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Author	links	open	overlay	panel,	rights	and	contentView	full	textCopyright	©	2023	Elsevier	Inc.	All	rights	reserved.	Chemical	reaction	Hantzsch	pyridine	synthesis	Named	after	Arthur	Rudolf	Hantzsch	Reaction	type	Ring	forming	reaction	Identifiers	Organic	Chemistry	Portal	hantzsch-dihydropyridine-synthesis	RSC	ontology	ID	RXNO:0000268	The
Hantzsch	pyridine	synthesis	or	Hantzsch	dihydropyridine	synthesis	is	a	multi-component	organic	reaction	between	an	aldehyde	such	as	formaldehyde,	2	equivalents	of	a	β-keto	ester	such	as	ethyl	acetoacetate	and	a	nitrogen	donor	such	as	ammonium	acetate	or	ammonia.[1][2]	The	initial	reaction	product	is	a	dihydropyridine	which	can	be	oxidized	in	a
subsequent	step	to	a	pyridine.[3]	The	driving	force	for	this	second	reaction	step	is	aromatization.	This	reaction	was	reported	in	1881	by	Arthur	Rudolf	Hantzsch.	A	1,4-dihydropyridine	dicarboxylate	is	also	called	a	1,4-DHP	compound	or	a	Hantzsch	ester.	These	compounds	are	an	important	class	of	calcium	channel	blockers[2]	and	as	such
commercialized	in	for	instance	nifedipine,	amlodipine	or	nimodipine.	The	reaction	has	been	demonstrated	to	proceed	in	water	as	reaction	solvent	and	with	direct	aromatization	by	ferric	chloride,	manganese	dioxide	or	potassium	permanganate	in	a	one-pot	synthesis.[4]	Hantzsch	reaction	with	ammonium	acetate,	ethyl	acetoacetate,	formaldehyde	and
ferric	chloride	The	Hantzsch	dihydropyridine	synthesis	has	been	effected	by	microwave	chemistry.[5]	Mechanism	At	least	five	significant	pathways	have	been	proposed	for	the	Hantzch	reaction	synthesis	of	1,4-dihydropyridine.	Low	yield	and	unexpected	products	may	arise	under	varying	reactants	and	reaction	conditions.	Previous	studies	have	tested
the	reactions	of	preformed	intermediates	to	determine	the	most	likely	mechanism	and	design	successful	syntheses.[6]	An	early	study	into	the	mechanism	using	13C	and	15N	NMR	indicated	the	intermediacy	of	the	chalcone	6	and	enamine	3.	This	data	suggested	the	following	route	for	the	reaction.[7]	Later	research	using	mass	spectrometry	monitoring
with	charge-tagged	reactants	supported	intermediate	pathway	A	as	a	likely	route	and	showed	evidence	that	the	reaction	followed	two	additional	intermediate	pathways	which	converge	to	precursor	7.[6]	Reagents	likely	influence	the	route	taken	as	when	the	methyl	group	of	1	is	replaced	by	an	electron-withdrawing	group,	the	reaction	instead	proceeds
through	a	diketone	intermediate.[8]	Optimization	of	reaction	conditions	The	classical	method	for	synthesis	of	Hantzsch	1,4-dihydropyridines,	which	involves	a	one-pot	condensation	of	aldehydes	with	ethyl	acetoacetate	and	ammonia,	have	several	drawbacks	such	as	harsh	reaction	conditions,	long	reaction	times,	and	generally	low	yield	of	products.	
A	synthesis	of	1,4-dihydropyridines	in	aqueous	micelles	catalyzed	by	PTSA	under	ultrasonic	irradiation.	Using	condensation	of	benzaldehyde,	ethyl	acetoacetate	and	ammonium	acetate	as	a	model,	experiments	have	proven	that	when	catalyzed	by	p-toluenesulfonic	acid	(PTSA)	under	ultrasonic	irradiation,	the	reaction	can	have	a	product	yield	of	96%	in
aqueous	(SDS,	0.1M).	The	reaction	had	also	been	carried	out	in	various	solvent	system,	and	it	was	discovered	that	the	ultrasonic	irradiation	in	aqueous	micelles	gave	better	yields	than	in	solvents	such	as	methanol,	ethanol,	THF.	Using	the	optimized	reaction	conditions,	a	series	of	1,4-dihydropyridine	were	synthesized,	and	they	all	have	a	reaction	yield
above	90%.[9]	Aromatization	Oxidation	of	1,4-DHPs	accounts	for	one	of	the	easiest	ways	of	accessing	pyridine	derivatives.[10]	Common	oxidants	used	to	promote	aromatization	of	1,4-DHPs	are	CrO3,	KMnO4,	and	HNO3.[11]	However,	aromatization	is	often	accompanied	by:	low	chemical	yields,	strong	oxidative	conditions,	burdensome	workups,	the
formation	of	side	products,	or	the	need	of	excess	oxidant.[11][12]	As	such,	particular	attention	has	been	paid	to	developing	methods	of	aromatization	to	yield	pyridine	derivatives	under	milder	and	efficient	conditions.	Such	conditions	include,	but	are	not	limited	to:	iodine	in	refluxing	methanol,[11]	chromium	dioxide(CrO2),[12]	sodium	chlorite,[13]	and
under	metal-free,	photochemical	conditions	using	both	UV-light	and	visible	light.[14]	Upon	metabolism,	1,4-DHP	based	antihypertensive	drugs	undergo	oxidation	by	way	of	cytochrome	P-450	in	the	liver	and	are	thus	converted	to	their	pyridine	derivatives.[11]	As	a	result,	particular	attention	has	been	paid	to	the	aromatization	of	1,4-DHPs	as	a	means
to	understand	biological	systems	and	so	as	to	develop	new	methods	of	accessing	pyridines.[13]	Green	chemistry	As	a	multi-component	reaction,	the	Hantzsch	pyridine	synthesis	is	much	more	atom	efficient	with	a	simpler	number	of	reaction	steps	than	a	linear-strategy	synthesis.In	recent	years,	research	has	looked	to	make	this	an	even	more
environmentally	friendly	reaction	by	investigating	"greener"	solvents	and	reaction	conditions.[15]	One	line	of	study	has	experimented	with	using	ionic	liquids	as	catalysts	for	room	temperature	reactions.	Ionic	liquids	are	an	easy	to	handle	and	non-toxic	option	to	replace	traditional	catalysts.	Additionally,	this	catalyst	lead	to	a	high	yield	at	room
temperature,	reducing	the	impact	of	heating	the	reaction	for	an	extended	time.	A	second	study	used	ceric	ammonium	nitrate	(CAN)	as	an	alternate	catalyst	and	achieved	a	solvent-free	room	temperature	reaction.[16]	Knoevenagel–Fries	modification	The	Knoevenagel–Fries	modification	allows	for	the	synthesis	of	unsymmetrical	pyridine	compounds.
[17]	See	also	Hantzsch	pyrrole	synthesis	References	^	Hantzsch,	A.	(1881).	
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effected	by	microwave	chemistry.[5]	Mechanism	At	least	five	significant	pathways	have	been	proposed	for	the	Hantzch	reaction	synthesis	of	1,4-dihydropyridine.	Low	yield	and	unexpected	products	may	arise	under	varying	reactants	and	reaction	conditions.	Previous	studies	have	tested	the	reactions	of	preformed	intermediates	to	determine	the	most
likely	mechanism	and	design	successful	syntheses.[6]	An	early	study	into	the	mechanism	using	13C	and	15N	NMR	indicated	the	intermediacy	of	the	chalcone	6	and	enamine	3.	This	data	suggested	the	following	route	for	the	reaction.[7]	Later	research	using	mass	spectrometry	monitoring	with	charge-tagged	reactants	supported	intermediate	pathway
A	as	a	likely	route	and	showed	evidence	that	the	reaction	followed	two	additional	intermediate	pathways	which	converge	to	precursor	7.[6]	Reagents	likely	influence	the	route	taken	as	when	the	methyl	group	of	1	is	replaced	by	an	electron-withdrawing	group,	the	reaction	instead	proceeds	through	a	diketone	intermediate.[8]	Optimization	of	reaction
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However,	aromatization	is	often	accompanied	by:	low	chemical	yields,	strong	oxidative	conditions,	burdensome	workups,	the	formation	of	side	products,	or	the	need	of	excess	oxidant.[11][12]	As	such,	particular	attention	has	been	paid	to	developing	methods	of	aromatization	to	yield	pyridine	derivatives	under	milder	and	efficient	conditions.	Such
conditions	include,	but	are	not	limited	to:	iodine	in	refluxing	methanol,[11]	chromium	dioxide(CrO2),[12]	sodium	chlorite,[13]	and	under	metal-free,	photochemical	conditions	using	both	UV-light	and	visible	light.[14]	Upon	metabolism,	1,4-DHP	based	antihypertensive	drugs	undergo	oxidation	by	way	of	cytochrome	P-450	in	the	liver	and	are	thus
converted	to	their	pyridine	derivatives.[11]	As	a	result,	particular	attention	has	been	paid	to	the	aromatization	of	1,4-DHPs	as	a	means	to	understand	biological	systems	and	so	as	to	develop	new	methods	of	accessing	pyridines.[13]	Green	chemistry	As	a	multi-component	reaction,	the	Hantzsch	pyridine	synthesis	is	much	more	atom	efficient	with	a
simpler	number	of	reaction	steps	than	a	linear-strategy	synthesis.In	recent	years,	research	has	looked	to	make	this	an	even	more	environmentally	friendly	reaction	by	investigating	"greener"	solvents	and	reaction	conditions.[15]	One	line	of	study	has	experimented	with	using	ionic	liquids	as	catalysts	for	room	temperature	reactions.	Ionic	liquids	are	an
easy	to	handle	and	non-toxic	option	to	replace	traditional	catalysts.	Additionally,	this	catalyst	lead	to	a	high	yield	at	room	temperature,	reducing	the	impact	of	heating	the	reaction	for	an	extended	time.	A	second	study	used	ceric	ammonium	nitrate	(CAN)	as	an	alternate	catalyst	and	achieved	a	solvent-free	room	temperature	reaction.[16]	Knoevenagel–
Fries	modification	The	Knoevenagel–Fries	modification	allows	for	the	synthesis	of	unsymmetrical	pyridine	compounds.[17]	See	also	Hantzsch	pyrrole	synthesis	References	^	Hantzsch,	A.	(1881).	
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aromatization	by	ferric	chloride,	manganese	dioxide	or	potassium	permanganate	in	a	one-pot	synthesis.[4]	Hantzsch	reaction	with	ammonium	acetate,	ethyl	acetoacetate,	formaldehyde	and	ferric	chloride	The	Hantzsch	dihydropyridine	synthesis	has	been	effected	by	microwave	chemistry.[5]	Mechanism	At	least	five	significant	pathways	have	been
proposed	for	the	Hantzch	reaction	synthesis	of	1,4-dihydropyridine.	Low	yield	and	unexpected	products	may	arise	under	varying	reactants	and	reaction	conditions.	Previous	studies	have	tested	the	reactions	of	preformed	intermediates	to	determine	the	most	likely	mechanism	and	design	successful	syntheses.[6]	An	early	study	into	the	mechanism	using
13C	and	15N	NMR	indicated	the	intermediacy	of	the	chalcone	6	and	enamine	3.	This	data	suggested	the	following	route	for	the	reaction.[7]	Later	research	using	mass	spectrometry	monitoring	with	charge-tagged	reactants	supported	intermediate	pathway	A	as	a	likely	route	and	showed	evidence	that	the	reaction	followed	two	additional	intermediate
pathways	which	converge	to	precursor	7.[6]	Reagents	likely	influence	the	route	taken	as	when	the	methyl	group	of	1	is	replaced	by	an	electron-withdrawing	group,	the	reaction	instead	proceeds	through	a	diketone	intermediate.[8]	Optimization	of	reaction	conditions	The	classical	method	for	synthesis	of	Hantzsch	1,4-dihydropyridines,	which	involves	a
one-pot	condensation	of	aldehydes	with	ethyl	acetoacetate	and	ammonia,	have	several	drawbacks	such	as	harsh	reaction	conditions,	long	reaction	times,	and	generally	low	yield	of	products.	A	synthesis	of	1,4-dihydropyridines	in	aqueous	micelles	catalyzed	by	PTSA	under	ultrasonic	irradiation.	Using	condensation	of	benzaldehyde,	ethyl	acetoacetate
and	ammonium	acetate	as	a	model,	experiments	have	proven	that	when	catalyzed	by	p-toluenesulfonic	acid	(PTSA)	under	ultrasonic	irradiation,	the	reaction	can	have	a	product	yield	of	96%	in	aqueous	(SDS,	0.1M).	The	reaction	had	also	been	carried	out	in	various	solvent	system,	and	it	was	discovered	that	the	ultrasonic	irradiation	in	aqueous	micelles
gave	better	yields	than	in	solvents	such	as	methanol,	ethanol,	THF.	Using	the	optimized	reaction	conditions,	a	series	of	1,4-dihydropyridine	were	synthesized,	and	they	all	have	a	reaction	yield	above	90%.[9]	Aromatization	Oxidation	of	1,4-DHPs	accounts	for	one	of	the	easiest	ways	of	accessing	pyridine	derivatives.[10]	Common	oxidants	used	to
promote	aromatization	of	1,4-DHPs	are	CrO3,	KMnO4,	and	HNO3.[11]	However,	aromatization	is	often	accompanied	by:	low	chemical	yields,	strong	oxidative	conditions,	burdensome	workups,	the	formation	of	side	products,	or	the	need	of	excess	oxidant.[11][12]	As	such,	particular	attention	has	been	paid	to	developing	methods	of	aromatization	to
yield	pyridine	derivatives	under	milder	and	efficient	conditions.	Such	conditions	include,	but	are	not	limited	to:	iodine	in	refluxing	methanol,[11]	chromium	dioxide(CrO2),[12]	sodium	chlorite,[13]	and	under	metal-free,	photochemical	conditions	using	both	UV-light	and	visible	light.[14]	Upon	metabolism,	1,4-DHP	based	antihypertensive	drugs	undergo
oxidation	by	way	of	cytochrome	P-450	in	the	liver	and	are	thus	converted	to	their	pyridine	derivatives.[11]	As	a	result,	particular	attention	has	been	paid	to	the	aromatization	of	1,4-DHPs	as	a	means	to	understand	biological	systems	and	so	as	to	develop	new	methods	of	accessing	pyridines.[13]	Green	chemistry	As	a	multi-component	reaction,	the
Hantzsch	pyridine	synthesis	is	much	more	atom	efficient	with	a	simpler	number	of	reaction	steps	than	a	linear-strategy	synthesis.In	recent	years,	research	has	looked	to	make	this	an	even	more	environmentally	friendly	reaction	by	investigating	"greener"	solvents	and	reaction	conditions.[15]	One	line	of	study	has	experimented	with	using	ionic	liquids
as	catalysts	for	room	temperature	reactions.	Ionic	liquids	are	an	easy	to	handle	and	non-toxic	option	to	replace	traditional	catalysts.	Additionally,	this	catalyst	lead	to	a	high	yield	at	room	temperature,	reducing	the	impact	of	heating	the	reaction	for	an	extended	time.	A	second	study	used	ceric	ammonium	nitrate	(CAN)	as	an	alternate	catalyst	and
achieved	a	solvent-free	room	temperature	reaction.[16]	Knoevenagel–Fries	modification	The	Knoevenagel–Fries	modification	allows	for	the	synthesis	of	unsymmetrical	pyridine	compounds.[17]	See	also	Hantzsch	pyrrole	synthesis	References	^	Hantzsch,	A.	(1881).	"Condensationprodukte	aus	Aldehydammoniak	und	Ketonartigen	Verbindungen".
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pyridine	N-oxides	in	THF	at	room	temperature	and	subsequent	treatment	with	acetic	anhydride	at	120°C	afforded	2-substituted	pyridines	in	good	yields.	By	exchanging	acetic	anhydride	for	DMF	in	the	second	step,	2-substituted	pyridine	N-oxides	were	obtained,	enabling	the	synthesis	of	2,6-disubstituted	pyridines.	H.	Andersson,	F.	Almqvist,	R.	
Olsson,	Org.	Lett.,	2007,	9,	1335-1337.	The	success	of	a	one-step	transformation	of	heterocyclic	N-oxides	to	2-alkyl-,	aryl-,	and	alkenyl-substituted	N-heterocycles	hinges	on	the	combination	of	copper	catalysis	and	activation	by	lithium	fluoride	or	magnesium	chloride.	
The	utility	for	the	scaffold	decoration	of	a	broad	range	of	complex	N-heterocycles	is	exemplified	by	syntheses	of	new	structural	analogues	of	several	antimalarial,	antimicrobial,	and	fungicidal	agents.	O.	V.	Larionov,	D.	Stephens,	A.	Mfuh,	G.	Chavez,	Org.	Lett.,	2014,	16,	864-867.	Cross-coupling	of	aryl	bromides	with	2-thienyl,	3-thienyl,	2-pyridyl,	and
3-pyridyl	aluminum	reagents	in	the	presence	of	Pd(OAc)2	and	(o-tolyl)3P	provides	useful	biaryl	building	blocks.	
Additionally,	the	catalytic	system	was	also	suited	well	for	the	coupling	reaction	of	benzyl	halides	with	pyridyl	aluminum	reagents	to	afford	a	series	of	pyridylarylmethanes.	X.	Chen,	L.	Zhou,	Y.	Li,	T.	Xie,	S.	Zhou,	J.	Org.	Chem.,	2014,	79,	230-239.	Mechanochemically	activated	magnesium(0)	metal	is	a	highly	active	mediator	for	the	direct	C-4-H
alkylation	of	pyridines	with	alkyl	halides.	The	reaction	offers	excellent	regioselectivity	and	substrate	scope,	including	those	containing	reducible	functionalities,	free	amines,	and	alcohols,	as	well	as	biologically	relevant	molecules.	C.	Wu,	T.	Ying,	H.	Fan,	C.	Hu,	W.	
Su,	J.	Yu,	Org.	Lett.,	2023,	25,	2531-2536.	
A	nickel-catalyzed	reductive	coupling	of	bromopyridines	with	tertiary	alkyl	bromides	provides	alkylated	pyridines	bearing	an	all-carbon	quaternary	center.	This	strategy	features	mild	conditions,	broad	substrate	scope,	and	high	functional	group	tolerance.	Q.	Lin,	H.	Gong,	F.	Wu,	Org.	Lett.,	2022,	24,	8996-9000.	A	simple	maleate-derived	blocking	group
for	pyridines	enables	exquisite	control	for	Minisci-type	decarboxylative	alkylation	at	C-4	that	allows	for	inexpensive	access	to	a	broad	range	of	valuable	building	blocks.	The	method	is	operationally	simple	and	scalable,	and	is	applied	to	access	known	structures	in	a	rapid	and	inexpensive	fashion.	J.	Choi,	G.	Laudadio,	E.	
Godineau,	P.	S.	Baran,	J.	Am.	Chem.	Soc.,	2021,	143,	11927-11933.	A	photochemical	cross-coupling	between	N-amidopyridinium	salts	and	various	alkyl	bromides	under	photocatalyst-free	conditions	provides	various	C4-alkylated	pyridines.	The	photochemical	activity	of	electron	donor-acceptor	(EDA)	complexes	between	N-amidopyridinium	salts	and
bromide	generates	silyl	radicals	and	drives	the	alkylation	process.	S.	Jung,	S.	Shin,	S.	Park,	S.	
Hong,	J.	Am.	Chem.	Soc.,	2020,	142,	11370-11375.	A	photoinduced	intermolecular	charge	transfer	between	1,4-dihydropyridines	and	N-amidopyridinium	salts	induces	a	single-electron	transfer	event	without	requiring	a	photocatalyst	for	the	facile	C4-functionalization	of	pyridines.	Alkyl,	acyl,	and	carbamoyl	radicals	can	be	generated	from	1,4-
dihydropyridines,	that	provide	facile	access	to	synthetically	valuable	substituted	pyridines.	I.	Kim,	S.	Park,	S.	Hong,	Org.	Lett.,	2020,	22,	8730-8734.	A	Pd-catalyzed	decarbonylative	Suzuki	cross-coupling	of	widely	available	heterocyclic	carboxylic	acids	with	arylboronic	acids	enabled	the	straightforward	preparation	of	>45	heterobiaryl	products	using
pyridines,	pyrimidines,	pyrazines,	and	quinolines	in	very	good	yields.	A.	Cervantes-Reyes,	A.	C.	
Smith,	G.	M.	Chinigo,	D.	C.	Blakemore,	M.	Szostak,	Org.	Lett.,	2022,	24,	1662-1667.	A	copper-catalyzed	reaction	of	acetophenones	and	1,3-diaminopropane	provides	direct	access	to	2-arylpyridines.	A	range	of	electronically	diverse	acetophenones	undergo	this	transformation,	affording	2-arylpyridines	in	good	yields.	L.-Y.	Xi,	R.-Y.	Zhang,	S.	Liang,	S.-Y.
Chen,	X.-Q.	Yu,	Org.	Lett.,	2014,	16,	5269-5271.	
Primary	amines	can	be	transformed	into	their	corresponding	pyridinium	salts	in	the	presence	of	glutaconaldehyde	in	acidic	medium,	including	those	substrates	that	remain	unreactive	toward	the	typically	used	Zincke	salt.	G.	Asskar,	M.	Rivard,	T.	Martens,	J.	Org.	Chem.,	2020,	85,	1232-1239.	Two	new	varieties	of	solid,	moderately	air-stable	2-
pyridylzinc	reagents	are	alternatives	to	unstable	or	unreliable	2-pyridylboron	reagents.	Both	reagents	can	be	manipulated	in	air	and	are	competent	nucleophiles	in	Negishi	cross-coupling	reactions.	J.	R.	Colombe,	S.	Bernhardt,	C.	Stathakis,	S.	L.	Buchwald,	P.	Knochel,	Org.	Lett.,	2013,	15,	5754-5757.	
Suzuki	reactions	of	electron-deficient	2-heterocyclic	boronates	generally	give	low	conversions	and	remain	challenging.	A	successful	copper(I)	facilitated	Suzuki	coupling	of	2-heterocyclic	boronates	is	broad	in	scope	and	affords	greatly	enhanced	yields	of	these	notoriously	difficult	couplings.	
Furthermore,	mechanistic	investigations	suggest	a	possible	role	of	copper	in	the	catalytic	cycle.	J.	Z.	Deng,	D.	V.	Paone,	A.	T.	Ginnetti,	H.	Kurihara,	S.	D.	Dreher,	S.	
A.	Weissman,	S.	R.	Stauffer,	C.	S.	Burgey,	Org.	Lett.,	2009,	11,	345-347.	A	nickel-catalyzed	reductive	cross-coupling	between	aryl	iodides	and	difluoromethyl	2-pyridyl	sulfone	provides	facile	access	to	biaryls	under	mild	reaction	conditions	without	pregeneration	of	arylmetal	reagents.	The	new	reactivity	of	the	2-PySO2CF2H	reagent	enables	C(sp2)-
C(sp2)	bond	formation	through	selective	C(sp2)-S	bond	cleavage.	W.	Miao,	C.	Ni,	P.	Xiao,	R.	Jia,	W.	Zhang,	J.	Hu,	Org.	Lett.,	2021,	23,	711-715.	
A	Suzuki-Miyaura	cross-coupling	of	tetrabutylammonium	2-pyridyltriolborate	salts	with	various	aryl	and	heteroaryl	chlorides	produces	the	corresponding	desired	coupling	products	with	good	to	excellent	yields	in	the	presence	of	catalytic	amounts	of	PdCl2dcpp	and	CuI/MeNHCH2CH2OH	in	anhydrous	DMF	without	bases.	Tetrabutylammonium	2-
pyridyltriolborate	salts	are	more	reactive	than	the	corresponding	lithium	salts.	S.	Sakashita,	M.	Takizawa,	J.	Sugai,	H.	Ito,	Y.	Yamamoto,	Org.	Lett.,	2013,	15,	4308-4311.	Heteroaromatic	tosylates	and	phosphates	are	suitable	electrophiles	in	iron-catalyzed	cross-coupling	reactions	with	alkyl	Grignard	reagents.	
These	reactions	are	performed	at	low	temperature	allowing	good	functional	group	tolerance	with	full	conversion	within	minutes.	T.	M.	Gøgsig,	A.	T.	Lindhardt,	T.	Skrydstrup,	Org.	Lett.,	2009,	11,	4886-4888.	A	simple	skeletal	editing	protocol	"inserts"	a	nitrogen	atom	into	arylcycloalkenes	to	form	the	corresponding	N-heterocycles.	The	use	of	an
inexpensive	cobalt	catalyst	under	aqueous	and	open-air	conditions	makes	this	protocol	very	practical.	
Examples	include	late-stage	modification	of	compounds	of	pharmaceutical	interest	and	complex	fused	ring	compounds.	J.	Wang,	H.	Lu,	Y.	He,	C.	Jing,	H.	Wei,	J.	Am.	Chem.	Soc.,	2022,	144,	22433-22439.	A	visible-light-enabled	biomimetic	aza-6π	electrocyclization	provides	diverse	pyridines.	In	a	subsequent	Minisci-type	reaction,	a	broad	spectrum	of
polysubstituted	picolinaldehydes	were	readily	constructed	with	high	efficacy	and	good	functional	group	tolerance	under	metal-	and	oxidant-free	conditions	under	visible	light	irradiation.	Q.-L.	Zahng,	Q.-q.	Yu,	L.	Ma,	X.	Lu,	Q.-T.	Fan,	T.-S.	Duan,	Y.	Zhou,	F.-L.	Zhang,	J.	



Org.	Chem.,	2021,	86,	17244-17248.	A	reaction	sequence	involving	a	Wittig	reaction,	a	Staudinger	reaction,	an	aza-Wittig	reaction,	a	6π-3-azatriene	electrocyclization,	and	a	1,3-H	shift	enables	a	quick	one-pot	synthesis	of	polysubstituted	pyridines	in	very	good	yields	from	aldehydes,	phosphorus	ylides,	and	propargyl	azide.	H.	Wei,	Y.	Li,	K.	Xiao,	B.
Cheng,	H.	
Wang,	L.	Hu,	H.	Zhai,	Org.	Lett.,	2015,	17,	5974-5977.	
An	efficent	cyclization	of	readily	available	α,β,γ,δ-unsaturated	ketones	with	ammonium	formate	under	air	atmosphere	provides	asymmetrical	2,6-diarylpyridines.	The	reaction	is	metal-free	and	operationally	convenient.	Y.	Gao,	R.	Chen,	Y.	Ma,	Synthesis,	2019,	51,	3875-3882.	The	combination	of	iodine	and	triethylamine	triggers	an	oxime-based
synthesis	of	2-aryl-substituted	pyridines	with	high	chemo-selectivity	and	wide	functional	group	tolerance.	A	broad	range	of	functional	pyridines	were	prepared	in	good	yields	using	this	metal-free	protocol.	While	neither	iodine	nor	triethylamine	could	trigger	this	transformation,	mechanistic	experiments	indicated	a	radical	pathway	for	the	reaction.	H.
Huang,	J.	Cai,	L.	Tang,	Z.	Wang,	F.	Li,	G.-J.	Deng,	J.	Org.	Chem.,	2016,	81,	1499-1505.	A	redox-neutral,	[3+3]-type	condensation	of	O-acetyl	ketoximes	and	α,β-unsaturated	aldehydes,	that	is	synergistically	catalyzed	by	a	copper(I)	salt	and	a	secondary	ammonium	salt	(or	amine),	allows	modular	synthesis	of	a	variety	of	substituted	pyridines	under	mild
conditions	with	tolerance	of	a	broad	range	of	functional	groups.	The	reaction	is	driven	by	a	merger	of	iminium	catalysis	and	redox	activity	of	the	copper	catalyst.	
Y.	
Wei,	N.	Yoshikai,	J.	
Am.	Chem.	Soc.,	2013,	135,	3756-3759.	
Cationic	half-sandwich	rare-earth	catalysts	provide	an	efficient,	general	and	atom-economical	method	for	the	synthesis	of	2-alkylated	pyridine	derivatives	via	C-H	addition	to	olefins.	A	wide	range	of	pyridine	and	olefin	substrates	including	α-olefins,	styrenes,	and	conjugated	dienes	are	compatible	with	the	catalysts.	
B.-T.	Guan,	Z.	Hou,	J.	Am.	Chem.	Soc.,	2011,	133,	18066-18089.	The	use	of	Pd2(dba)3	and	X-Phos	as	a	ligand	enables	a	mild	Negishi	cross-coupling	of	2-heterocyclic	organozinc	reagents	and	aryl	chlorides	providing	2-aryl-substituted	pyridines	and	thiophenes	in	high	yields.	An	efficient	method	to	generate	the	organozinc	reagents	at	room	temperature
is	also	demonstrated.	M.	R.	Luzung,	J.	S.	
Patel,	J.	Yin,	J.	Org.	Chem.,	2010,	75,	8330-8332.	An	efficient	lithiation/isomerization/intramolecular	carbolithiation	sequence	provides	a	divergent	and	straightforward	entry	to	a	wide	range	of	polysubstituted	dihydropyridines	and	pyridines	starting	from	readily	available	N-allyl-ynamides.	
W.	Gati,	M.	M.	Rammah,	M.	B.	Rammah,	F.	Couty,	G.	Evano,	J.	Am.	Chem.	Soc.,	2012,	134,	9078-9081.	The	olefin	cross-metathesis	reaction	provides	a	rapid	and	efficient	method	for	the	synthesis	of	α,β-unsaturated	1,5-dicarbonyl	derivatives	which	then	serve	as	effective	precursors	to	pyridines	with	a	wide	range	of	substitution	patterns.	High	levels	of
regiocontrol,	short	reaction	sequences,	and	facile	substituent	variation	are	all	notable	aspects	of	this	methodology.	T.	J.	Donohoe,	J.	A.	
Basutto,	J.	F.	Bower,	A.	Rathi,	Org.	Lett.,	2011,	13,	1036-1039.	Regioselective	hydroamination	of	alkynes	with	N-silylamine	using	a	bis(amidate)bis(amido)titanium(IV)	precatalyst,	addition	of	α,β-unsaturated	carbonyls	to	the	crude	mixture	followed	by	oxidation	affords	47	examples	of	pyridines	in	good	yields	containing	variable	substitution	patterns,
including	pharmaceutically	relevant	2,4,5-trisubstituted	pyridines.	E.	K.	J.	Lui,	D.	Hergesell,	L.	
L.	
Schafer,	Org.	Lett.,	2018,	20,	6663-6667.	A	very	sterically	hindered	N-heterocyclic	carbene	ligand	promotes	cross-coupling	at	C4	of	2,4-dichloropyridines	with	high	selectivity	(∼10:1).	Under	optimized	conditions,	diverse	substituted	2,4-dichloropyridines	and	related	compounds	undergo	cross-coupling	to	form	C4-C(sp2)	and	C4-C(sp3)	bonds	using
organoboron,	-zinc,	and	-magnesium	reagents.	
J.	P.	Norman,	N.	G.	Larson,	E.	D.	Entz,	S.	
R.	Neufeldt,	J.	
Org.	Chem.,	2022,	87,	7414-7421.	A	photoredox	coupling	of	α,α-difluoro-β-iodoketones	with	silyl	enol	ethers	catalyzed	by	fac-Ir(ppy)3	under	blue	LED	irradiation	with	subsequent	one-pot	condensation	with	ammonium	acetate	provides	diversely	substituted	3-fluoropyridines.	S.	I.	Scherbinina,	O.	V.	
Fedorov,	V.	V.	
Levin,	V.	A.	Kokorekin,	M.	I.	Struchkova,	A.	D.	Dilman,	J.	Org.	Chem.,	2017,	82,	12967-12974.	A	convenient	base-promoted	reaction	of	1-arylethylamines	with	ynones	gives	polysubstituted	pyridines	via	direct	β-C(sp3)-H	functionalization	of	enaminones	under	metal-free	conditions.	This	procedure	features	high	regioselectivity,	high	efficiency,	and
environmental	friendliness.	Various	polysubstituted	pyridines	were	provided	in	high	yields.	J.	Shen,	D.	Cai,	C.	Kuai,	Y.	Liu,	M.	Wei,	G.	Cheng,	X.	Cui,	J.	Org.	Chem.,	2015,	80,	6584-6589.	Ring-closing	olefin	metathesis	(RCM)/elimination	and	RCM/oxidation/deprotection	of	nitrogen-containing	dienes	are	the	key	processes	of	new	synthetic	routes	to
substituted	3-hydroxypyridines.	An	application	of	RCM/oxidation/deprotection	allows	the	synthesis	of	3-aminopyridine	derivatives.	K.	Yoshida,	F.	Kawagoe,	K.	Hayashi,	S.	Horiuchi,	T.	Imamoto,	A.	Yanagisawa,	Org.	Lett.,	2009,	11,	515-518.	A	visible-light-enabled	biomimetic	aza-6π	electrocyclization	provides	diverse	pyridines.	In	a	subsequent	Minisci-
type	reaction,	a	broad	spectrum	of	polysubstituted	picolinaldehydes	were	readily	constructed	with	high	efficacy	and	good	functional	group	tolerance	under	metal-	and	oxidant-free	conditions	under	visible	light	irradiation.	Q.-L.	Zahng,	Q.-q.	Yu,	L.	Ma,	X.	Lu,	Q.-T.	Fan,	T.-S.	Duan,	Y.	Zhou,	F.-L.	Zhang,	J.	Org.	Chem.,	2021,	86,	17244-17248.	A	simple
and	highly	efficient	protodecarboxylation	of	various	heteroaromatic	carboxylic	acids	is	catalyzed	by	Ag2CO3	and	AcOH	in	DMSO.	This	methodology	enables	also	a	selective	monoprotodecarboxylation	of	several	aromatic	dicarboxylic	acids.	P.	Lu,	C.	Sanchez,	J.	Cornella,	I.	Larrosa,	Org.	Lett.,	2009,	11,	5710-5713.	Reactions	of	vinyl	azides	with
monocyclic	cyclopropanols	provided	pyridines	in	the	presence	of	Mn(acac)3,	whereas	those	with	bicyclic	cyclopropanols	led	to	the	formation	of	2-azabicyclo[3.3.1]non-2-en-1-ol	derivatives	using	a	catalytic	amount	of	Mn(acac)3.	Y.-F.	Wang,	S.	Chiba,	J.	Am.	Chem.	Soc.,	2009,	131,	12570-12572.	
A	ruthenium-catalyzed	formal	dehydrative	[4	+	2]	cycloaddition	of	enamides	and	alkynes	enables	a	mild	and	economic	construction	of	a	broad	range	of	highly	substituted	pyridines.	The	reaction	tolerates	many	functional	groups	and	offers	excellent	regioselectivities.	J.	Wu,	W.	Xu,	Z.-X.	Yu,	J.	Wang,	J.	Am.	Chem.	Soc.,	2015,	137,	9489-9495.	A	DBU-
promoted	metal-free	reaction	of	2-allyl-2H-azirines	affords	1-azatrienes	that	in	situ	electrocyclize	to	pyridines	in	very	good	yields.	The	reaction	displays	a	broad	substrate	scope	and	tolerates	various	substituents.	In	addition,	one-pot	synthesis	of	pyridines	from	oximes	via	in	situ	formation	of	2H-azirines	was	achieved.	Y.	Jiang,	C.-M.	Park,	T.-P.	Loh,	Org.
Lett.,	2014,	16,	3432-3435.	An	iodoxybenzoic	acid-mediated	selected	oxidative	cyclization	of	N-hydroxyalkyl	enamines	provides	a	variety	of	2,3-disubstituted	pyrroles	and	pyridines	in	good	selectivity.	This	metal-free	method	offers	use	of	environmentally	friendly	reagents,	broad	substrate	scope,	mild	reaction	conditions,	and	high	efficiency.	
P.	Gao,	H.-J.	Chen,	Z.-J.	
Bai,	M.-N.	Zhao,	D.	Yang,	J.	Wang,	N.	Wang,	L.	
Du,	Z.-H.	Guan,	J.	Org.	Chem.,	2020,	85,	7939-7951.	An	efficient	and	practical	visible-light	photoredox-catalyzed	formal	[5	+	1]	cycloaddition	of	N-tosyl	vinylaziridines	with	difluoroalkyl	halides	as	unique	C1	synthons	provides	pyridines	in	good	yields.	Y.	
Liu,	W.	Luo,	Z.	Wang,	Y.	Zhao,	J.	Zhao,	X.	Xu,	C.	Wang,	P.	Li,	Org.	Lett.,	2020,	22,	9638-9643.	Oxidative	one-pot	sequential	reactions	of	inactivated	saturated	ketones	with	electron-deficient	enamines	enable	an	efficient	synthesis	of	3-acylpyridines	and	pyridine-3-carboxylates.	The	reaction	involve	oxidative	dehydrogenation	of	the	saturated	ketone
substrate,	followed	by	[3+3]	annulation	with	β-enaminone	or	β-enaminoester	via	a	cascade	process,	including	Michael	addition,	aldol	type	condensation,	and	oxidative	aromatization.	
G.	
Chen,	Z.	Wang,	X.	Zhang,	X.	Fan,	J.	Org.	Chem.,	2017,	82,	11230-11237.	A	2-fluoro-1,3-dicarbonyl-initiated	one-pot	Michael	addition/[5	+	1]	annulation/dehydrofluorinative	aromatization	reaction	sequence	enables	a	transition-metal	catalyst-free,	regioselective	synthesis	of	di-,	tri-,	tetra-,	and	pentasubstituted	pyridines	as	well	as	fused	pyridines	from
readily	available	starting	materials.	Z.	Song,	X.	Huang,	W.	Yi,	W.	Zhang,	Org.	Lett.,	2016,	18,	5640-5643.	
A	one-pot	synthesis	of	substituted	pyridines	via	a	domino	cyclization-oxidative	aromatization	approach	is	based	on	the	use	of	a	new	bifunctional	noble	metal-solid	acid	catalyst,	Pd/C/K-10	montmorillonite	and	microwave	irradiation.	The	cyclization	readily	takes	place	on	the	strong	solid	acid	while	palladium	dehydrogenates	the	dihydropyridine
intermediate.	O.	De	Paolis,	J.	Baffoe,	S.	M.	Landge,	B.	Török,	Synthesis,	2008,	3423-3428.	Stable	1,2,3-triazine	1-oxides	are	remarkably	effective	substrates	for	inverse	electron	demand	Diels-Alder	reactions.	Base-catalyzed	reactions	with	amidines	provide	pyrimidines,	with	β-ketocarbonyl	compounds	and	related	nitrile	derivatives	polysubstituted
pyridines	and	with	3/5-aminopyrazoles	pyrazolo[1,5-a]pyrimidines	in	high	yield	at	room	temperature.	S.	Biswas,	L.	De	Angelis,	G.	Rivera,	H.	Arman,	M.	P.	
Doyle,	Org.	Lett.,	2023,	25,	1104-1108.	An	efficient	copper-mediated	cleavage	of	isoxazoles	enables	the	synthesis	of	nicotinate	derivatives	and	tetrasubstituted	pyridines	in	DMSO	as	solvent.	DMSO	serves	as	a	one-carbon	surrogate,	that	forms	two	C-C	bonds.	
P.	Kumar,	M.	Kapur,	Org.	Lett.,	2020,	22,	5855-5860.	A	simple,	modular	method	to	prepare	highly	substituted	pyridines	in	good	isolated	yields	employs	a	cascade	reaction	comprising	a	novel	Cu-catalyzed	cross-coupling	of	alkenylboronic	acids	with	α,β-unsaturated	ketoxime	O-pentafluorobenzoates,	electrocyclization	of	the	resulting	3-azatriene,	and
air	oxidation.	S.	Liu,	L.	S.	Liebeskind,	J.	Am.	Chem.	Soc.,	2008,	130,	6918-6919.	A	single-step	conversion	of	various	N-vinyl	and	N-aryl	amides	to	the	corresponding	pyridine	and	quinoline	derivatives	involves	amide	activation	with	trifluoromethanesulfonic	anhydride	in	the	presence	of	2-chloropyridine	followed	by	π-nucleophile	addition	to	the	activated
intermediate	and	annulation.	Compatibility	of	this	chemistry	with	various	functional	groups	is	noteworthy.	M.	Movassaghi,	M.	D.	Hill,	O.	K.	Ahmad,	J.	Am.	Chem.	Soc.,	2007,	129,	10096-10097.	DABCO	promotes	an	efficient,	solvent-free,	and	eco-friendly	domino	reaction	of	various	β,γ-unsaturated	α-ketocarbonyls	with	5/6-membered	cyclic	sulfamidate
imines	in	neat	conditions	under	MW	irradiation	to	provide	densely	functionalized	picolinates	in	short	reaction	times.	S.	Biswas,	D.	
Majee,	S.	Guin,	S.	
Samanta,	J.	Org.	Chem.,	2017,	82,	10928-10938.	A	domino	reaction	of	5-membered	cyclic	sulfamidate	imines	with	various	Morita-Baylis-Hillman	acetates	of	nitroolefins/nitrodienes	provides	a	series	of	4,6-diarylpicolinates	in	excellent	yields	in	the	presence	of	DABCO	as	an	organic	base	at	55	°C.	D.	Majee,	S.	
Biswas,	S.	M.	Mobin,	S.	Samanta,	J.	Org.	Chem.,	2016,	81,	4378-4385.	A	range	of	highly	functionalised	pyridines	is	prepared	from	enamino	and	alkynones	in	a	single	synthetic	step	by	the	use	of	acetic	acid	or	amberlyst	15	ion	exchange	resin	at	50°C.	M.	C.	Bagley,	J.	W.	Dale,	J.	Bower,	Synlett,	2001,	1149-1151.	N-Propargylic	β-enaminones	are	common
intermediates	for	the	synthesis	of	polysubstituted	pyrroles	and	pyridines.	In	the	presence	of	Cs2CO3	N-propargylic	β-enaminones	are	cyclized	to	pyrroles	in	good	to	high	yields,	whereas	CuBr	leads	to	pyridines.	S.	Cacchi,	G.	
Fabrizi,	E.	Filisti,	Org.	Lett.,	2008,	10,	2629-2632.	Polysubstituted	pyridines	are	prepared	in	good	yield	and	with	total	regiocontrol	by	the	one-pot	reaction	of	an	alkynone,	1,3-dicarbonyl	compound	and	ammonium	acetate	in	alcoholic	solvents.	This	new	three-component	heteroannulation	reaction	proceeds	under	mild	conditions	in	the	absence	of	an
additional	acid	catalyst.	X.	Xiong,	M.	C.	Bagley,	K.	Chapaneri,	Tetrahedron	Lett.,	2004,	45,	6121-6124.	Tri-	or	tetrasubstituted	pyridines	are	prepared	by	microwave	irradiation	of	ethyl	β-aminocrotonate	and	various	alkynones	in	a	single	synthetic	step	and	with	total	control	of	regiochemistry.	This	new	one-pot	Bohlmann-Rahtz	procedure	conducted	at
170°C	gives	superior	yields	to	similar	experiments	conducted	using	conductive-heating	techniques	in	a	sealed	tube.	M.	C.	Bagley,	R.	
Lunn,	X.	
Xiong,	Tetrahedron	Lett.,	2002,	43,	8331-8334.	The	direct	conversion	of	amides,	including	sensitive	N-vinyl	amides,	to	the	corresponding	trimethylsilyl	alkynyl	imines	followed	by	a	ruthenium-catalyzed	protodesilylation	and	cycloisomerization	gives	various	substituted	pyridines	and	quinolines.	M.	Movassaghi,	M.	D.	Hill,	J.	Am.	Chem.	Soc.,	2006,	128,
4592-4593.	A	rhodium-catalyzed	chelation-assisted	C-H	activation	of	α,β-unsaturated	ketoximes	and	the	reaction	with	alkynes	affords	highly	substituted	pyridine	derivatives.	K.	Parthasararathy,	M.	Jeganmohan,	C.-H.	Cheng,	Org.	Lett.,	2008,	10,	325-328.	A	convenient	one-pot	C-H	alkenylation/electrocyclization/aromatization	sequence	allows	the
synthesis	of	highly	substituted	pyridine	derivatives	from	alkynes	and	α,β-unsaturated	N-benzyl	aldimines	and	ketimines.	The	reaction	proceeds	through	dihydropyridine	intermediates.	
D.	A.	Colby,	R.	G.	Berman,	J.	A.	Ellman,	J.	Am.	Chem.	Soc.,	2008,	130,	3645-3651.	The	NH4I-triggered	formal	[4	+	2]	annulation	of	α,β-unsaturated	ketoxime	acetates	with	N-acetyl	enamides	enables	an	efficient	and	straightforward	construction	of	polysubstituted	pyridines	in	good	yields.	
This	metal-free	protocol	employs	electron-rich	enamides	as	C2	synthons	and	tolerates	a	wide	range	of	functional	groups.	J.	Duan,	L.	Zhang,	G.	Xu,	H.	Chen,	X.	Ding,	Y.	Mao,	B.	
Rong,	N.	Zhu,	K.	Guo,	J.	Org.	Chem.,	2020,	85,	8157-8165.	A	concise	copper-catalyzed	N-O	bond	cleavage/C-C/C-N	bond	formation	procedure	enables	the	synthesis	of	multisubstituted	pyridines	from	various	oxime	acetates,	activated	methylene	compounds,	and	a	wide	range	of	aldehydes.	This	method	features	inexpensive	catalysts,	no	need	for	extra
oxidant,	and	high	step-economy.	
H.	Jiang,	J.	Yang,	X.	Tang,	J.	Li,	W.	Wu,	J.	Org.	Chem.,	2015,	80,	8763-8771.	A	concise	one-pot	synthesis	of	highly	functionalized	pyridines	involves	a	formal	insertion	of	rhodium	vinylcarbenoids	derived	from	diazo	compounds	across	the	N-O	bond	of	isoxazoles.	Upon	heating,	the	insertion	products	undergo	a	rearrangement	to	give	1,4-dihydropyridines.
DDQ	oxidation	then	affords	the	corresponding	pyridines	in	good	yield.	J.	R.	Manning,	H.	M.	L.	Davies,	J.	Am.	Chem.	Soc.,	2008,	130,	8602-8603.	Cationic	rhodium(I)/modified-BINAP	complexes	catalyze	a	chemo-	and	regioselective	[2+2+2]	cycloaddition	of	a	wide	variety	of	alkynes	and	nitriles	leading	to	highly	functionalized	pyridines	under	mild
reaction	conditions.	K.	Tanaka,	N.	Suzuki,	G.	Nishida,	Eur.	J.	Org.	Chem.,	2006,	3917-3922.	Conversion	of	unsaturated	ketones	and	aldehydes	derived	from	the	cycloisomerization	of	primary	and	secondary	propargyl	diynols	in	the	presence	of	[CpRu(CH3CN)3]PF6	to	1-azatrienes	and	a	subsequent	electrocyclization-dehydration	provides	pyridines	with
excellent	regiocontrol.	B.	M.	Trost,	A.	C.	Gutierrez,	Org.	Lett.,	2007,	9,	1473-1476.	Coupling	of	acetylene,	nitrile,	and	a	titanium	reagent	generated	new	azatitanacyclopentadienes	in	a	highly	regioselective	manner.	The	subsequent	reaction	with	sulfonylacetylene	and	electrophiles	gave	substituted	pyridines	virtually	as	a	single	isomer.	Alternatively,	the
reaction	of	azatitanacyclopentadienes	with	an	aldehyde	or	another	nitrile	gave	furans	or	pyrroles	having	four	different	substituents	again	in	a	regioselective	manner.	D.	Suzuki,	Y.	Nobe,	R.	Tanaka,	Y.	Takayama,	F.	Sato,	H.	Urabe,	J.	Am.	Chem.	Soc.,	2005,	127,	7474-7479.	
A	mild,	efficient,	and	general	aromatization	of	Hantzsch	1,4-dihydropyridines	with	oxygen	was	realized	at	room	temperature	with	5	mol	%	of	9-phenyl-10-methylacridinium	perchlorate	as	photocatalyst,	which	could	be	easily	recovered	and	reused.	X.	Fang,	Y.-C.	Liu,	C.	Li,	J.	Org.	Chem.,	2007,	72,	8608-8610.	In	the	presence	of	activated	carbon,
Hantzsch	1,4-dihydropyridines	and	1,3,5-trisubstituted	pyrazolines	were	aromatized	with	molecular	oxygen	to	the	corresponding	pyridines	and	pyrazoles	in	excellent	yields.	N.	Nakamichi,	Y.	Kawashita,	M.	Hayashi,	Synthesis,	2004,	1015-1020.	4-Substituted-1,4-dihydropyridines	are	readily	and	efficiently	aromatized	in	only	one	minute	using
commercial	manganese	dioxide	in	the	absence	of	an	inorganic	support	at	100	°C	under	microwave	irradiation.	This	rapid	procedure	gives	the	dehydrogenated	or	4-dealkylated	product	in	excellent	yield.	M.	
C.	Bagley,	M.	C.	
Lubinu,	Synthesis,	2006,	1283-1288.	Hantzsch	1,4-dihydropyridines	undergo	smooth	aromatization	catalyzed	by	iodoxybenzoic	acid	(IBX)	to	afford	the	corresponding	pyridine	derivatives	in	high	yields.	All	the	reactions	were	carried	out	in	DMSO	solvent	at	80-85	°C	for	a	period	of	two	to	four	hours	to	complete	conversion	of	the	substrates.	J.	S.	Yadav,
B.	V.	S.	Reddy,	A.	K.	Basak,	G.	Baishya,	A.	V.	
Narsaiah,	Synthesis,	2006,	451-454.	An	intermolecular,	Rh(III)-catalyzed	cyclization	of	oximes	and	diazo	compounds	involving	tandem	C-H	activation,	cyclization,	and	condensation	steps	gives	multisubstituted	isoquinoline	and	pyridine	N-oxides	under	mild	conditions.	The	reaction	obviates	the	need	for	oxidants,	releases	N2	and	H2O	as	the	byproducts,
and	displays	a	broad	substituent	scope.	Z.	Shi,	D.	C.	Koester,	M.	Boultadakis-Arapinis,	F.	Glorius,	J.	Am.	Chem.	Soc.,	2013,	135,	12204-12205.	Trapping	of	in	situ	generated	active	intermediate	1,4-oxazepines,	formed	from	base-promoted	7-exo-dig	cyclization	reaction	of	N-propargyl	enaminones,	with	alcohols/thiols	and	aldehydes	provides	2-alkoxy/2-
sulfenylpyridines	and	dihydrofuro[2,3-b]pyridines	in	good	yields	within	30	min	at	room	temperature.	
This	cascade	reaction	generates	1	equiv	of	H2O	as	the	sole	byproduct.	G.	Cheng,	L.	Xue,	Y.	Weng,	X.	Cui,	J.	Org.	Chem.,	2017,	82,	9515-9524.	A	K2CO3-mediated	cyclization	and	rearrangement	of	γ,δ-alkynyl	oximes	for	the	synthesis	of	pyridols	employs	readily	accessible	starting	materials,	tolerates	a	wide	range	of	functional	groups,	and	gives	various
synthetically	challenging	pyridols	in	good	yields.	The	reaction	proceeds	via	an	efficient	[1,3]	rearrangement	of	an	O-vinyl	oxime	intermediate	which	is	in	situ	generated	by	intramolecular	nucleophilic	addition	of	γ,δ-alkynyl	oximes.	S.	
Wang,	Y.-Q.	Guo,	Z.-H.	Ren,	Y.-Y.	Wang,	Z.-H.	
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