ULTRASOUND FUNDAMENTALS

Introduction

- Ultrasound beams are sound waves emitted from a probe that "echo" back off the structure(s) of interest in the body and create real-time images of them.
- **Higher frequency probes** provide **better resolution** because they emit shorter wavelengths.
- The **stiffness** and **density** of a medium affect the speed of sound traveling through it. (Sound waves travel faster the stiffer and denser the medium is i.e. **faster in solids** than liquids or gases, **fastest in bone**, slowest in lungs.

Ultrasound propagation speed, from slowest to fastest:

Lung (air) << Fat << Soft tissue << Bone

Piezoelectric effect

• With traditional ultrasound probes, energy/current is applied to **crystals**, causing them to vibrate.

- The ultrasound wave created by the vibrations is sent into the body, where it bounces off a structure, and returns to the probe.
- The probe converts the returned wave into energy and projects it into an image.

Transducer Transducer Emitted ultrasound wave Scatterers in the medium Raw channel Echoes Propagation of the wave through the medium

https://www.researchgate.net/figure/General-ultrasound-scanning-process_fig6_316125009

vs. Butterfly effect

Instead of crystals, butterfly probes use thousands of tiny **drumheads** to send and receive sound.

Probe selection

Linear	loss =	superficial structures	high frequency (5-15 MHz)	soft tissue, musculoskeletal, pediatric, ocular, trachea, thyroid, thoracic, most procedures, DVT appendicitis, testicular
Curvilinear	Tooling Indiana	usually for deeper structures	lower frequency (2-5 MHz)	general abdominal (gallbladder, liver, etc.), eFAST, renal, aorta, IVC, bladder, bowel, OB/GYN
Phased Array		deeper structures	low frequency (1-5 MHz)	cardiac, abdominal, eFAST, renal, bladder, bowel, IVC

Modes

B-mode (brightness mode/2D mode) - **Standard/default** · Two-dimensional · Greyscale

M-mode (motion mode)

Motion (Y-axis) vs. **time** (X-axis) display of B-mode

Color flow doppler

Provides real-time info about wave flow direction using color BART: Blue = Away, Red = Towards

Continuous wave doppler

Demonstrates wave flow direction as peaks and troughs **Detects very high velocities**

Knobs

- Depth: adjusts depth and range of structures evaluated
- Gain: adjusts echogenicity
 - Structures absent of echogenicity appear black (anechoic)

darker, less
enhanced image

(HYPOECHOIC)

Increasing gain

lighter, more enhanced image

(HYPERECHOIC)

Positioning and transducer movement

Indicator towards patient's head or right side

• **Tilting** or fanning

ored de to

 Rocking: anchored but pivoting side to side or top to bottom

• Rotating or twisting

Common encounters

- Impedance: resistance to ultrasound propagation as it passes through tissue

 Density x propagation speed of sound wave
- Attenuation: loss and absorption of ultrasound energy through a medium Air and bone are the highest
- Reflection: occurs with large differences in impedance between two tissues
 A lines: air and bone
- Refraction: occurs with slight differences in impedance between two tissues
 Usually fluid-filled structures (e.g. gallbladder, cyst, vessels, bladder)

Acoustic shadowing

- Sound does not pass as easy, so images are obstructed and diminished in response
- Example of high attenuation

Sound waves return to the probe based on the structure encountered...

Less dense: less waves return More dense: more waves return

Acoustic enhancement

- Sound passes easier, so images may become "enhanced" and easier to visualize
- Opposite of shadowing

Mirror imaging

- Highly reflective surface
- Best example of this is found in region between liver and diaphragm

Reverberation artifact

- When ultrasound waves bounce back and forth between an image structure
- Due to the time delay, the resulting image can appear "echoed" on screen

Gas scatter

· Air distributes and scatters light, so the ultrasound waves cannot be transmitted

Refraction/Edge artifact

- When sound crosses the boundary of a tissue with different densities, so the sound waves return at different speeds
- Can look like a "ringed" effect
- Commonly can see in the gallbladder and bladder

Comet tail artifact (subtype of reverberation artifact)

- When reflective surfaces are so close together, it's hard to differentiate
- More triangular in shape
- Dissipates as depth increases
- Seen with strongly reflected surfaces

Ring down artifact

- Ultrasound waves reflect infinitely and result in an infinitely long vertical echogenic line (example: B lines on lung ultrasound)
- Wider shaped and more beam-like in appearance
- Unlike comet tail artifact, the ultrasound echoes do NOT lessen with depth

Side lobe artifact

- When the beam of an off-axis side lobe hits a structure but then returns this off-axis object as if it is coming from the main beam.
- Appears like a duplicate structure on the screen, but in a different area