(𝐽) such that 𝜆𝑡+1 = 𝜋
∗𝜆𝑡, where 𝜋∗ is the adjoint operator associated with (𝐽, 𝜋).  

Grandmont and Hildenbrand showed that the continuity of 𝜋∗ is sufficient to show 

the existence of an invariant measure 𝜆, provided that 𝐽 is a compact set and 𝐺 is 

constructed from an equilibrium correspondence: every 𝜋~𝐺 satisfies 𝜋 = 𝜋𝜑 with 

𝜑~Φ and Φ: 𝐽 × 𝑆 → 𝐽. Provided that assumption 1 holds, the existence of 𝜋𝜑 follows 

from Lemma 2. As discussed in the supplementary appendix of section 3.1, 𝜋∗ is 

continuous 𝑖𝑓𝑓  𝜋̂  has the Feller property, where 𝜋̂  is the semigroup operator 

associated with (𝐽, 𝜋). The authors could not show that 𝜋̂  has this property and had 

to assume it (see Lemma 2 in Grandmont and Hildenbrand, page 263).  

As the selection 𝜑  may not be continuous, thus the result in Hildenbrand and 

Grandmont was considered unsatisfactory. Blume (1982) dispense with this 

assumption and took a rather different approach. Given a Markovian structure with 

time homogeneous transitions, the author used Fan’s fixed-point theorem to show 

the existence of an invariant measure for 𝐺𝐵: 𝒫(𝑍) → 𝒫(𝑍), where 𝐺𝐵 = {𝜋𝜑
∗ : 𝜑~Φ}. As 

𝐺𝐵 was assumed to be nonempty, to have closed graph and 𝑍 to be compact, the 

required upper-hemicontinuity followed immediately. However, to apply Fan’s 



63 
 

theorem, 𝐺𝐵  must be convex valued40. To guarantee this latter property, Blume 

assumed that 𝑆  is characterized by an atomless, not necessarily absolutely 

continuous, measure. Clearly, if 𝑆  is a finite set, this last assumption is not 

realistic. The arguments in section 3.2 try to fill this gap. Even if 𝑆 is a compact and 

uncountable set, and 𝑝(𝑠, . ) is atomless ∀𝑠 ∈ 𝑆, as discussed at the end of section 

3.1, the results in Blume only shows that 𝐺𝐵 has a fixed point, which is equivalent 

to 𝐼𝑀(Φ) ≠ ∅ but weaker than 𝐼𝑀(𝜑) ≠ ∅ for any 𝜑~Φ satisfying assumptions 1, 2 

and the additional hypothesis presented in section 3.3.  

The results in Blume highlighted the necessity of a “convexified” correspondence, 

𝐺𝐵, to prove the existence of an invariant measure. This was the approach taken by 

Duffie, et. al. (1994), theorem 1.1, to show the existence of an ergodic measure. As 

discussed in section 2.5.1 and its supplementary appendix, provided the existence 

of time-invariant state space and that 𝐺  is convex valued, Duffie, et. al. (1994) 

showed that a refinement of a THME, called conditionally spotless, has an ergodic 

measure.  The following definition states this notion of equilibrium formally: 

Definition A1 (Conditionally Spotless THME):  

Let 𝒫𝐹(𝑆 × 𝑍̂) = {𝜇 ∊ 𝒫(𝑆 × 𝑍̂)|∃ ℎ, ℎ: 𝑆 → 𝑍̂, 𝑤𝑖𝑡ℎ 𝑆𝑢𝑝𝑝(𝜇) = 𝐺𝑟(ℎ) }. A THME (𝐽, 𝜋) is 

spotless if 𝜋(𝑧) ∊ 𝒫𝐹(𝑆 × 𝑍̂) for all 𝑧 ∊ 𝐽. A THME (𝐽, 𝜋) is called conditionally spotless if 

for all 𝑧 ∊ 𝐽, ∃ 𝑀 ⊂  𝒫𝐹(𝑆 × 𝑍̂)⋂𝐺(𝑧), 𝜂 ∊ 𝒫(𝑀), 𝜋(𝑧) = ∫𝑣 𝑑𝜂(𝑣) and 𝐺 is convex valued. 

Note that a spotless THME removes the possibility of sunspots discussed in Lemma 

1: given 𝑧𝑡 ∈ 𝐽, there is a measure 𝜇𝑧𝑡 ∈ 𝐺(𝑧𝑡) ∩ 𝒫𝐹(𝑆 × 𝑍̂), which gives the conditional 

distribution of 𝑧𝑡+1, 𝑧̂𝑡+1 = ℎ(𝑠𝑡+1) and 𝜇𝑧𝑡(𝐺𝑟(ℎ)) = 1. Intuitively, each pair (𝑧𝑡 , 𝑠𝑡+1) is 

associated with a unique 𝑧̂𝑡+1  or equivalently 𝑧̂𝑡+1 = ℎ𝜇𝑧𝑡(𝑠𝑡+1) and 𝑧̂𝑡+1  satisfy the 

optimality and feasibility requirements contained in the definition of 𝐺. Note that it 

 
40 𝐺𝐵 is convex-valued if 𝜆1

′ , 𝜆2
′ ∈ 𝐺𝐵(𝜆), with 𝜆1

′ = 𝜋𝜑1
∗ 𝜆, 𝜆2

′ = 𝜋𝜑2
∗ 𝜆 and 𝜑1, 𝜑2~Φ,then 𝜆′ ∈ 𝐺𝐵(𝜆) with 𝜆′ = (𝛼)𝜋𝜑1

∗ 𝜆 + (1 −

𝛼)𝜋𝜑2
∗ 𝜆, (𝛼)𝜋𝜑1

∗ + (1 − 𝛼)𝜋𝜑2
∗ ∈ 𝐺𝐵  and 𝛼 ∈ [0,1]. 
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is possible to refine even more a spotless THME by letting 𝑧̂𝑡+1 = ℎ𝑧𝑡(𝑠𝑡+1), where 

the measurability of 𝑓  must be shown and 𝑧𝑡+1~𝜇 ∊ 𝒫(𝑆 × 𝑍̂)  must be defined 

accordingly. The results in section 3 and 4 hold for this last type of equilibria.  

To show the existence of an ergodic invariant measure for a spotless THME the 

authors proceeded in 2 steps. First, they applied Fan’s fixed point theorem to 𝑇 ≡

𝐸 ∘ 𝑚2 ∘ 𝑚1
−1: 𝒫(𝐽) → 𝒫(𝐽) , where 𝑚1: 𝒫(𝐺𝑟(𝐺𝐽)) → 𝒫(𝐽) , 𝑚2: 𝒫(𝐺𝑟(𝐺𝐽)) → 𝒫(𝒫(𝐽))  give 

the marginals of 𝒫(𝐺𝑟(𝐺𝐽)) and 𝐸𝜂 ≡ ∫𝜇𝑑𝜂(𝜇) , 𝜂 ∊ 𝒫(𝒫(𝐽)) is the mean of 𝜂, which is 

uniquely defined by the Riesz representation theorem for continuous function41. 𝑇 

is a continuous linear functional and 𝐺𝐽  is upper hemi-continuous. This was 

assumed in Duffie, et. al. In the context of this paper, a similar property follows 

from theorem 3.1 in Blume under assumption 1 provided that 𝐺𝐽 is constructed 

from Φ using Lemma 2. However, this last procedure only captures a subset of all 

possible recursive equilibria. Under these 2 properties, 𝑇  is also upper hemi-

continuous 42. As 𝐽 is a self-justified set (i.e. is a stationary state space in terms of 

Duffie, et. al.), 𝐺𝐽 is nonempty. 𝑇 is convex valued as 𝐺 assumed to be so. As 𝒫(𝐽) is 

nonempty, (weakly) compact and convex, 𝑇 has a fixed point. Second, the authors 

showed that any λ with 𝜆 = 𝑇(𝜆) also satisfies 𝜆 = 𝜋 ∙ 𝜆. To derive this result, they 

defined a transition function  𝑃: 𝐽 → 𝒫(𝒫(𝐽)) and showed that 𝐸 ∘ 𝑃(𝑧) ∊ 𝐺𝐽(𝑧) λ-a.e. 

Thus, 𝜋(𝑧) = ∫𝑣 𝑑𝜂(𝑣) almost everywhere for 𝜂 ∊ 𝒫(𝒫(𝐽)).  

To obtain an ergodic measure for a conditionally spotless THME, which is defined 

for economies with a finite number of shocks, 𝒫(𝐽) should be replaced with 𝐺𝐽(𝑧) ∩

𝒫𝐹(𝑆 × 𝑍̂). This implies that 𝐺𝐽 is convex valued: definition A1 assures that for any 

𝑧 ∊ 𝐽, there exist an expectation correspondence 𝑔̂ which is convex valued as it 

contains any possible randomization 𝒫(𝑀)  over spotless transitions 𝑀 ⊆ 𝒫𝐹(𝑆 ×

𝑍̂)⋂𝐺(𝑧) for any 𝑧 ∊ 𝐽. A selection 𝜋(𝑧)~𝑔̂(𝑧) is constructed by changing 𝜂 ∊ 𝒫(𝑀) and 

 
41 See Theorem 14.12 in Aliprantis and Border (2006, page 496). 
42 See Grandmont (1983, page 158). 
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computing 𝜋(𝑧) = ∫ 𝑣 𝑑𝜂(𝑣). The assumption that 𝐺 is convex valued can be done 

w.l.o.g. once transitions 𝑓 are allowed to depend on “contemporaneous” sunspots 

(𝛼𝑡), which select among randomized spotless transitions. Sections 3.3, 3.4 and 4.1 

shows that, if we restrict the class of models with respect to Duffie, et. al, it is 

possible to construct an equilibrium correspondence that contains a stationary and 

an ergodic equilibrium for uncountable shocks.    

The discussion above implies that the transition functions generated by a 

conditionally spotless THME are affected by sunspots; a fact that affects the 

computability of the recursive structure. The authors did not prove the existence 

of an ergodic measure for a spotless THME, which generate sunspots free 

transition function. This paper shows this result for a refinement of all possible 

spotless THME (i.e., those generated from Feng, et. al.’s recursive structure). 

Santos and Peralta Alva (2013) show that 𝐼𝑀(Φ,𝒫1) = {𝜑~Φ, μ ∈ 𝒫1|𝜇 = 𝑃𝜑
∗𝜇} ≠ ∅ . 

Unfortunately, there are some concerns about the Santos and Peralta Alva (2013) 

framework. First, it is not clear if 𝑆 is a finite set. If 𝑆 can be characterized by a 

Markov process with an atomless Markov operator (i.e., 𝑝(𝑠, . ) is atomless for all 𝑠 ∈

𝑆), the non-emptiness of the set of invariant measures 𝐼𝑀(Φ) follows immediately 

from theorem 3.1 in Blume (1982). This paper provides conditions which guarantee 

the non-emptiness of  𝐼𝑀(𝜑) for any 𝜑~Φ that satisfies assumption 1 and 2 which is 

slightly stronger than 𝐼𝑀(Φ) ≠ ∅. It is also convenient in applications as frequently it 

is desirably to compute only an approximation of 𝜑. Second, the conditions which 

guarantee the existence of an ergodic measure in 𝐼𝑀(Φ) have not been established, 

at least separately from those that guarantee 𝐼𝑀(Φ) ≠ ∅ . Theorem 1 and 2 

establishes, respectively, the properties of (𝐽, 𝑃𝜑) associated with the existence of an 

invariant and an ergodic measure. The first set of conditions are milder and thus do 

not require to construct a “tailor-made selection” as we did in section 2.5.2. Third, 

the critical assumptions in Santos and Peralta Alva (2013), assumption 2.3 and 
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remark 6.2, have been stated in terms of 𝑃𝜑, not on primitives, and the procedure 

to compute an ergodic selection is not available. Thus, it may be difficult to 

identify these assumptions in certain applications. 

Preliminary Remark on 𝑱̃ 

As theorem 1 will show that there exist 𝜇 ∈ 𝒫0  with 𝜇 = 𝑃𝜑
∗𝜇  (i.e., an invariant 

measure exists and it is atomless), it is necessary for the state space of the process 

defined by (𝐽, 𝑃𝜑) to be uncountable. This is because the candidate measure 𝜇𝑁, with 

𝜇𝑁𝑘 →𝑊𝑒𝑎𝑘∗ 𝜇, satisfies 𝑆𝑢𝑝𝑝(𝜇𝐾) ⊆  𝐽 as it is constructed applying iteratively 𝑃𝜑
∗. 

Fortunately, the results used to guarantee the non-emptiness of 𝐶𝑗 for 𝑗 ≥ 1 (i.e., the 

set which contains all initial states, 𝑧̃0 , of any j-period economy) which were 

discussed in sections 2.5.1 (fact 2), 2.5.2 and 5 can be used to guarantee the 

desired result. In particular, Theorems 25.1 in Magill and Quinzii (1996) and 

theorem 4.1 together with section 5 in Mas-Colell and Zame (1996) for economies 

with finite and infinite number of shocks respectively can be used to show the 

existence of a sequential competitive equilibrium (see Definition 1) for a truncated 

economy Ɛ = [𝑒, 𝑑, {𝑈𝑖}
𝑖=1

𝐼
, 𝑇], with 𝑇 < ∞. The optimality conditions in Definition 1 

for this economy are:     

OA1) 𝑐𝑖 = 𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) − 𝜃+
𝑖 𝑞 

OA2) [𝑞 (𝑢𝑠
𝑖(𝑐𝑖))

′
− 𝛽𝐸𝑝(𝑠,.)(𝑚+

𝑖 )] [𝜃+
𝑖 − 𝐵̅] = 0⃑  

Where short sale constraints 𝐵̅ are assumed to hold and 𝜃+
𝑖 = 0 if  𝜃𝑖 = 𝜃𝑖(𝜎𝑇−1). In 

the sequential economic literature, if 𝜃+
𝑖 = 𝜃𝑖(𝜎0), it is customary to assume that 

𝜃−
𝑖 ≡ 𝜃𝑖 = 0 and 𝜎0 ≡ 𝑠0 is supposed to be fixed. However, in the recursive literature, 

both 𝜃−
𝑖  and 𝜎0 are allowed varying as 𝑧̃0 = [𝑠0, 𝜃−

𝑖 , 𝑧̂0], where 𝑧̂0 contains the rest of 

the state space.  
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Moreover, the existence of equilibria for Ɛ = [𝑒, 𝑑, {𝑈𝑖}
𝑖=1

𝐼
, 𝑇] requires that 𝑒𝑖(𝑠0) > 0 

(see assumption A.2 in Magill and Quinzii, page 858). Thus, provided the rest of the 

assumptions mentioned in sections 2.1, 2.5.1 and 5 hold, as noted by Duffie, et. al. 

(Lemma 3.4), 𝜃−
𝑖  and 𝑠0  can be chosen arbitrarily as long as 𝑒𝑖(𝑠0) + 𝜃−

𝑖 𝑑(𝑠0) > 0 , 

which can be considered the initial endowment of goods if the exogenous state is 

𝑠0. Formally, it suffices to assume that:  

 Definition OA1:  The initial distribution of assets 𝜃− will be called admissible and 

denoted 𝜃− ∈ Λ if is feasible and satisfies  𝑀𝑖𝑛𝑖∈𝐼,𝑠∈𝑆𝑒
𝑖(𝑠) + 𝜃−

𝑖 𝑑(𝑠) > 0. 

Remark OA1: 𝐽 = 𝑆 × Λ × Ẑ, where Λ × Ẑ is uncountable because and has no isolated 

points: i) Λ is uncountable and has no isolated points according to definition A2, ii) 

under the assumptions made in sections 2.1, 2.5.2 and 5, 𝐶𝑗 ≠ ∅ independently of 

the cardinality of 𝑆 (i.e., an equilibrium for Ɛ = [𝑒, 𝑑, {𝑈𝑖}
𝑖=1

𝐼
, 𝜃−] exists independently 

of the cardinality of 𝑆) for any 𝜃− ∈ Λ (i.e., for any admissible 𝜃−).  

Remark OA1 is frequent in applications: see for instance Duffie, et. al. (1994) 

section 3 and Kubler and Schmedders (2003) page 1777. Vector 𝜃− describes any 

predetermined level of asset holdings or the capital stock. Consequently, in 

numerical approximations 𝜃− is supposed to be contained in an uncountable subset 

of ℝ and its properties (i.e., compactness) can be defined independently of those 

characterizing Ẑ  as ( 𝑠, 𝜃−)  are initial conditions of some sequential competitive 

equilibrium. Thus, Λ is compact if and only if it is closed. This last property is 

easily verifiable as can be seen in Kubler and Schmedders (2003) (see lemma 1, 

page 1776). As will be seen in the proof of lemma 3, the crucial property of Λ, 

besides its cardinality, is the lack of isolated points. This property follows w.l.o.g. 

from definition OA1.  

In all the proofs, except if it is mentioned explicitly, it will be assumed that the 

state space can be written as 𝐽 = 𝑆 × Λ × Ẑ and that Λ is admissible. 
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Preliminary Remark on theorem 1 

Theorem 3.5 in Molchanov and Zuyev (2011) only requires the discontinuity set to 

have zero measure under the limiting measure (i.e., 𝜇𝑛 →𝑊𝑒𝑎𝑘∗ 𝜇  and 𝜇(∆𝜑) = 0 ). 

Thus, it is only necessary, under assumption 2, for 𝜇  to be atomless. The 

arguments in sections 3.2 and 3.3 illustrate the usefulness of properties a) and b) 

to achieve this purpose. Proposition 1 in Ito (1964) holds under quite mild 

assumptions on the primitives and assures property a). The critical property is 

then b), which hold under rather different assumptions depending on the 

cardinality of 𝑆.    

Theorem 3.5 in Molchanov and Zuyev restores the continuity of the adjoint 

operator by extending the set of adequate functions for the weak* topology from 

continuous to Borel measurable if the limiting measure is atomless and 

assumption 2 holds. The example below illustrates the importance of the atomless 

assumption when dealing with function which is only measurable.   

Atomic measures and tight spaces 43: Let 𝑃: 𝑆 × ℬ𝑆 → [0,1] be a transition function with 

𝑆 = [0,1] and 𝑃(𝑠, {𝑠 2⁄ }) = 1. Let {𝜆𝑛} be a sequence of Dirac measures with 𝜆𝑛 = 𝛿(1 2⁄ )𝑛 . 

Thus, 𝜆𝑛 → 𝛿0, where the convergence is in distribution. Define the bounded Borel 

measurable function 𝑓(𝑠) = {1 𝑖𝑓 𝑠 = 0 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} and 𝛿0 ≡ 𝜆. Then ∫𝑓(𝑠) 𝜆𝑛(𝑑𝑠) =0 and 

∫𝑓(𝑠) 𝜆(𝑑𝑠) = 1 which in turn implies that 𝜆𝑛 ↛𝑤𝑒𝑎𝑘∗ 𝜆. The reason behind the lack of 

𝑤𝑒𝑎𝑘∗ convergence is the impossibility to reduce the measure of the discontinuous 

part of 𝑓.   

 

 
43This example borrows from Stokey, Lucas and Prescott (1989), page 336. Note that {𝜆𝑛} satisfies 𝜆𝑛 = 𝑃 ∙ 𝜆𝑛−1. That is, 
it is possible to generate a sequence of non-atomic measures out of the action induced by 𝑃. I would like to thank 
Prof. R. Fraiman for pointing this out to me.  
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Proof of theorem 1 

Let Φ be an equilibrium correspondence in definition 2 which satisfies assumption 

1.  By Lemma 2 𝑃Φ = {𝑃𝜑: 𝜑~Φ} ≠ ∅ and upper hemi continuous (see for instance 

proposition 2.2. in Blume, 1982). If 𝑃Φ  is convex valued, an ergodic invariant 

measure can be shown to exist using proposition 1.3 in Duffie, et. al. (1994) (page 

757). 

If 𝑃Φ is not convex valued, suppose that assumption 2 together with properties a) 

and b) in theorem 1 hold. Choose any 𝜆0 ∊ 𝒫(𝐽) and construct a non-oscillating 

sequence of measures {𝜇𝑁}  with 𝜇𝑁 = ℎ({𝜆𝑛}) , where ℎ  averages the first N-1 

elements of {𝜆𝑛} and 𝜆𝑛 satisfies 𝜆𝑛 = 𝑃𝜑
∗𝜆𝑛−1. The dependence of {𝜇𝑁} on  𝜆0 can be 

omitted w.l.o.g. as the initial condition is arbitrary.  

As 𝜇𝑁 ∊ 𝒫(𝐽) for any N, Helly’s theorem (see Stokey, Lucas and Prescott (1989) page 

372 and 374) implies that  {𝜇𝑁}  has a weakly convergent subsequence. That is, 

{𝜇𝑁𝑘} →𝑤𝑒𝑎𝑘∗ 𝜇.  

For notational simplicity 𝑃𝜑
∗𝜆  and 𝑃̂𝜑𝑓  will be replaced by 𝜋 ∙ 𝜆  and 𝜋 ∙ 𝑓  as 𝑃𝜑  with 

𝜑~Φ will be held constant throughout the proof. 

For any 𝑓 ∊ 𝐶(𝐽) note that: 

|∫ 𝑓(𝑧)𝜇(𝑑𝑧) −∫(𝜋 ∙ 𝑓)(𝑧)𝜇(𝑑𝑧)|

≤ |∫𝑓(𝑧)𝜇(𝑑𝑧) −∫𝑓(𝑧)𝜇𝑁𝑘(𝑑𝑧)| + |∫𝑓(𝑧)𝜇𝑁𝑘(𝑑𝑧) − ∫(𝜋 ∙ 𝑓)(𝑧)𝜇𝑁𝑘(𝑑𝑧)|

+ |∫(𝜋 ∙ 𝑓)(𝑧)𝜇𝑁𝑘(𝑑𝑧) − ∫(𝜋 ∙ 𝑓)(𝑧)𝜇(𝑑𝑧)|    (𝑂𝐴. 3) 

From the corollary of theorem 8.1 in Stokey, Lucas and Prescott (1989) (page 215), 

(𝜋 ∙ 𝑓): 𝑍 → ℝ is a bounded ℬ[𝐽]-measurable function. Further, from property a) and 
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b), 𝜇  is atomless. Under assumption 2,  𝜇(∆𝜑) = 0 . Then, from theorem 3.5 in 

Molchanov and Zuyev (2011, fact f), the third term in OA3 can be made arbitrarily 

small. Further, noting that {𝜇𝑁𝑘} →𝑤𝑒𝑎𝑘∗ 𝜇 and 𝑓 ∊ 𝐶(𝐽), the first and the third term in 

A.3 can be made arbitrarily small.  

Following the same reasoning as in Stokey, Lucas and Prescott (1989) page 377, the 

second term satisfies: 

|∫𝑓(𝑧)𝜇𝑁𝑘(𝑑𝑧) − ∫(𝜋 ∙ 𝑓)(𝑧)𝜇𝑁𝑘(𝑑𝑧)| ≤ 2‖𝑓‖/𝑁   (𝑂𝐴. 4) 

Where ‖. ‖  is the sup-norm. Thus, for an N arbitrarily large, ∫ 𝑓(𝑧)𝜇(𝑑𝑧) =∫(𝜋 ∙

𝑓)(𝑧)𝜇(𝑑𝑧) = ∫𝑓(𝑧)(𝜋 ∙ 𝜇)(𝑑𝑧), where the last equality follows from theorem 8.3 in 

Stokey, Lucas and Prescott (1989) (see page 216). Thus, ∫𝑓(𝑧)𝜇(𝑑𝑧) =∫𝑓(𝑧)(𝜋 ∙ 𝜇)(𝑑𝑧). 

As 𝑓 was arbitrary, by virtue of corollary 2 of theorem 12.6 in Stokey, Lucas and 

Prescott (1989) (page 364) 𝜇 = 𝜋 ∙ 𝜇, 𝑄𝐸𝐷. 

∎ 

 

Lemma 3 

Preliminary remark 

The proof of this lemma requires 𝜋 to be 𝜃-nonsingular. A transition function is 

said to be 𝜃-nonsingular if for any measurable set 𝐵, 𝜃(𝐵) = 0 implies 𝜋(𝑧, 𝐵) = 0 𝜃-

a.e. As 𝜃 is atomless this is equivalent to say that the set 𝐷, defined below, is a 

finite set. 

𝐷 = {𝑧 ∈ 𝐽: 𝜋(𝑧, 𝐵) > 0 𝑖𝑓 𝜃(𝐵) = 0}   (𝑂𝐴. 5)  

Additionally, 𝐵 was restricted to be a point. For those transition functions defined 

by lemma 2, Ito (1964) show that any non-constant possibly discontinuous many-to-
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one function 𝜑~Φ will generate a 𝜃-nonsingular transition function.  This can be 

seen by written 𝜋𝜑 in lemma 2 as  

𝜋𝜗(𝑧, 𝐵) = 𝑝{𝑠|𝑠′ ∈ 𝑆: 𝜑(𝑧, 𝑠′) = 𝑎 } = 𝑝{𝑠|𝑠′ ∈ 𝑆: {𝑠𝑖
′} ∩ 𝜑̃−1(𝑧, . )(𝑎𝑧̂) }   (𝑂𝐴. 6) 

Where 𝑧 = [𝑠, 𝑧̂] , 𝑝(𝑠|. )  is the 𝑠𝑡ℎ  row of the transition matrix which defines the 

evolution of the exogenous process {𝑠𝑡} , 𝐵 = {𝑠𝑖
′} × 𝐵𝑧̂  was restricted to a point 

𝑎 = {𝑠𝑖
′} × 𝑎𝑧̂, 𝜑(𝑧, 𝑠´) = [𝑠

′, 𝜑̃(𝑧, 𝑠′)] is a vector valued function and 𝜑̃−1(𝑧, . )(𝐵𝑧̂) is the 

𝑧-section of the pre-image of 𝜑̃ on 𝐵𝑧̂.  

From OA.5 and OA.6, under assumption 2, #𝐷 < ∞ provided that 𝜑̃(. , 𝑠′) is non-

constant in 𝑧  for all 𝑠′ ∈ 𝑆 . The supplementary material to section 5.1 in the 

appendix shows that the implicit function theorem can be used to show that the 

model defined in section 2.1 generates 𝜃-nonsingular transition functions.    

Proof of lemma 3 

Let (𝐽, ℬ𝐽, 𝑚) be a measure space. By assumption 1, 𝐽 is compact and by remark OA1 

this set could be written as 𝐽 = 𝑆 × Λ × Ẑ, where Λ contain all admissible states and 

Λ × Ẑ is uncountable and has no isolated points. Further, note that any measure in 

(Λ, ℬΛ), denoted 𝑚Λ, is a Radon measure as Λ is a Hausdorff metric space and 𝑚Λ is: 

i) defined over a Borel sigma-algebra (ℬΛ ), ii) regular as it is a measure on a 

Hausdorff (compact) metric space (Λ), iii) ℬΛ-finite as it is a probability measure. 

Thus, as Λ has no isolated points, (Λ, ℬΛ) has an atomless measure 𝑚Λ
𝐴 (see Bogachev 

2007, page 136) which in turn implies by remark OA1 that there is a measure 𝑚𝐴 in 

(𝐽, ℬ𝐽) that is also atomless.  The first part of the lemma is completed by setting  

𝑚𝐴 ≡ 𝜃.      

Let 𝒫0(𝐽) ⊂ 𝒫(𝐽) be the set of atomless measures in 𝒫(𝐽) generated by 𝜋, starting 

from 𝜃. It follows from proposition 1 in Ito (1964) that 𝜋 maps 𝒫0(𝐽) → 𝒫0(𝐽) as 𝜋 is 
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𝜃-nonsingular by condition 1. Finally, condition 2 is just the definition of a weak*-

closed set applied to 𝒫0(𝐽).          

      ∎ 

Example of an atomless measure 𝜃 ∈ 𝒫(𝐽) . The reference measure 𝜃  could be a 

mixed joint density: 𝜃(𝑠 × 𝐴) = 𝑃(𝑠 = {𝑠}, 𝑧̂ ∈ 𝐴) = ʃ𝐴𝑝𝑆,𝑍̂(𝑠, 𝑧̂)𝑑𝑧̂  where 𝑝𝑆,𝑍̂(𝑠, 𝑧̂) =

𝜃(𝑠 × {𝑧̂}) = 0 is a density function on 𝑍̂ which may vary with any 𝑠 ∈ 𝑆. From fact 14 

page 45 in Hildenbrand and Grandmont (1974), 𝜃 is atomless. 

 

Lemma 4 

Preliminary Remark 

The implication of condition 4) requires showing the weak* closedness of 𝐼𝑀(𝜑,𝒫1). 

The proof below shows that 𝐼𝑀(𝜑, 𝒫1) is weak* sequentially compact: that every 

bounded sequence in 𝐼𝑀(𝜑,𝒫1) has a weak* convergent subsequence. As 𝒫1 can be 

endowed with the Prohorov metric (see Hildenbrand and Grandmont 1974, page 

49), sequential compactness implies that 𝐼𝑀(𝜑,𝒫1)  is not only closed but also 

compact.     

Proof of lemma 4 

For the existence of an atomless measure on 𝐽 = 𝑆 × Λ × Ẑ with 𝑆 uncountable and 

compact, let 𝜃 be the uniform measure on 𝐽. 

For property a), note that condition 3) implies that 𝑃𝜑  is 𝜃 -nonsingular. Thus, 

proposition 1 in Ito (1964) applies just as in the proof of lemma 3.  

To prove property b), note that any point {𝑎} ∈ 𝐽 has zero Lebesgue measure. Thus, 

under condition 3): 
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𝜇𝑛({𝑎}) = ∫𝑃𝜑(𝑧, {𝑎}) 𝜇𝑛−1(𝑑𝑧) = 0 

Where the second equality follows from condition 3) and implies that the desired 

result follows automatically.   

Property c) will be proved in 3 parts: i) 𝐼𝑀(𝜑,𝒫1) ≠ ∅ . As 𝐽  is compact, Helly’s 

theorem implies the existence of a weak* converging subsequence in 𝐼𝑀(𝜑,𝒫1) 

denoted w.l.o.g.  𝜇𝑛 →𝑤𝑒𝑎𝑘∗ 𝜇. It will be shown that: ii) 𝜇 is absolutely continuous 

w.r.t 𝜃, iii) 𝜇 ∈ 𝐼𝑀(𝜑, 𝒫1).  

In what follows it will be assumed w.l.o.g. that 𝜃(𝑑𝑧) = 𝑑𝑧 . This is done for 

expositional purposes only. 

i) Standard results (See Billingsley 1968, page 422) imply that condition 4) 

is equivalent to the following statement: for any measurable set 𝐵 , 

𝜃(𝐵) = 0  implies 𝑆𝑈𝑃𝑧∈ 𝐽[𝜋𝜗(𝑧, 𝐵)] = 0 . Thus, 𝜋𝜗  is 𝜃 -nonsingular. By 

proposition 1 in Ito (1964), 𝜋𝜗: 𝒫1 → 𝒫1 . Also, under condition 4), an 

argument identical to the one used to prove property b) implies that 𝒫1 

and the adjoint operator generates a weak* closed set. Under 

assumption 2, theorem 1 implies that  𝐼𝑀(𝜑,𝒫1) ≠ ∅. 

ii) By the characterization of absolutely continuity in Billingsley (1968, 

page 422), it suffices to show that for any 𝜀 > 0, ∃𝛿 > 0 such that 𝜃(𝐵) <

𝛿  implies 𝜇(𝐵) < 𝜀 . Condition 4) implies that 𝜋𝜗(𝑧, . )  is absolutely 

continuous w.r.t.  𝜃  for any 𝑧 ∈ 𝐽 . That is, 𝜋𝜗(𝑧, 𝑑𝑧′)= 𝜋̅𝜗(𝑧, 𝑧
′)𝑑𝑧′  where 

𝜋̅𝜗(𝑧, . )  is the density associated with 𝜋𝜗(𝑧, 𝑑𝑧′) .  Take any sequence 

{𝜇̂𝑛} ∈ 𝐼𝑀(𝜑,𝒫1). Note that {𝜋𝜗𝜇̂𝑛} is a family of measures that satisfies 

the hypothesis of Helly’s theorem and {𝜋𝜗𝜇̂𝑛} ∈ 𝐼𝑀(𝜑, 𝒫1).  

Let 𝜋𝜗𝜇̂𝑛 ≡ 𝜇𝑛  and note that {𝜇𝑛} ∈ 𝐼𝑀(𝜑,𝒫1)  and has a weak* limit 

denoted (passing to a subsequence if necessary) 𝜇. 
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Note that  𝜇𝑛(𝐵) = ∫𝐵ℎ𝑛(𝑧
′)𝜃(𝑑𝑧′)  where ℎ𝑛(𝑧

′) = ∫ 𝜋̅𝜗(𝑧, 𝑧
′) 𝜇𝑛(𝑑𝑧) . But 

now note that 𝜇𝑛(𝐵) could be written as: 

𝜇𝑛(𝐵) = ∫𝐵ℎ𝑛(𝑧
′)𝜃(𝑑𝑧′) =  ∫[∫

𝐵
𝜋̅𝜗(𝑧, 𝑧

′)𝑑𝑧′] 𝜇𝑛(𝑑𝑧) 

Condition 4) implies that [∫
𝐵
𝜋̅𝜗(𝑧, 𝑧

′)𝑑𝑧′] < 𝜀 uniformly in 𝑧. Thus 𝜇𝑛(𝐵) <

𝜀. The arguments in the first part of lemma 3 imply that {𝜇𝑛} and 𝜇 are 

regular measures. Thus, 𝐵 can be assumed to be open w.l.o.g. Now, the 

definition of weak* convergence implies (see theorem 12.3-c in Stokey, 

Lucas and Prescott, page 358) 𝜇(𝐵) ≤ 𝑙𝑖𝑚𝑖𝑛𝑓𝑛𝜇𝑛(𝐵) . To complete the 

proof, by the preliminary remark of this lemma, it suffices to note that 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛𝜇𝑛(𝐵) < 𝜀. 

iii) It remains to show that 𝜇 ∈ 𝐼𝑀(𝜑,𝒫1).  

Take 𝜇𝑛 →𝑤𝑒𝑎𝑘∗ 𝜇. Note that for any 𝑓 ∈ 𝐶(𝐽): 

lim
𝑛
∫𝑓(𝑧)𝜇𝑛(𝑑𝑧) =∫𝑓(𝑧)𝜇(𝑑𝑧)

= lim
𝑛
∫𝑓(𝑧)[𝜋𝜇𝑛](𝑑𝑧) = lim

𝑛
∫[𝜋𝑓](𝑧)𝜇𝑛(𝑑𝑧) =∫[𝜋𝑓](𝑧)𝜇(𝑑𝑧)

= ∫𝑓(𝑧)[𝜋𝜇](𝑑𝑧) (𝑂𝐴. 7) 

Where the first equality in OA.7 follows from the definition of weak* 

convergence of 𝜇𝑛 →𝑤𝑒𝑎𝑘∗ 𝜇, the second from {𝜇𝑛} ∈ 𝐼𝑀(𝜑,𝒫1), the third 

from theorem 8.3 in Stokey, Lucas and Prescott, the forth from theorem 

3.5 in Molchanov and Zayev as 𝜇 is absolutely continuous w.r.t. 𝜃 (and 

thus atomless) and the last equality from theorem 8.3 in Stokey, Lucas 

and Prescott again. Note that A.7 implies ∫𝑓(𝑧)𝜇(𝑑𝑧) = ∫𝑓(𝑧)[𝜋𝜇](𝑑𝑧). As 

𝑓 ∈ 𝐶(𝐽) is arbitrary, the proof is complete. 

∎ 

 

Proposition 1 
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Proof of Proposition 1 

Under assumption 1, lemma 2 implies that 𝜋  is well defined (i.e. is a Markov 

operator). Under assumptions 3-i) and 3-ii) the result follows from equation A.6) by 

noting that {𝑠𝑖
′} ∩ 𝜑̃−1(𝑧, . )(𝑎𝑧̂) is either a point in 𝑆 or ∅ for any  𝑧 ∈ 𝐽. 

∎ 

Proposition 2 

Preliminary remark 

Arbitrarily selecting  ∈ 𝐽, it will be shown that ∀𝜀(𝑧) > 0, ∃𝛿(𝑧) > 0 such that 𝜃(𝐵) <

𝛿(𝑧) implies 𝜋(𝑧, 𝐵) <  𝜀(𝑧). As 𝐽 is compact and 𝜀(𝑧), 𝛿(𝑧) are finite (real) numbers, it 

suffices to take 𝑚𝑎𝑥𝑧 ∈𝐽 𝜀(𝑧) = 𝜀 and 𝑚𝑎𝑥𝑧 ∈𝐽 𝛿(𝑧) = 𝛿. 

For the first part of the proof the following fact will be useful: let 𝜃  be the 

Lebesgue measure and 𝑅 ⊆ 𝐽 ⊂ ℝ𝐾  a rectangle and 𝜇𝑉  its volume. That is, 𝑅 =

[𝑎1, 𝑏1] × …× [𝑎𝐾, 𝑏𝐾] and 𝜇𝑉(𝑅) = [𝑏1 − 𝑎1]… [𝑏𝐾 − 𝑎𝐾]. Then, 𝜃(𝐵) = 0 if ∀𝛾 > 0, ∃{𝑅𝑖}𝑖=1
∞  

with 𝐵 ⊆ ⋃ 𝑅𝑖
∞
𝑖=1  and ∑ 𝜇𝑉(𝑅𝑖) < 𝛾

∞
𝑖=1 . The proof of the first part the proposition will 

be completed if it can be shown that for each 𝜀(𝑧) > 0, there exist an 𝛾 > 0 such 

that ∑ 𝜇𝑉(𝑅𝑖) < 𝛾
∞
𝑖=1  implies ∑ 𝜋(𝑧, 𝑅𝑖) ≤

∞
𝑖=1 𝜀(𝑧)  because 𝜃(𝐵) = 0  as long as 

∑ 𝜇𝑉(𝑅𝑖) < 𝛾
∞
𝑖=1 .    

Proof of proposition 2 

Note that any positive 𝜋𝜑(𝑧, . )-measure rectangle, 𝑅𝑖, could be written as  

𝑅𝑖 = [𝜑1(𝑧, 𝑠1,𝑖
′ − 2−1ℎ1,𝑖), 𝜑1(𝑧, 𝑠1,𝑖

′ + 2−1ℎ1,𝑖)] × …

× [𝜑𝐾(𝑧, 𝑠𝐾,𝑖
′ − 2−1ℎ𝐾,𝑖), 𝜑𝐾(𝑧, 𝑠𝐾,𝑖

′ + 2−1ℎ𝐾,𝑖)] 

where the first coordinate is just [𝑠1,𝑖
′ − 2−1ℎ1,𝑖, 𝑠1,𝑖

′ + 2−1ℎ1,𝑖], 𝜑𝑘 and 𝑠𝑘,𝑖
′   denote any 

coordinate of 𝜑 for 1 ≤ 𝑘 ≤ 𝐾 and the elements of 𝑆 that generates coordinate 𝑘 of 

rectangle 𝑖.  
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Note assumption 3-iii) implies that 𝜑𝑘(𝑧, . ) is allowed to oscillate continuously, not 

necessarily forming a straight line, between 𝜑𝑘(𝑧, 𝑥)  and 𝜑𝑘(𝑧, 𝑦)  where 𝑥 = 𝑠𝑘,𝑖
′ −

2−1ℎ𝑘,𝑖  and 𝑦 = 𝑠𝑘,𝑖
′ + 2−1ℎ𝑘,𝑖. Thus, by theorem 2.27 in Aliprantis and Border (2006), 

ℎ𝑘,𝑖  is the length of the interval in the pre-image of 𝜑𝑘(𝑧, . ) , where 𝜑𝑘(𝑧, 𝑥) and 

𝜑𝑘(𝑧, 𝑦) are exactly the endpoints of the 𝑘𝑡ℎ coordinate of rectangle 𝑅𝑖.   

Now equation OA.6) implies that:  

 

𝜋(𝑧, 𝑅𝑖) ≤ 𝑝(𝑠,⋂ [𝑠𝑘,𝑖
′ − 2−1ℎ𝑘,𝑖 , 𝑠𝑘,𝑖

′ + 2−1ℎ𝑘,𝑖]
𝐾

𝑘=1
) =  𝑝 (𝑠,⋂ [0, ℎ𝑘,𝑖]

𝐾

𝑘=1
) 

 

Where the inequality follows from the preceding discussion and the equality from 

assumption 3-iv) after normalizing 𝑝(𝑠, . ) to be in the unit interval.     

Now note that assumption 1 implies that 𝜇𝑉(𝑅𝑖) is finite as the range of any 𝜑~Φ is 

bounded, and ∑ 𝜇𝑉(𝑅𝑖) < 𝛾
∞
𝑖=1  implies 𝑙𝑖𝑚𝑖→∞𝜇

𝑉(𝑅𝑖) = 0. Thus, 

 

𝜋𝜑(𝑧, 𝑅𝑖) ≤ 𝜀(𝑧)𝑖2
−𝑖  OA.8) 

Where 𝜀(𝑧)𝑖 = 𝑚𝑖𝑛𝑘ℎ𝑘,𝑖.  

Also, from 𝑙𝑖𝑚𝑖→∞𝜇
𝑉(𝑅𝑖) = 0 , equation OA.8) implies that 𝑙𝑖𝑚𝑖→∞(𝜀(𝑧)𝑖)  is finite. 

Thus, 𝑆𝑈𝑃𝑖𝜀(𝑧)𝑖 = 𝑚𝑎𝑥𝑖𝜀(𝑧)𝑖 = 𝜀(𝑧) and ∑ 𝜋(𝑧, 𝑅𝑖) ≤ 𝜀(𝑧)
∞
𝑖=1 , as ∑ 2𝑖∞

𝑖=1 = 1.  

Now to prove the dependence of 𝛾 on 𝜀(𝑧), let 𝑅𝑖,𝑘 be the 𝑘𝑡ℎ coordinate of rectangle 

𝑅𝑖. Note that assumption 3-iii) implies, by theorem 2.34 in Aliprantis and Border, 

that for all 𝑖, ∃𝑘 with 𝑅𝑖,𝑘 = [𝜑1(𝑧, 𝑥), 𝜑1(𝑧, 𝑦)] and [𝑥, 𝑦] has length smaller or equal to 

𝜀(𝑧). Consequently, 𝜀(𝑧) could be made arbitrarily small as desired and there will 

always be an associated 𝛾 such that OA.8) holds.   As 𝑧 is arbitrary, the proof is 

complete.  

∎ 
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Comment on remark 2: the result follows from replacing 𝑝(𝑠,⋂ [0, ℎ𝑘,𝑖2
−𝑖]𝐾

𝑘=1 ) by 

𝑝(𝑠,⋂ [𝐿𝐵(𝑠), ℎ𝑘,𝑖2
−𝑖]𝐾

𝑘=1 )  in equation OA.8) and noting that 𝜀(𝑧)𝑖 = 𝑚𝑖𝑛𝑘
ℎ𝑘,𝑖−𝐿𝐵(𝑠)

𝑈𝐵(𝑠)−𝐿𝐵(𝑠)
, 

where 𝑧 is a vector of the form 𝑧 = [𝑠, 𝑧̂], is a finite number for all 𝑧 ∈ 𝐽. 

 

 

Lemma 5 

Preliminary remark of Lemma 5 

As discussed in section 3.4), the existence of an ergodic invariant measure can be 

shown under a slightly weaker assumption than 3-iv). The results hold under 

assumption 3.iv’) which allows 𝑝(𝑠, . ) , the distribution of exogenous shocks, to 

depend on 𝑠. Assume further that, 

Assumption OA.1): 𝑝(𝑠, . ) satisfies assumption 3-iv’) and it has the Feller property. 

The proof below assumes that 𝑝(𝑠, . )  satisfies assumption OA.1) provided the 

existence of a recursive structure Φ. The results in Mas-Colell and Zame (1996) 

imply that assumption 3.iv) is required to insure the existence Φ in definition 2. 

However, the proof will be done imposing the less restrictive assumptions in case 

Φ can be derived under milder restrictions for a different type of economy.  

Under assumptions 4.2-i) to 4.2-iv) and 3-iii) the result in lemma 5 follows from 

proposition 1 and 2 and theorems 1 and 2. Thus the proof of the lemma will only 

take care of the case of only 1 asset which allows to show the continuity imposed 

by assumption 3-iii). It will be shown that there exist a selection 𝜑~Φ , with 

𝜑(𝑧̃, 𝑠+) = [𝑠+, 𝜃+(𝑧̃, 𝑠+), 𝑞+(𝑧̃, 𝑠+),𝑚+(𝑧̃, 𝑠+)], that is continuous in each coordinate in 𝑠+. 

Moreover, considering the incomplete markets nature of the model, 𝜃+(𝑧̃, 𝑠+) will be 

assumed to be constant. That is, 𝜃+(𝑧̃, 𝑠+) = 𝜃+(𝑧̃) for each 𝑠+ ∈ [𝐿𝐵(𝑠), 𝑈𝐵(𝑠)]. Once 
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the continuity of 𝑞+(𝑧̃, 𝑠+) has been shown below, the continuity of 𝑚+(𝑧̃, . ) follows 

from its definition. 

Proof of lemma 5 

Assume that 𝜃+(𝑧̃, 𝑠+) is constant in in 𝑠+ for any given 𝑧̃ ∈ 𝐽. In order to complete 

the proof, it suffices to show that 𝑞(𝑧̃, 𝑠+) is continuous in 𝑠+ for any given 𝑧̃ ∈ 𝐽. 

Under assumptions 6.2-i) to 6.2-iii) any equilibria in this economy exists satisfies 

equation A.12, the feasibility requirement, together with    

OA.9) 𝑞𝑗𝑢𝑠𝑖 (𝑒𝑖(𝑠) + 𝜃𝑖𝑑(𝑠) − 𝜃+𝑖 𝑞)′ − 𝛽𝐾(𝑠) ∫𝑑𝑗(𝑠+)𝑢𝑠𝑖 (𝑒𝑖(𝑠+) + 𝜃+𝑖 𝑑(𝑠+) − 𝜃++𝑖 𝑞)′𝑑𝑠+ = 0, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 

Where 𝐾(𝑠) is the constant associated with the uniform distribution in assumption 

3-iv’). 

Now suppose that assumption OA.1 holds. Then, as mentioned in the preliminary 

remark, 𝑝(𝑠, . ) has the Feller property. Then: 

  OA.10) lim
𝑠𝑛→𝑠1

𝛽𝐾(𝑠𝑛) ∫𝑚++
𝑖,𝑗
(𝑥)𝑑𝑥 = 𝛽𝐾(𝑠1) ∫𝑚++

𝑖,𝑗
(𝑥)𝑑𝑥 = 𝑞+

𝑗
(𝑠1)𝑢(𝑒𝑖(𝑠1) + 𝜃+

𝑖 𝑑(𝑠1) − 𝜃++
𝑖 𝑞+(𝑠

1))′ 

The last equality in OA.10) follows because, under assumption 4.2-i) to 4.2-iii), 

there is a sequential competitive equilibrium for each 𝑠1 which satisfies equation 

OA.9). 

Under the special form 𝑢𝑠
𝑖 = 𝑢  in assumption 4.2-i), equation OA.9 and OA.10 

implies: 

OA.11) lim
𝑠𝑛→𝑠1

𝛽𝐾(𝑠𝑛) ∫𝑚++
𝑖,𝑗
(𝑥)𝑑𝑥

𝑢(𝑒𝑖(𝑠𝑛)+𝜃𝑖𝑑(𝑠))′
= lim

𝑠𝑛→𝑠1
𝑞+
𝑗
(𝑠𝑛)𝑢(−𝜃++

𝑖 𝑞+(𝑠
𝑛))′ = 𝑞+

𝑗
(𝑠1)𝑢(−𝜃++

𝑖 𝑞+(𝑠
1))′ 

Note that equation OA.9 implies the first equality in OA11) under 𝑢 in assumption 

4.2-i). Then, as 𝑢 (𝑒𝑖(𝑠𝑛) + 𝜃𝑖𝑑(𝑠𝑛)) ′ is bounded above and bounded away from zero for 

any admissible value of 𝑒𝑖(𝑠𝑛) + 𝜃𝑖𝑑(𝑠𝑛)  under assumptions 4.2-i), equation OA.10 

implies the last equality. 
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Now, setting 𝜆 = 1 in 𝑢 w.l.o.g., the continuity of 𝑙𝑛 implies  

A.12) 𝑙𝑖𝑚
𝑠𝑛→𝑠1

[−𝜃++
𝑖 𝑞+(𝑠

𝑛)] + 𝜃++
𝑖 𝑞+(𝑠

1)
⏟                    

𝐴

+ 𝑙𝑛 [ 𝑙𝑖𝑚
𝑠𝑛→𝑠1

𝑞+
𝑗 (𝑠𝑛)] − 𝑙𝑛 [𝑞+

𝑗
(𝑠1)]

⏟                    
𝐵

= 0 

If 𝐵 = 0, then as 𝜃++𝑖 ≠ 0 w.l.o.g., 𝐴 implies 𝑙𝑖𝑚 𝑞+(𝑠𝑛) = 𝑞+(𝑠1) as desired. 

Suppose that 𝐵 ≠ 0. The compactness of the equilibrium set implied by theorem 4.2 

in Mas-Colell and Zame (1996) under assumptions 4.2-i) to 4.2-iii) implies that 𝐵 ∈

ℝ. Then A.12) under 𝐽 = 1 (i.e., there is only 1 asset) implies: 

𝑞+
𝑗 (𝑠1) =

𝐵

𝜃++
𝑖 (1 − 𝑒𝑥𝑝(𝐵))

 

Note that A.9) implies that 𝑞+
𝑗 (𝑠1) ≥ 0  and that 𝜃++

𝑖 > 0  w.l.o.g. as there are 

heterogenous agents and the asset is offered in zero net supply. Then, as 𝐵 is a 

finite number and it was assumed to be different from zero, then 𝑞+
𝑗 (𝑠1) < 0 ; 

implying a contradiction with 𝐵 ≠ 0. 

∎ 

 

 

 

  

 

 


