
2

VIBE
(Blockflix)

a “Metaverse Network LLC” product
WHITE PAPERV.1.1

Written By: Prof. CheungWY (Producer/Distributor/Performer/MetaFi-Blockchain Specialist)

Dated: 15th December 2021

Movies and Television series has early created for more then a century. I have been in Movie
production business, from creator, investment, producer, distributor, performer for more than twenty
years, I was awarded for Top 10 best movie in Los Angles Golden Angle awards, also for the past
five years, I invested a Crypto Exchange, decentralized wallet, with more than 4million KYC users,
ranking World’s number 70 in Best Crypto Exchange platform. Thus being a expert and
professional of this two cross sectors, I started to visualize the future viewing platform, both for
best experience for distributor an viewers. To start, let us study the number of views rely on
Television st for viewing.

TVUniverse - UK, Sweden, andGermany: How people watch television today
Normally, studies of TV viewer behavior focus on a method of access, which makes it difficult to
understand the entire market. In this report from nScreenMedia, we examine how viewers interact
with all sources of TV content, free broadcast TV, pay TV, and online TV. The report shows how
many people are using each source and all the possible combinations of sources. It explores the
behavior of these viewing groups and their relationships with the TV sources used.

Data were obtained from February and March 2019 survey of TV viewers in the UK, Sweden, and
Germany. Some of the information readers of the report will find include:

 A breakdown of how many viewers are using each of the major TV sources, including
combinations of sources (for example, those using free and online TV)

 Howmuch each viewing group watches and howmuch they pay
 How each viewing groups finds something to watch
 Device preferences of the online TV viewer
 The video buying and renting behavior of TV viewers

3

4

Making Screen Time Family Time: How kids today influence co-viewing and purchase intent
in the household
At one time, it looked like the switch to online viewing might herald the death of family viewing.
Early surveys of online TV viewers showed that family members were increasingly choosing to
watch alone on their smart phones, tablets, and PC.

D2C is not Enough: How Pay TVCan Help Drive SVOD/AVODSuccess?
Among adults U.S. TV consumers with broadband, 74% use at least one of the top three providers,
and 46% use two or more. At Disney and others ramp up their marketing campaigns for there
direct-to consumer (D2C) services, it will become ever harder for smaller services to break through
the chatter.

It is time for SVOD and AVOD providers to start thinking outside of the D2C box to keep growing.
As this paper reveals, Online TV providers of all sizes are discovering that traditional pat TV
services can b great partners in helping to expand distribution and to reach potential customers.

The paper represents five key challenges faced by direct-to consumer (D2C) providers in the
increasingly competitive online TV market. It also discusses how pay TV operators can provide
alternative approaches to these problems. The five topics covered are:

 Accelerating growth
 Marketing in a video context
 Reducing barriers to sign up
 The emerging role of search
 Enhanced monetization opportunities

nSreenMedia spoke with executives from D2C providers to understand how they are coping with
these challenges.

In order to proceed further, I would like to introduce the technology backbone of BCTV.

IPFS
The InterPlanetary File System (IPFS) is a peer-to-peer distributed file system that seeks to connect
all computing devices with the same system of files. In some way, IPFS is similar to the Web, but
IPFS could be seen as a single BitTorrent swarm, exchanging objects within one Git repository. In
other words, IPFS provides a high throughput content-addressed block storage model, with content
addressed hyper-links. This forms a generalized Merkle DAG, a data structure upon which one
can build versioned file system, blockchains, and even a Permanent Web. IPFS combines a
distributed hastable, an incentivized block exchange, and self-certifying name space. IPFS has no
single point of failure, and nodes do not need to trust each other.

1. INTRODUCTION
There have been many attempts at constructing a global distributed file system. Some systems

5

have seen significant success, and others failed completely. Among the academic attempts, AFS
has succeeded widely and is still in use today. Others have not attained the same success.
Outside of academia, the most successful systems have been peer-to-peer file-sharing applications
primarily geared toward large media (audio and video). Most notably, Napster, KaZaA, and
BitTorrent deployed large file distribution systems supporting over 100 million simultaneous users.
Even today, BitTorrent maintains a massive deployment where ten of millions of nodes churn daily.
These applications saw greater numbers of users and files distributed than their academic file
system counterparts. However, the applications were not designed as infrastructure to be built
upon. While there have been successful prepossessing, no general file-system has emerged that
offers global, low-latency, and decentralized distribution.
Perhaps this is because a “good enough” system for most use cases already exists: HTTP. By far,
HTTP is the most successful “distributed system of files” ever deployed. Coupled with the
browser, HTTP has had enormous technical and social impact. It has become the de facto way to
transmit file across the internet. Yet, it fails to take advantage of dozens of brilliant file
distribution techniques invented in the last fifteen years. From one perspective, evolving Web
infrastructure is near-impossible, given the number of backwards compatibility constraints and the
number of strong

For example, Linux distributions use BitTorrent to transmit disk images, and Blizzard, Inc. Uses it to distribute video game content. (War

of Warcraft)

Parties invested in the current model. But from another perspective, new protocols have emerged
and gained wide use since the emergence of HTTP. What is lacking is upgrading design:
enhancing the current HTTP web, and introducing new functionality without degrading user
experience.
Industry has gotten away with using HTTP this long because moving small files around is
relatively cheap, even for small organizations with lots of traffic. But we are entering a new era of
data distribution with new challenges: (a) hosting and distributing petabyte datasets, (b) computing
on large data across organizations, (c) high-volume high definition on-demand or real-time media
streams, (d) versioning and linking of massive datasets, (e) preventing accidental disappearance of
important files, and more. Many of these can be boiled down to “lots of data, accessible
everywhere.” Pressed by critical features and bandwidth concerns, we have already given up
HTTP for different data distribution protocols. The next step is making them part of the Web
itself.
Orthogonal to efficient data distribution, version control systems have merged to develop important
data collaboration work flows. Git, the distributed source code version control system, developed
many useful ways to model and implement distributed data operations. The Git tool chain offers
versatile versioning functionality that large file distribution systems severely lack. New solutions
inspired by Git are emerging, such as Camlistore, a personal file storage system, and Dat a data
collaboration toolchain and dataset package manager. Git has already influenced distributed
filesystem design, as its content addressed Merkle DAG data model enables powerful file
distribution strategies. What remains to be explored is how this data structure can be influence
and design of high-throughput orientated file systems, and how it might upgrade the Web itself.
This paper introduces IPFS, a novel peer-to-peer version-controlled filesystem seeking to reconcile
these issues. IPFS synthesizes learning s from many past successful systems. Careful

6

interface-focused integration yields a system greater the sum of its parts. The central IPFS
principle is modeling all data as part of the sameMerkle DAG.

2. BACKGROUND
This section reviews important properties of successful peer-to-peer systems, which IPFS
combines.

2.1Distributed Hash Tables
Distributed Hash Tables (DHTs) are widely used to coordinate and maintain metadata about
peer-to-peer systems. For example, the BitTorrent MinlineDHT tracks sets of peers part of a
torrent swarm.

2.1.1Kademila DHT
Kademlia is a popular DHT that provides:

1. Efficient lookup through massive networks: queries on average contact [log2(n)] nodes. (e.g.
20 hops for a network of 10,000,000nodes).

2. Low coordination overhead: it optimize the number of control massages it sends to other nodes.

3. Resistance to various attacks by preferring long-lived nodes.

4. Wide usage in peer-to-peer applications, including Gnutella and BitTorrent, forming networks
of over 20million nodes.

2.1.2Coral DSHT
While some peer-to-peer filesystems store data blocks directly in DHTs, this “wastes storage and
bandwidth, as data must be stored at nodes where it is not needed”. The Coral DSHT extends
Kademlia in three particularly important ways:

1. Kademlia stores values in nodes whose ids are “nearest” (using XOR-distance) to the key. This
does not take into account application data locality, ignores “far” nodes that may already have the
data, and forces “nearest” nodes to store it, whether they need it or not. This wastes significant
storage and bandwidth. Instead, Coral stores addresses to peers who can provide the data blocks.

2. Coral relaxes the DHT API from get_value(key) to get_any_values(key) (the “sloppy” in
DSHT). This still works since Coral users only need a single (working) peer, not the complete list.
In return, Coral can distribute only subsets of the values to the “nearest” nodes, avoiding hot-spots I
overloading all the nearest nodeswhen a key becomes popular).

3. Additionally, Coral organizes a hierarchy of separate DSHTs called clusters depending on region
and size. This enables nodes to query peers in their region first, “finding nearby data without
querying distance node” and greatly reducing the latency of lookups.

7

2.1.3 S/Kademlia DHT
S/Kademlia extends Kademlia to protect against malicious attacks in two particularly important
ways:

1. S/Kademlia provides schemes to secure NodeId generation, and prevent Sybill attacks. It
requires nodes to create a PKI key pair, derive their identity from it, and sign their messages to each
other. One scheme includes a proof-of-work crypto puzzle to make generating Sybills expensive.

2. S/Kademlia nodes lookup values over disjoint paths, in order to ensure honest nodes can connect
to each other in the presence of a large fraction of adversaries in the network. S/Kademlia
achieves a success rate of 0.85 even with an adversarial fraction as large as half of the nodes.

2.2Block Exchanges-BitTorrent
BitTorrent is widely successful peer-to-peer filesharing system, which succeeds in coordinating
networks of untrusting peers (swarms) to cooperate in distributing pieces of files to each other.
Key features fromBitTorrent and its ecosystem that inform IPFS design include:
1. BitTorrent’s data exchange protocol uses a quasi tit-for-tat strategy that rewards nodes who
contribute to each other, and punishes nodes who only leech others’ resources.

2. BitTorrent peers track the availability of file pieces, prioritizing sending rarest pieces first.
This takes load off seeds, making non-seed peers capable of trading with each other.

3. BitTorrent’s standard tit-for-tat i vulnerable to some exploitative bandwidth sharing strategies.
PropShare is a different peer bandwidth allocation strategy that better resists exploitative strategies,
and improves the performance of swarms.

2.3Version Control Systems-Git
Version Control Systems provide facilitate to model files changing over time and distribute
different versions efficiently. The popular version control system Git provides a powerful Merkle
DAG₂ object model that captures changes to a filesystem tree in a distributed-friendly way.

1. Immutable objects represent File (blob), Directories (tree), and Changes (commit).

2. Objects are content-addressed, by the cryptographic hash of their contents.

3. Links to other objects are embedded, forming a Merkle DAG. This provides many useful
integrity and work-flow properties.

4. Most versioning metadata (branches, tags, etc.) are simply pointer references, and thus
inexpensive to create and update.

5. Version changes only update references or add objects.

6. Distributing version changes to other users is simply transferring objects and updating remote

8

references.

2.4Self-Certified Filesystems-SFS
SFS proposed compelling implementations of both distributed trust chains, and (b) egalitarian
shared global namespaces. SFS introduced a technique for building Self-Certified Filesystems:
addressing remote filesystems using the following scheme

/sfs/<Location>:<HostID>

where Location is the server network address, and :

HostID = hash(public_key | | Location)

Thus the name of an SFS file system certifies its server. The user can verify the public key
offered by the server, negotiate a shared secret, and secure all traffic. All SFS instances share a
global namespace where name allocation is cryptographic, not gated by any centralized body.
₂Merkle Directed Acyclic Graph-similar but more general construction than a Markle Tree. Deduplicated, does not need to be balanced,

and non-leaf nodes contain data.

3. IPFS DESIGN
IPFS is a distributed file system which synthesizes successful ideas from previous peer-to-peer
systems, including DHTs, BitTorrent, Git, and SFS. The contribution of IPFS is simplifying,
evolving, and connecting proven techniques into a single cohesive system, greater than the sum of
its parts. IPFS presents a new platform for writing and deploying applications, and a new system
for distributing and versioning large data. IPFS could even evolve the web itself. IPFS is
peer-to-peer; no nodes are privileged. IPFS nodes store IPFS objects in local storage. Nodes
connect to each other transfer objects. These objects represent files and other data structures.
The IPFS Protocol is divided into a stack of sub-protocols responsible for different functionality:

1. Identities-manage node identity generation and verification. Described in Section 3.1.

2. Network-manages connections to other peers, uses various underlying network protocols.
Configurable. Describe in Section 3.2.

3. Routing-maintains information to locate specific peers and objects. Responds to both local
and remote queries. Defaults to a DHT, but is swappable. Described in Section 3.3.

4. Exchange-a novel block exchange protocol (BitSwap) that governs efficient block distribution.
Modeled as a market, weakly incentivizes data replication. Trade Strategies swappable.
Described in Section 3.5.

5. Objects-a Merkle DAG of content-addressed immutable objects with the links. Used to
represent arbitrary datastructures, e.g. file hierarchies and communication systems. Described in
Section 3.5.

9

6. Files-versioned file system hierarchy inspired by Git. Described in Section 3.6.

7. Naming-A self-certifying mutable name system. Described in Section 3.7.

These subsystems are not independent; they are integrated and leverage blended properties.
However, it is useful to describe them separately, building the protocol stack from the bottom up.
Notation: data structures an functions below are specified in Go syntax.

3.1 Identities
Nodes are identified by NodeId, the cryptographic hash₃ of a public-key, created with
S/Kademlia’s static crypto puzzle. Nodes store their public and private keys Encrypted with a
passphrase). Uers are free to instantiate a “new” node identity on every launch, though that loses
accrued network benefits. Nodes are incentivized to remain the same.

type NodeId Multihash
type Multihash [] byte
// self-describing cryptographic hash digest

type PublicKey [] byte
₃Throughout this document, hash and checksum refer specifically to cryptographic hash checksums or data.

type PrivateKey [] byte
// self-describe keys

type Node struct {
NodeId NodeID
PubKey PublicKey
PriKey PrivateKey

}

S/Kademlia based IPFS identity generation:

difficulty = <integer parameter>
n = Node{ }
do {
n.PubKey, n.PrivKey = PKI.genKeyPair()
n.NodeId = hash(n.PubKey)
p = count_preceding_zero_bits(hash(n.NodeId))

} while (p < difficulty)

Upon first connecting, peers exchange public keys, and check: hash(other.PublicKey) equals
other.NodeId. If not, the connection is terminated.

10

Note on Cryptographic Functions.
Rather than locking the system to a particular set of function choices, IPFS favors self-describing
values. Hash digest values are stored in multihash format, which includes a short header
specifying the hash function used, and the digest length in bytes. Example:

<function code><digest length><digest bytes>

This allow the system to (a) choose the best function for the use case (e.g. stronger security vs
faster performance), and (b) evolve as function choices change. Self-describing values allow
using different parameter choices compatibly.

3.2Network
IPFS nodes communicate regularity with hundreds of other nodes in the network, potentially across
the wide internet. The IPFS network stack features:

 Transport: IPFS can use any transport protocol, and is best suited for WebRTC DataChannels
(for browser connectivity) or UTP(LEDBAT).

 Reliability: IPFS also uses the ICENAT traversal techniques.
 Integrity: optionally checks integrity of messages using a hash checksum.
 Authenticity: optionally checks authenticity of messages using HMAC with sender’s public

key.

3.2.1Note on Peer Addressing
IPFS can use any network; it does not rely on or assume access to IP. This allows IPFS to be used
in overlay networks. IPFS stores addresses as multiaddr formatted byte strings for underlying
network to use. multiaddr provides a way to express addresses and their protocols, including
support for encapsulation. For example:

an SCTP/IPv4 connection
/ip4/10.20.30.40/sctp/1234/

an SCTP/IPv4 connection proxied over TCP/IPv4/ip4/5.6.7.8/tcp/5678/ip4/1.2.3.
4/sctp/1234/

3.3Routing
IPFS nodes requires a routing system that can find (a) other peers’ network addresses and (b) peers
who can serve particular objects. IPFS achieves this using a DSHT based on S/Kademlia and
Coral, using the properties discussed in 2.1. The size of objects and use patterns of IPFS are
similar to Coral and Mainline, so the IPFS DHTmakes a distinction for values stored based on their
size. Small values (equal to or less than 1KB) are stored directly on the DHT. For values larger,
the DHT stores references, which are theNodeIds of peers who can serve the block.
The interface of this DSHT is the following:

11

type IPFSRouting interface {

FindPeer(node NodeId)
// gets a particular peer’s network address

SetValue(key []bytes, value []bytes)
// stores a small metadata value in DHT

GetValue(key []bytes)
// retrieves small metadata value from DHT

ProvideValue(key Multihash)
// announces this node can serve a large value

FindValuePeers(key Multihash, min int)
// gets a number serving a large values}

Note: different use cases will call for substantially different routing systems (e.g. DHT in wide
network, static HT in local network). Thus the IPFS routing system can be swapped for one that
fits users’ needs. As long as the interface above is met, the rest of the system will continue to
function.

3.4Block Exchange - BitSwap Protocol
In IPFS, data distribution happens by exchanging blocks with peers using BitTorrent inspired
protocol: BitSwap. Like BitTorrent, BitSwap peers are looking to acquire a set of blocks
(want_list), and have another set of blocks to offer in exchange (have_list). Unlike BitTorrent,
BitSwap is not limited to the blocks on one torrent. BitSwap operates as a persistent marketplace
where node can acquire the blocks they need, regardless of what files those blocks are part of.
The blocks could come from completely unrelated files in the filesystem. Nodes come together to
barter in the marketplace.
While the notion of a barter system implies a virtual currency could be created, this would require a
global ledger to track ownership and transfer of the currency. This can be implemented as a
BitSwap Strategy, and will be explored in a future paper.
In the base case, BitSwap nodes have to provide direct value to each other in the form of blocks.
This works fine when the distribution of blocks across nodes is complementary, meaning they have
what the other wants. Often, this will not be the case. In some cases, nodes must work for their
blocks. In the case that a node has nothing that its peers want (or nothing at all), it seeks the
pieces its peers want, with lower priority than what the node wants itself. This incentivizes nodes
to cache and disseminate rare pieces, even they are not interested in them directly.

3.4.1BitSwap Credit
The protocol must also incentivize nodes to seed when they do not need anything in particular, as
they might have the block other want. Thus, BitSwap nodes send blocks to their peers
optimistically, expecting the debt to be repaid. But leeches (free-loading nodes that never share)

12

must be protected against. A simple credit-like system solves the problem:

1. Peers track their balance (in bytes verified) with other nodes.
2. Peers send blocks to debtor peers probabilistically, according to a function that fails as debts
increases.

Note that if a node decides not to send to a peer, the node subsequently ignores the peer for an
ignore_cooldown time-out. This prevents senders from typing to game the probability by just
causing more dice-rolls. (Default BitSwap is 10 seconds).

3.4.2BitSwap Strategy
The differing strategies that BitSwap peers might employ have widely different effects on the
performance of the exchange as a whole. In BitTorrent, while a standard strategy is specified
(tit-for-tat), a variety of others have been implemented, ranging from BitTyrant (sharing the
least-possible), to BitThief (exploiting a vulnerability and never share), to PropShare (sharing
proportionally). A range of strategies (good and malicious) could similarly be implemented by
BitSwap peers. The choice of function, then, should aim to:

1. maximize the trade performance for the node, and the whole exchange
2. prevent freeloaders from exploiting and degrading the exchange
3. be effective with and resistant to other, unknown strategies
4. be lenient to trusted peers

The exploration of the space of such strategies is future work. One choice of function that works
in practice is a sigmoid, scaled by a debt ratio:
Let the debt ratio r between a node and its peer be:

r = bytes_sent
bytes_recv + 1

Given r, let the probability of sending to a debtor be:

P(send\r) = 1- 1
1+ exp(6 -3r)

As you can see in Figure 1, this function drops off quickly as the nodes’ debt ratio surpasses twice
the established credit.

13

Figure 1 : Probability of Sending as r increases

The debt ratio is a measure of trust: lenient to debts between nodes that have previously exchanged
lots of data successfully, and merciless to unknown, untrusted nodes. This (a) provides resistance
to attackers who would create lots of new nodes (sybill attacks), (b) protects previously successful
trade relationships, even if one of the nodes is temporarily unable to provide value, and (c)
eventually chokes relationships that have deteriorated until they improve.

3.4.3BitSwap Ledger
BitSwap nodes keep ledgers accounting the transfers with other nodes. This allows nodes to keep
track track of history and avoid tampering. When activating a connection, BitSwap nodes
exchange their ledger information. If it does not match exactly, the ledger is reinitialized from
scratch, losing the accrued credit or debt. It is possible for malicious nodes to purposefully “lose”
the Ledger, hoping to erase debts. It is unlikely that nodes will have accrued enough debt to
warrant also losing the accrued trust; however the partner node is free to count it as misconduct,
and refuse to trade.

type Ledger struct {
owner NodeId
partner NodeId
bytes_sent int
byte_recv int
timestamp Timestamp

}

Nodes are free to keep the ledger history, though it is not necessary for correct operation. Only the
current ledger entries are useful. Nodes are also free to garbage collect ledgers as necessary,
starting with the less useful ledgers: the old (peers may not exist anymore) and small.

14

3.4.4BitSwap Specification
BitSwap nodes follow a simple protocol

// Additional state kept
type BitSwap struct {
ledgers map[NodeId]Ledger
//Ledgers known to this node, inc inactive

active map[NodeId]Peer
// currently open connections to other nodes

need_list []Multihash
// checksums of blocks this node needs

have_list []Multihash
// checksums of blocks this node has

}

type Peer struct {

nodeid NodeId
ledger Ledger
// Ledger between the node and this peer

last_seen Timestamp
// timestamp of last received message

want_list []Multihash
// checksums of all blocks wanted by peer
// includes blocks wanted by peer’s peers

}
// Protocol interface:
interface Peer {

open (nodeid :NodeId, ledger :Ledger);
send_want_list (want_list :WantList);
send_block (block :Block) -> (complete : Bool);
close (final :Bool);

}

Sketch of the lifetime of a peer connection:

1. Open: peers send ledgers until they agree.

15

2. Sending: peers exchangewant_lists and blocks.
3. Close: peers deactivate a connection.
4. Ignored: (special) a peer is ignored (for the duration of a timeout) if a node’s strategy avoids
sending

Peer.open(NodeId, Ledger).
When connecting, a node initializes a connection with a Ledger, either stored from a connection in
the past or a new one zeroed out. Then, sends an Open message with the Ledger to the peer.
Upon receiving an Open message, a peer chooses whether to activate the connection. If -
according to the receiver’s Ledger - the sender is not a trusted agent (transmission below zero, or
large outstanding debt) the receiver may opt to ignore the request. This should be done
probabilistically with an ignore_cooldown timeout, as to allow errors to be corrected and attackers
to be thwarted.
If activating the connection, the receiver initializes a Peer object with the local version of the
Ledger and sets the last_seen timestamp. Then, it compares the received Ledger with its own.
If they match exactly, the connections have opened. If they do not match, the peer creates a new
zeroed out Ledger and sends it.

Peer.send_want_list(WantList).
While the connection is open, nodes advertise their want_list to all connected peers. This is done
(a) upon opening the connection, (b) after a randomized periodic timeout, (c) after a change in the
want_list and (d) after receiving a new block.
Upon receiving a want_list, a node stores it. Then, it checks whether it has any of the wanted
blocks. If so, it sends them according to the BitSwap Strategy above.

Peer.send_block(Block).
Sending a block straightforward. The node simply transmits the block of data. Upon receiving
all the data, the receiver computes the Multihash checksum to verify it matches the expected one,
and returns confirmation.

Upon finalizing the correct transmission of a block, the receiver moves the block from need_list to
have_list, and both the receiver and sender update their ledgers to reflect the additional bytes
transmitted.
If a transmission verification fails, the sender is either malfunctioning or attacking the receiver.
The receiver is free to refuse further trades. Note that BitSwap expects to operate on a reliable
transmission channel, so transmission errors - which could lead to incorrect penalization of an
honest sender - are expected to be caught before the data is given to BitSwap.

Peer.close(Bool).
The final parameter to close signals whether the intention to tear down the connection is the
sender’s or not. If false, the receiver may opt to re-open the connection immediately. This
avoids premature closes.
A peer connection should be closed under two conditions:

16

 a silence_wait timeout has expired without receiving any messages from the peer (default
BitSwap uses 30 seconds). The node issues Peer.close(false).

 the node is exiting and BitSwap is being shut down. In this case, the node issues
Peer.close(true).

After a closemessage, both receiver and sender tear down the connection, clearing any state stored.
The Ledgermay be stored for the future, if it is useful to do so.

Notes.
 Non-open messages on an inactive connection should be ignored. In case of a send_block

message, the receiver may check the block to see if it is needed and correct, and if so, use it.
Regardless, all such out-of-order messages trigger a close(false) message from the receiver
to force re-initialization of the connection.

3.5Object Merkle DAG
The DHT and BitSwap allows IPFS to form a massive peer-to-peer system for storing and
distributing blocks quickly and robustly. On top of these, IPFS builds a Merkle DAG, a directed
acyclic graph where links between objects are cryptographic hashes of the targets embedded in the
sources. This is generalization of the Git data structure. Merkle DAGs provide IPFS many
useful properties, including:

1. Content Addressing: all content is uniquely identified by its multihash checksum,
including links.
2. Tamper resistance: all content is verified with its checksum. If data is tampered with
or corrupted, IPFS detects it.
3. Deduplication: all object that hold the exact same content are equal, and only stored
once. This is particularly useful with index objects, such as git trees and commits, or
common portions of data.

The IPFS Object format is:

type IPFSLink struct {
Name string
// name or alias of this link

Hash Multihash
// cryptogrphic hash of target

Size int
// total size of target

}

type IPFSObject struct {
links [] IPFSLink

17

// array of links

data []byte
// opaue content data

}

The IPFS Merkle DAG is an extremely flexible way to store data. The only requirements are that
object references be (a) content addressed, and (b) encoded in the format above. IPFS grants
applications complete control over the data field; applications can use any custom data format they
chose, which IPFSmay not understand. The separate in-object link table allows IPFS to:

 List all object references in an object. Foe example:

> ipfs Is /XLZ1625Jjn7SubMDgEyeaynFu84gin2vzbXLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x 189458 less

XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5 19441 scriptXLF4hwVHsVu778FZK6fozf8Jj9WEURMbCX4 586 template

<object multihash> <object size> <link name>

 Resolve string path lookups, such as foo/bar/baz. Given an object, IPFS resolves the first
path component to a hash in the object’s link table, fetches that second object, and repeats with
the next component. Thus, string paths can walk the Merkle DAG no matter what the data
formats are.

 Resolve all objects referenced recursively:

> ipfs refs --recursive \

/XLZ1625Jjn7SubMDgEyeaynFuR84ginqvzbXLLxhdgJcXzLbtsLRL1twCHA2NrURp4H38sXLYkgq61DYaQ8NhkcqyU7rLcnSa7

dSHQ16xXLBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z...

A raw data field and a common link structure are the necessary components for constructing
arbitrary data structures on top of IPFS. While it is easy to see how the Git object model fits on
top of this DAG, consider these other potential model fits on top of this DAG, consider these other
potential data structures: (a) key-value stores (b) traditional relational databases (c) Linked Data
triple stores (d) linked document publishing systems (e) linked communications platforms (f)
cryptocurrency blockchains. These can all be modeled on top of the IPFS Merkle DAG, which
allows any of these systems to use IPFS as a transport protocol for more complex applications.

3.5.1 Paths
IPFS objects can be traversed with a string path API. Paths work as they do in traditional UNIX
filesystems and the Web. The Merkle DAG links make traversing it easy. Note that full paths in
IPFS are of the form:

format
/ipfs/<hash-of-object>/<name-path-to-object>

18

example
/ipfs/XLYkgq61DYaQ8NhkcayU7rLcnSa7dSHQ16x/foo.txt

The / ipfs prefix allows mounting into existing systems at a standard mount point without conflict
(mount point names are of course configurable). The second path component (first within IPFS)
is the hash of an object. This is always the case, as there is no global root. A root object would
have the impossible task of handling consistency of millions of objects in a distributed (and
possibly disconnected) environment. Instead, we simulate the root with content addressing. All
objects are always accessible via their hash. Note this means that given three objects in path
<foo>/bar/baz, the last object is accessible by all:

/ipfs/<hash-of-foo>/bar/baz
/ipfs/<hash-of-bar>/baz
/ipfs/<hash-of-baz>

3.5.2 Local Objects
IPFS clients require some local storage, an external system on which to store and retrieve local raw
data for the objects IPFS manages. The Type of storage depends on the node’s use case. In most
cases, this is simply a portion of disk space (either managed by the native filesystem, by a
key-value store such as leveldb, or directly by the IPFS client). In others, for example
non-persistent caches, this storage is just a portion of RAM.
Ultimately, all blocks available in IPFS are in some node’s local storage. When users request
objects, they are found, downloaded, and stored locally, at least temporarily. This provides fast
lookup for some configurable amount of time thereafter.

3.5.3Object Pinning
Nodes who wish to ensure the survival of particular objects can do so by pinning the objects. This
ensures the objects are kept in the node’s local storage. Pinning can be done recursively, to pin
down all linked descendant objects as well. All objects pointed to are then stored locally. This is
particularly useful to persists files, including references. This also makes IPFS a Web where links
are permanent, and Objects can ensure the survival of others they point to.

3.5.4 Publishing Objects
IPFS is globally distributed. It is designed to allow the files of millions of users to coexist
together. The DHT, with files of millions of users to coexist together. The DHT, with
content-hash addressing, allows publishing objects in a fair, secure, and entirely distributed way.
Anyone can publish an object by simply adding its key to the DHT, adding themselves as a peer,
and giving other users the object’s path. Note that Objects are essentially immutable, just like in
Git. New versions hash differently, and thus are new objects. Tracking versions is the job of
additional versioning objects.

3.5.5 Object-level Cryptography
IPFS is equipped to handle object-level cryptographic operations. An encrypted or signed is
wrapped in a special frame that allows encryption or verification of the raw bytes.

19

Type EncryptedObject struct {
Object []bytes
// raw object data encrypted

Tag []bytes
// optional tag for encryption groups

}

Type SignedObject struct {
Object []bytes
// raw object data signed

Signature []bytes
// hmac signature

PublicKey []multihash
// multiohash identifying key

}

Cryptographic operation change the object’s hash, defining a different object. IPFS automatically
verifies signatures, and can decrypt data with user-specified keychains. Links of encrypted
objects are protected as well, making traversal impossible without a decryption key. It is possible
to have a parent object encrypted under one key, and a child under another or not at all. This
secures links to shared objects.

3.6Files
IPFS also defines a set of objects for modeling a versioned filesystem om top of the Merkle DAG.
This object is similar to Git’s:

1. block: a variable-size block of data.
2. list: a collection of blocks or other lists.
3. tree: a collection of blocks, lists, or other trees.
4. commit: a snapshot in the version history of a tree.

I hoped to use Git object formats exactly, but had to depart to introduce certain features useful in a
distributed filesystem, namely (a) fast size lookups (aggregate byte size have been added to objects),
(b) large file deduplication (adding a list object), and (c) embedding of commits into trees.
However, IPFS File objects are close enough to Git that conversion between the two i possible.
Also, a set of Git object can be introduced to convert without losing any information (unix file
permissions, etc).
Notation: File object formats below use JSON. Note that this structure is actually binary encoded
using protobufs, though ipfs includes import/export to JSON.

3.6.1File Object: blob

20

The blob object contains an addressable unit of data, and represents a file. IPFS Blocks are like
Git blobs or filesystem data blocks. They store the users’ data. Note that IPFS files can be
represented by both lists and blobs. Blobs have no links.

{
“data”: “some data here”,
// blobs have no links

}

3.6.2File Object: list
The list object represents a large or deduplicated file made up of several IPFS blobs concatenated
together. Lists contain an ordered sequence of blob or list objects. In a sense, the IPFS list
functions like a filesystem file with indirect blocks. Since lists can contain other lists, topologies
including linked lists and balanced trees are possible. Directed graphs where the same node
appears in multiple places allow in-file deduplication. Of course, cycles are not possible, as
enforced by hash addressing.

{
“data” : [“blob”, “list”, “blob”],
// lists have an array of object types as data

“links” : [
{ “hash” : “XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x”,
“size” : 189458 },

{ “hash” : “XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5”,
“size” : 19441 },

{ “hash” : “XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z”,
“size” : 5286 }

// lists have no names in links
]

}

3.6.3File Object: tree
The tree object in IPFS is similar to Git’s: it represents a directory, a map of names to hashes.
The hashes reference blobs, lists, other trees or commits. Note that traditional path naming is
already implemented by the Merkle DAG.

{
“data” : [“blob” , “list” , “blob”],
// trees have an array of object types as data

“links” : [
{ “hash” : “XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x”,
“name” : “less” , “size” : 189458 },

{ “hash” : “XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5”,
“name” : “script” , “size” : 19441 },

21

{ “hash” : “XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z”,
“name” : “template” , “size” : 5286 }
// trees do have names

]
}

3.6.4File Object : commit
The commit object in IPFS represents a snapshot in the version history of any object. It is

similar to Git’s, but can reference any type of object. It also links to author objects.

{
“data” : {
“type” : “tree” ,

“date” : “2021-08-22 16:33:08Z”,
“message” : “This is a commit message.”
},
“links” : [

22

>ipfs file-cat <ccc111 - hash> --json
{
“data” : {
“type” : “tree” ,
“date” : “2021-08-22 16:33:08Z” ,
“message” : “This is a commit message.”

},
“links” : [
{ “hash” : “<ccc000 - hash>”,
“name” : “parent” , “size” : 25309 },

{ “hash” : “<ttt111 -hash>”,
“name” : “object” , “size” : 5198 }

{ “hash” : “<aaa111 - hash>”,
“name” : “author” , “size” : 109 }

]
}
>ipfs file-cat <ttt111 - hash> --json
{
“data” : [“tree” , “tree” , “blob”],
“links” : [

{ “hash” : “<ttt222 - hash>”,
“name” : “ttt222 - name” , “size” : 1234 },

{ “hash” : “<ttt333 - hash>”,
“name” : “ttt333 - name”, “size” : 3456 },

{ “hash” : “<bbb222 - hash>” ,
“name” : “bbb222 - name” , “size” : 22 }

]
}

>ipfs file-cat <bbb222 - hash> --json
{
“data” : “blob222 data”,
“links” : []
}

Figure 3: Sample Objects

{ “hash” : “XLa1qMBKiSEEDhojb9FFZ4tEvLf7FEQdhdU”,
“name” : “parent” , “size” : 25309 },

{ “hash” : “XLGw74Ay9junbh28x7ccWov9inu1Vo7pnX”,
“name” : “object” , “size” : 5198 },

23

{ “hash” : “XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm”,
“name” : “author” , “size” : 109 }

]
}

3.6.5Version control
The commit object represents a particular snapshots in the version history of an object.

Comparing the objects (and children) of two different commits reveals the differences between two
versions of the filesystem. As long as a single commit and all the children objects it references are
accessible, all preceding versions are retrievable and the full history of the filesystem changes can
be accessed. This falls out of the Merkle DAG object model.

The full power of the Git version control tools is available to IPFS users. The object model is
compatible, though not the same. It i possible to (a) build a version of the Git tools modified to
use the IPFS object graph, (b) build a mounted FUSE filesystem that mounts an IPFS tree as a Git
repo, translating Git filesystem read/writes to the IPFS formats.

3.6.6FilesystemPaths
As we saw in the Merkle DAG section, IPFS objects can be traversed with a string path API.

The IPFS File Objects are designed to make mounting IPFS onto a UNIX filesystem simpler.
They restrict trees to have no data, in order to represent them as directories. And commits can
either be represented as directories or hidden from the filesystem entirely.

3.6.7Splitting Files into Lists and Blob
One of the main challenges with versioning and distributing large files is finding the right way

to split them into independent blocks. Rather than assume it can make the right decision for every
type of file, IPFS offers the following alternatives:

a. Use Rabin Fingerprints as in LBFS to pick suitable block boundaries.
b. Use the rsync rolling-checksum algorithm, to detect blocks that have changed between

versions.
c. Allow users to specify block-splitting functions highly tuned to specific files.

3.6.8Path Lookup Performance
Path-based access traverses the object graph. Retrieving each object requires looking up its

key in the DHT, connecting to peers, and retrieving its block. This is considerable overhead,
particularly when looking up paths with many components. This is mitigated by:

 tree caching: since all objects are hash-addressed, they can be cached indefinitely.
Additionally, trees tend to be small in size so IPFS prioritizes caching them over blobs.

 flattened trees: for any given tree, a special flattened tree can be constructed to list all
object reachable from the trees. Names in the flattened tree would really be paths parting
from the original tree, with slashes.

24

For example, flattened tree for ttt111 above:

{
“data” :
{“tree” , “blob” , “tree” , “list” , “blob” “blob”] ,

“links” : [
{ “hash” : “<ttt222-hash>” , “size” : 1234
“name: : “ttt222-name” },

{ “hash” : “<bbb111-hash>” , “size” : 123
“name: : “ttt222-name/bbb111-name” },

{ “hash” : “<ttt333-hash>” , “size” : 3456
“name: : “ttt333-name” },

{ “hash” : “<lll111-hash>” , “size” : 587
“name: : “ttt333-name/lll111-name” },

{ “hash” : “<bbb222-hash>” , “size” : 22
“name: : “ttt333-name/lll111-name/bbb222-name” },

{ “hash” : “<bbb222-hash>” , “size” : 22
“name: : “bbb222-name” },

] }

3.7 IPNS: Naming andMutable State
So far, the IPFS stack forms a peer-to-peer block exchange constructing a content-addressed DAG
of objects. It serves to publish and retrieve immutable objects. It can even track the version
history of these objects. However, there is a critical component missing: mutable naming.
Without it, all communication of new content must happen off-band, sending IPFS links. What is
required is some way to retrieve mutable state at the same path.
It is worth stating why - if mutable data is necessary in the end - we worked hard to build up an
immutable Merkle DAG. Consider the properties of IPFS that fall out of the Merkle DAG:
objects can be (a) retrieved via their hash, (b) integrity checked, (c) linked to others, and (d) cached
indefinitely. In a sense:

Objects are permanent
These are the critical properties of a high-performance distributed system, where data is expensive
to move across network links. Object content addressing constructs a web with (a) significant
bandwidth optimization s, (b) utrusted content serving, (c) permanent links, and (d) the ability to
make full permanent backups of any object and its references.
The Merkle DAG, immutable content-addressed objects, and Naming, mutable pointers to the
Merkle DAG, instantiate a dichotomy present in many successful distributed systems. These
include the Git Version Control System, with the distributed successor to UNIX, with its mutable
Fossil and immutable Venti filesystems. LBFS also uses mutable indices and immutable chunks.

3.7.1Self-Certified Names
Using the naming scheme from SFS gives us a way to construct self-certified names, in a

cryptographically assigned global namespace, that are mutable. The IPFS scheme is as follows.

25

1. Recall that in IPFS:

NodeId = hash(node . PubKey)

2. We assign every user a mutable namespace at:

/ipns/<NodeID>

3. A user can publish an Object to this path Signed by her private key, say at:

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/

4. When other users retrieve the object, they can check the signature matches the public key
and NodeId. This verifies the authenticity of the Object published by the user, achieving
mutable state retrieval.

Note the following details:

 The ipns (InterPlanetary Name Space) separate prefix is to establish an easily recognizable
distinction between mutable and immutable paths, for both programs and human readers.

 Because this is not a content-addressed object, publishing it relies on the only mutable state
distribution system in IPFS, the Routing system. The process is (1) publish the object as a
regular immutable IPFS object, (2) publish its hash on the Routing system as a metadata value:

routing · setValue(NodeId, <ns-object-hash>)

 Any links in the Object published act as sub-names in the namespace:

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/
/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/docs
/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/docs/ipfs

 It is advised to publish a commit object, or some other object with a version history, so that
clients may be able to find old names. This is left as a user option, as it is not always desired.

Note that when users publish this Object, it cannot be published in the same way

3.7.2Human Friendly Names
While IPNS is indeed a way of assigning and reassigning names, it is not very user friendly, as

it exposes long hash values as names, which are notoriously hard to remember. These work for
URLs, but not for many kinds of offline transmission. Thus IPFS increases the user-friendliness
of IPNSwith the following techniques.

26

Peer Links.
As encouraged by SFS, users can link other users’ Objects directly into their own Objects

(namespace, home, etc). This has the benefit of also creating a web of trust (and supports the old
Certificate Authority model):

Susan links to bob Bob
Ipfs link / <susan-pk-hash>/friends/bob /<bob-pk-hash>

Doris links to Susan
Ipfs link / <doris-pk-hash>/friends/susan /<susan-pk-hash>

Doris also has access to Bob
/ <doris-pk-hash/friends/susan/friends/bob

#access Verisign certified domains
/ <veridign-pk-hash>/foo.com

DNS TXT IPNS Records.
If / ipns /<domain> is a valid domain mane, IPFS looks up key ipns in its DNS TXT

records. IPFS interprets the value as either an object hash or another IPNS path:

this DNS TXT record
Ipfs . benet . ai. TXT “ipfs = XLF2ipQ4jD3U ... ”

behaves as symlink
In -s / ipns/XLF2ipQ4jD3U / ipns/fs . benet . ai

Proquint Pronounceable Identifiers.

There have always been schemes to encode binary into pronounceable words. IPNS
supports Proquint. Thus:

this proquint phrase
/ipns/dahih-dolij-sozuk-vosah-luvar-fuluh

will resolve to corresponding
/ipns/KhAwNprxYVxKqpDZ

Name Shortening Services.

Services are bound to spring up that will provide name shortening as a service, offering up

27

their namespaces to users. This is similar to what we see today with DNS andWeb URLs:

User can get a link from
/ipns/shorten . er/foobar

To her own namespace
/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm

3.8Using IPFS
IPFS is designed to be used in a number of different ways. Here are just some of the use

cases I will be pursuing:

1. As a mounted global filesystem, under / ipfs and /ipns.
2. As a mounted personal sync folder that automatically versions, publishes, and backs up any

writes.
3. As an encrypted file or data sharing system.
4. As a versioned package manager for all software.
5. As the root filesystem of a Virtual Machine.
6. As the boot filesystem of a VM (under a hypervisor).
7. As a database: applications can write directly to the Merkle DAG data model and get all the

versioning, caching, distribution IPFS provides.
8. As a linked (and encrypted) communication platform.
9. As an integrity checked CDN for large files (without SSL).
10. As an encrypted CDN.
11. On webpages, as a web CDN.
12. As a new Permanent Web where links do not die.

The IPFS implementations target:

a. An IPFS library to import in your own applications.
b. Commandline tools to manipulate objects directly.
c. Mounted file systems, using FUSE or as kernel modules.

4. THEFUTURE
The ideas behind IPFS are the product of decades of successful distributed systems research in
academia and open source. IPFS synthesizes many of the best ideas from the most successful
systems to date. Aside from BitSwap, which is a novel protocol, the main contribution of IPFS is
this coupling of systems and synthesis of designs.
IPFS i an ambitious vision of new decentralized Internet infrastructure, upon which many different
kinds applications can be built. At the bare minimum, it can be used as a global, mounted,
versioned filesystem and namespace, or as the next generation file sharing system. At its best, it
could push the web to new horizons, where publishing valuable information does not impose
hosting it on the publisher but upon those interested, where users can trust the content they receive
without trusting the peers they receive it from, and where old but important files do not go missing.

28

IPFS looks forward to bringing us toward the Permanent Web.

5. ACKNOWLEDGEMENTS
IPFS is the synthesis of many great ideas and systems. It would be impossible to dare such
ambitious goals without standing on the shoulders of such giants. Personal thanks to all the many
contributing such great and brilliant ideas.

6. VIBE
VIBE will be the first in the world providing a open source to movie/drama/short reels uploaders.
This decentralized applications adopts the full use of IPFS. Verisign Uploaders decide on their
own the cost of sharing viewing “Pay per viewlinks”. links in peer-to-peer viewed will be
rewarded upon receipt from uploaders.

-END-

昧ള桽۱

%ORFNƊL[�ᔜྯӞॠ
����ଙ�์�෭%ORFNƊL[ፐय़᩸ᛯ҅๗இ岈֦ړՁ
ᔜኞၚ҅捰ྯӞ֖ړՁᘏත坨01&Ѻ

*2Ѻ

%&79�ᔜྯӞॠ
����ଙ���์��෭%&79ፐय़᩸ᛯ҅๗இ岈֦ړՁ
ᔜኞၚ҅捰ྯӞ֖ړՁᘏත坨01&Ѻ

*2Ѻ

䒻ۗӾஞ

ਮܗ

ᐒ㶟

౯ጱܱ

Ӟ᩸ೌ

咳憙毱

ᔜӮኴ

Ḓ殷

昧ള桽۱

$FODNOGDŏ

������Z

������Z������Z

�㫎ၖካৼӞ૩ԏێ䕸Ւ

�㫎ၖካৼӞ૩ԏێ䕸Ւ�㫎ၖካৼӞ૩ԏێ䕸Ւ

ᤅṭٚ匍Ո樌Ո气݄֜֜ℂޕ�

�ᐟ熫ᴳӮ҅ٚयᐟ扖

�ਜਦ๋䔶ᐟ熫ᘉ

������Z

�����Z

�����Z

�������01&

��������01&��������01&

��������01&

��������01&

��������01&

᮱气ࣳق

᮱㰷໒ق

ᑀଝ

���

㵕ᄓ

���

䙄ఘ

���

ఏወ

����ҁ01&҂

䯥䜗

$FODNOGDŏ

������Z

������Z������Z

�㫎ၖካৼӞ૩ԏێ䕸Ւ

�㫎ၖካৼӞ૩ԏێ䕸Ւ�㫎ၖካৼӞ૩ԏێ䕸Ւ

ᤅṭٚ匍Ո樌Ո气݄֜֜ℂޕ�

�ᐟ熫ᴳӮ҅ٚयᐟ扖

�ਜਦ๋䔶ᐟ熫ᘉ

������Z

�����Z

�����Z

�������01&

��������01&��������01&

��������01&

��������01&

��������01&

᮱气ࣳق

᮱㰷໒ق

ᑀଝ

���

㵕ᄓ

���

䙄ఘ

���

ఏወ

����ҁ01&҂

䯥䜗

�㫎ၖካৼӞ૩ԏێ䕸Ւ

ඪ՞࣎ࣈ

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

Ⴥḗᐏ

��ඪ՞ᛗӤᬿ࣎ࣈ҅ᵱᥝෆ㮆姜妏嘦扯҅��ེ姜妏嘦扯
ݢ౮傶ᇆࠟ
��抬嘦扯ඪ՞ᰂ氃҅ඪ՞౮ۑӧݢᭅࢧ

嘦扯ඪ՞

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

������01&

$FODNOGDŏ

������Z

������Z������Z

�㫎ၖካৼӞ૩ԏێ䕸Ւ

�㫎ၖካৼӞ૩ԏێ䕸Ւ�㫎ၖካৼӞ૩ԏێ䕸Ւ

ᤅṭٚ匍Ո樌Ո气݄֜֜ℂޕ�

�ᐟ熫ᴳӮ҅ٚयᐟ扖

�ਜਦ๋䔶ᐟ熫ᘉ

������Z

�����Z

�����Z

�������01&

��������01&��������01&

��������01&

��������01&

��������01&

᮱气ࣳق

᮱㰷໒ق

ᑀଝ

���

㵕ᄓ

���

䙄ఘ

���

ఏወ

����ҁ01&҂

䯥䜗

ඪ՞౮ۑѺ

ᒈܨ懃፡

Իฃ+DVK

懃፡࣎ࣈ

����01&

ZZZ�\RXWXEH�ODNVMGON�FRP

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

�������������������

$FODNOGDŏ

����ଙ�์�෭%ORFNƊL[ፐय़᩸ᛯ҅๗இ岈֦ړՁᔜኞၚ҅
捰ྯӞ֖ړՁᘏත坨01&Ѻ

ՁතፅړՁኞၚ҅ړ

ྯӞ֖懃ᘏ᮷䨝劧���㬵ᛗӥӞ֖懃ᘏጱ劊㵰

ྯӞ֖懃ᘏ揙劰ጱᐥ಄䨝ํ���නف劊

ྯӞ֖懃ᘏ᮷ํ䱛䨝౮傶ଛ晁ᘏ㪔劧ṛ氃劊ᰂ

౮傶ᇆࠟړݢܨՁኞၚӾጱ��㮆ᔜ䦒ڰ

㬵懃唰搕ጱ���තፅک䦒䨝තݶՁᔜጱړ

ྯ෭තፅکݢܨ搣҅ړړ楮౮傶㴕֢晄Ո

%ORFNƊL[�ᔜྯӞॠ

%ORFNƊL[ړ�Ձܨත坨

懃憒㳷

憒㳷Օ奧

౮傶ᇆࠟ

$FODNOGDŏ

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷ
ଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯ
ฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ

ՁතፅړՁኞၚ҅ړ

��ྯӞ֖懃ᘏ᮷䨝劧���㬵ᛗӥӞ֖懃ᘏጱ劊㵰

��ྯӞ֖懃ᘏ揙劰ጱᐥ಄䨝ํ���නف劊

��ྯӞ֖懃ᘏ᮷ํ䱛䨝౮傶ଛ晁ᘏ㪔劧ṛ氃劊ᰂ

%ORFNƊL[�ᔜྯӞॠ

%ORFNƊL[ړ�Ձܨත坨

ᥡᥢڞ

ඪ՞࣎ࣈ

��๋ṛݢӤ㯽��᮱ᇆ

᮱ᇆᐥ಄ጱ���තፅྯݑՁݢ��

Ⴥḗᐏ

��ඪ՞ᛗӤᬿ࣎ࣈ҅ᵱᥝෆ㮆姜妏嘦扯҅��ེ姜妏嘦扯
ݢ౮傶ᇆࠟ
��抬嘦扯ඪ՞ᰂ氃҅ඪ՞౮ۑӧݢᭅࢧ

Ꮯᦊඪ՞

ᇆࠟፅ

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

�������� 01&

$FODNOGDŏ

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷ
ଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯ
ฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ

ՁතፅړՁኞၚ҅ړ

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠ
҅ᬯฎӞྦྷޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ଠޞᬯฎӞྦྷଠޞ

%ORFNƊL[�ᔜྯӞॠ

%ORFNƊL[ړ�Ձܨත坨

ᥢڞՕᕨ

ඪ՞౮ۑѺ

ᒈܨ咳

Իฃ+DVK

����01&

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

�������������������

$FODNOGDŏ

Ӥ㯽ᶎ

ᥤ᷇ຽ᷌

䦒槱

Ӥฉ㰷໒ҁ01&҂

䰤壆

懃࣎ࣈ

ᥤ᷇ᓌՕ

抬斸ف

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

ZZZ�PHQJQDQ�FRP

楮ړ����

���

ᛔ愚

؟؍

䛹ወ

楮ړ�����

���

愇ݘ

ਹꁿ

䜗凗

涥ఆ

ᒞ

楮ړ�����

���

ఘ

ᶆช

敎

ᇨᗜ

楮ړ���!

����

ྎ㭩

᮷૱

抽䜗

ᑀଝ

抬斸ف

ᒈܨ咳

咳殾Ꭳ

��傶ԧๅঅጱ懃፡℆涢҅抬Ӥ㯽㱢搡懃࣎ࣈ
��憙毱Ӥ㯽ᵱᥝӞԶ䦒樌咳҅抬ᘔஞᒵஇ

$FODNOGDŏ

����ଙ�์�෭%ORFNƊL[ፐय़᩸ᛯ҅๗இ岈֦ړՁᔜኞၚ҅
捰ྯӞ֖ړՁᘏත坨01&Ѻ

ՁතፅړՁኞၚ҅ړ

��ྯӞ֖懃ᘏ᮷䨝劧���㬵ᛗӥӞ֖懃ᘏጱ劊㵰

��ྯӞ֖懃ᘏ揙劰ጱᐥ಄䨝ํ���නف劊

��ྯӞ֖懃ᘏ᮷ํ䱛䨝౮傶ଛ晁ᘏ㪔劧ṛ氃劊ᰂ

��౮傶ᇆࠟړݢܨՁኞၚӾጱ��㮆ᔜ䦒ڰ

㬵懃唰搕ጱ���තፅک䦒䨝තݶՁᔜጱړ��

��ྯ෭තፅکݢܨ搣҅ړړ楮౮傶㴕֢晄Ո

ᬯฎӞݙଠޞ

%ORFNƊL[ړ�Ձܨත坨

懃憒㳷

憒㳷Օ奧

ᓕቘᇆ咳憙毱

$FODNOGDŏ

������Z

�㫎ၖካৼӞ૩ԏێ䕸Ւ

劧摁

����: ����� �����
තፅ�01&� 栓ࠓ�01&�

�ਜਦ๋୩य़ὄ҅Եၖᮎጱŏ

�����Z

咳憙毱

������Z

�㫎ၖካৼӞ૩ԏێ䕸Ւ

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

䤖䢡༷ೡ

唰墯殻ፓ

咳㬙䦒樌ғ�������������������

තፅ�01&�

ᔴ懯栓ࠓ

Ք෭තፅ�01&�

Ք෭栓ࠓ

����

����

���

���

伩ḗᐏ

��䤖䢡ๅෛݢᚆ䨝ํ晙҅抬ᘔஞᒵஇ

$FODNOGDŏ

؉ᛔ૩ኞၚጱ䌙ᄍ�岈౯֦ೌݳጱᔜՈኞ�

ྯ֖懃唰᮷ݢ㷢岈ೌݳ�岈՜ՈړೌݳݶوՁතፅ�

ᇆӤฉݢӨೌݳᘏوՁᐥ಄ጱ���තፅ

咳䠁֦ጱᚆ�咳᩸Ӟ㮆ೌݳ殻ፓ�

咳᩸ݢೌݳත坨ᐥ಄ጱ���තፅ�

֦੪ฎӥӞ֖䌙ᄍ

憒㳷ೌݳ

咳᩸ೌݳ

㷢岈ೌݳ 咳᩸ೌݳ

$FODNOGDŏ

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷ
ଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯ
ฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ

؉ᛔ૩ኞၚጱ䌙ᄍ�岈౯֦ೌݳጱᔜՈኞ�

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠ
҅ᬯฎӞྦྷޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ଠޞᬯฎӞྦྷଠޞ

֦੪ฎӥӞ֖䌙ᄍ

֦੪ฎӥӞ֖䌙ᄍ

ᥢڞՕᕨ

咳᩸憒㳷

ඪ՞࣎ࣈ

�䦒ᥴ㲺ᛗ搣䜛&�������01کᐥ಄晄ࣁ婦氃䌔䨝ೌݳ��

ጱ懃唰ೌݳՁ妔㷢岈ړᇆጱ���䌔䨝ೌݳ��

���䵍咳᩸Ո���አ֢ᐒ㶟晁冓�

Ⴥḗᐏ

��ඪ՞ᛗӤᬿ࣎ࣈ҅ᵱᥝෆ㮆姜妏嘦扯҅��ེ姜妏嘦扯
ݢ౮傶᩸ݎՈ
��抬嘦扯ඪ՞������01&҅ඪ՞౮ۑӧݢᭅࢧ

Ꮯᦊඪ՞

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

���������01&

$FODNOGDŏ

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷ
ଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯ
ฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ

؉ᛔ૩ኞၚጱ䌙ᄍ�岈౯֦ೌݳጱᔜՈኞ�

ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ҅ᬯฎӞྦྷଠ
҅ᬯฎӞྦྷޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞᬯฎӞྦྷଠޞ
ଠޞᬯฎӞྦྷଠޞ

֦੪ฎӥӞ֖䌙ᄍ

֦੪ฎӥӞ֖䌙ᄍ

ᥢڞՕᕨ

ඪ՞౮ۑѺ

ᒈܨ咳᩸

Իฃ+DVK

�������01&

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

�������������������

$FODNOGDŏ

Ӥ㯽ᶎ

憙毱䰤氂

䦒槱

Ӥฉ㰷໒ҁ01&҂

䰤壆

ፓ䰤ᰂ氃ҁ01&҂

憙毱墋Օ

抬斸ف

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

�������01&

楮ړ����

���

ᛔ愚

؟؍

䛹ወ

楮ړ�����

���

愇ݘ

ਹꁿ

䜗凗

涥ఆ

ᒞ

楮ړ�����

���

ఘ

ᶆช

敎

ᇨᗜ

楮ړ���!

����

ྎ㭩

᮷૱

抽䜗

ᑀଝ

抬斸ف

ᒈܨ咳᩸

咳᩸殾Ꭳ

දץݢӧۑ咳౮҅ೌݳᚆ咳Ӟ㮆ݝེྯ��

��晄کፓ䰤ᰂ氃���ॠᵱ䌔懃ل࣎ࣈ㬙ڊ㬵

$FODNOGDŏ

憙毱䰤氂

ᳩ

䰤壆

ᥤ᷇ᓌՕ

᧗ᬌف

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

ᰦړ����

ᛔ愚

؟؍

ᰦړ�����

愇ݘ

ਹꁿ

䜗凗ᒞ

ᰦړ�����

ఘ

ᶆช

敎

敎

ᰦړ���!

ྎ㭩

᮷૱

抽䜗

᧗ᬌف

咳᩸౮ۑѺ

ᒈັܨ፡

�������01&
�������������������

�㫎ၖካৼӞ૩ԏێ䕸Ւ

૪墯کғ�������01&

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

٭༷ೌݳ

咳᩸䦒樌ғ�������������������

䦒槱 Ӥฉ㰷໒ҁ01&҂

楮ړ����� ���

Ⴥḗᐏ

දץݢӧۑ咳౮҅ೌݳᚆ咳Ӟ㮆ݝེྯ��

��晄کፓ䰤ᰂ氃���ॠᵱ䌔懃ل࣎ࣈ㬙ڊ㬵

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

������

咳憙毱

$FODNOGDŏ

憙毱䰤氂

䦒槱

㰷໒ҁ01&҂

䰤壆

懃࣎ࣈ

憙毱墋Օ

�㫎ၖካৼӞ૩ԏێ䕸Ւ

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

抬斸ف

楮ړ����

���

楮ړ�����

���

楮ړ�����

���

楮ړ���!

����

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲婻҅፡ሕካই֜傶ᆿ
䁭Ւ���

ᒈܨ咳

咳殾Ꭳ

��傶ԧๅঅጱ懃፡℆涢҅抬Ӥ㯽㱢搡懃࣎ࣈ
��憙毱Ӥ㯽ᵱᥝӞԶ䦒樌咳҅抬ᘔஞᒵஇ

$FODNOGDŏ

�㫎ၖካৼӞ૩ԏێ䕸Ւ

�㫎ၖካৼӞ૩ԏێ䕸Ւ�㫎ၖካৼӞ૩ԏێ䕸Ւ

ᤅṭٚ匍Ո樌Ո气݄֜֜ℂޕ�

�ᐟ熫ᴳӮ҅ٚयᐟ扖

�ਜਦ๋䔶ᐟ熫ᘉ

������01&

������01&

������01& ������01&

������01&

������01&

������

������

������ ������

������

������

᮱气ࣳق

㷢岈ೌݳ㷢岈ೌݳ

㷢岈ೌݳ

㷢岈ೌݳ 㷢岈ೌݳ

㷢岈ೌݳ

᮱㰷໒ق

ᑀଝ

���

㵕ᄓ

���

䙄ఘ

���

ఏወ

����ҁ01&҂

䯥䜗

�㫎ၖካৼӞ૩ԏێ䕸Ւ

૪墯کғ�������01&

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

㷢岈ೌݳ

咳᩸䦒樌ғ�������������������

䦒槱 Ӥฉ㰷໒ҁ01&҂

ᰦړ����� ���

�䛹ወ�敎�䜗凗؟؍��ᛔ愚

������

ᒈܨ㷢岈

㷢岈ᰂ氃ҁ01&҂

��� ������

�㫎ၖካৼӞ૩ԏێ䕸Ւ

૪ᓉکғ�������$FRLQ

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

咳᩸䦒樌ғ�������������������

ᳩ Ӥฉհ໒ҁ$FRLQ҂

ᰦړ����� ���

�ᑀଝ�ᆽఘ�ۖᄓ�ᑀଝ�ᑀଝ

������

ᒈܨ㷢岈

݇Өᰂ᷐ҁ$FRLQ҂

��� ������

㷢岈ೌݳ

�㫎ၖካৼӞ૩ԏێ䕸Ւ

ඪ՞࣎ࣈ

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

Ⴥḗᐏ

��ඪ՞ᛗӤᬿ࣎ࣈ҅ᵱᥝෆ㮆姜妏嘦扯҅��ེ姜妏嘦扯
ݢ౮傶᩸ݎՈ
��抬嘦扯ඪ՞������01&҅ඪ՞౮ۑӧݢᭅࢧ

嘦扯ඪ՞

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

���������01&

�㫎ၖካৼӞ૩ԏێ䕸Ւ

૪ᓉکғ�������$FRLQ

ԆՈل䔶՚䚣Ӟ૩ԏێ䌘ಯ䔶य़ᐒ䨝奲
婻҅፡ሕካই֜傶ᆿ䁭Ւ���

咳᩸䦒樌ғ�������������������

ᳩ Ӥฉհ໒ҁ$FRLQ҂

ᰦړ����� ���

�ᑀଝ�ᆽఘ�ۖᄓ�ᑀଝ�ᑀଝ

������

ᒈܨ㷢岈

݇Өᰂ᷐ҁ$FRLQ҂

��� ������

㷢岈ೌݳ

౮ۑ㷢岈

媣媲倵懀

Իฃ+DVK

Ӥฉ䦒樌

�������01&

抬೮媲橕ဳѺ҅ڹ����������

$F�F�D'DF�$���F��G���$F($&�E�F�D$�F)�&G$�%

�������������������

$FODNOGDŏ

����������

���������� ���������� ���������� ����������

���������� ���������� ����������

懃තፅ�01&�

��� ��� �����
�&01�夺ړೌݳ Ӿ劊ᰂ氃�01&�

咳憙毱

懃懿桟

Ӿ劊懿桟

㷢岈ೌݳ

������01&������01&������01&������01&

������01& ������01& ������01& ������01&

�����01& ����������

�����01& ����������

�����01& ����������

�����01& ����������

�����01& ����������

Ӿ劊ᰂ氃 䦒樌

