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ABSTRACT

The paper presents a detailed mathematical analysis of groundwater hydraulics in a
randomly heterogeneous soil. As the soil medium investigated is randomly
heterogeneous, the hydraulic conductivity follows the same pattern. In view of the
fact that very little quantitative research has been conducted on groundwater flow in
randomly heterogeneous soil, the present study assumes importance. The study
develops a mathematical formulation for the velocity potential, velocity components
and the stream function in in randomly heterogeneous soil. This mathematical
formulation is complex and impossible to interpret physically. Therefore, the study
continues its exploration by taking mildly random heterogeneity only for which a
definite mathematical result has been found. This mathematical result is easy to interpret
and the same has been done in the study.

Introduction

The paper presents a detailed mathematical analysis of groundwater hydraulics in a randomly
heterogeneous soil. The hydraulic conductivity at a point is also randomly heterogeneous, where
little quantitative research has been conducted on groundwater flow. The first author has worked
into the problem of mathematical analysis of groundwater hydraulics in randomly heterogeneous soil
in Bhattacharya (2005) and in Bhattacharya and Kumar (2012).

The Navier-Stokes equations for a generalised fluid flow are highly non-linear and are not amenable
to solution by the Finite Element Method. Only certain reduced forms of the Navier-Stokes equations
can be analysed using the Finite Element method - laminar groundwater flow governed by Darcy’s
law being one of them.

Mathematical Analysis

Laminar groundwater flow is governed by Darcy’s law. Darcy’s law is given below:

V= Ki

and is valid for Re = Reynolds number = Vd/v < about 1 to 10

where,
K= hydraulic conductivity
V=velocity of flow per unit area of soil including area of soil pores
i = hydraulic gradient represented by sine of slope angle of the hydraulic grade line
d = mean grain size of the soil
v = kinematic viscosity of water

Hydraulic conductivity depends on permeability of the soil and the kinematic viscosity of water and
is defined as
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K= kg/

where, k = permeability of the soil and is defined as

k= C d2

where, d = mean grain size of the soil.

V is called the superficial velocity because it is the discharge divided by the total cross-sectional area
of flow. It is to be noted that since solid soil particles occupy a portion of this total cross-sectional
area, the true seepage velocity is higher. The porosity, or the void ratio which can be derived from the
porosity, of the soil determines the ratio of the superficial velocity and the true seepage velocity.

The true seepage velocity of water through the soil is given by

v= V

where,  = porosity defined as ratio of volume of void to the total volume

The actual path of flow of groundwater through the pores in the soil is highly irregular and not
amenable to a rigorous mathematical analysis. It is customary, therefore, to use the superficial velocity
to mathematically analyse groundwater problems.

The groundwater velocity admits of a velocity potential and a flow net of equipotential lines and flow
lines. Such a flow net can be studied analytically or numerically. The Finite Element method is a
commonly used numerical method is such flow cases. The parameter to be determined at each node
may be the velocity potential from which the velocity components may be easily determined.

If  has been used finite elements of different configurations such as 3-noded triangular finite elements
and 6-noded triangular finite elements. Other geometrical configurations are also possible. Similarly,
either Laplacian or Hermitian Interpolation Functions can be chosen - choosing a Laplacian
Interpolation Function makes the interpolation function simpler but also less accurate. To increase
the accuracy of a Finite Element solution, one can (1) take smaller Finite Elements, (2) take a larger
number of nodes per element and (3) use a Hermitian Interpolation Function.

It is to be noted that the present paper uses Finite Elements in a generic manner and  the results are
unconditionally valid for all Finite Element configurations and Interpolation Functions.

The unsteady groundwater flow equation for the three-dimensional case through an anisotropic
aquifer can be expressed as

where Kx, Ky, Kz represent the hydraulic conductivities in the three directions, Q is a specified inflow
or outflow and  is the velocity potential. The x and z axes are in mutually perpendicular horizontal
directions and the y is in the vertical direction.
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The above equation is derived with the following assumptions:
1. Darcy’s law is valid throughout the flow domain.
2. The soil is fully saturated.
3. Both the soil and the water are incompressible.

Assuming the flow to be 2-dimensional and steady and then taking a vertical slice, the above equation
transforms to the following form:

If the aquifer is assumed to be isotropic, then the superficial seepage velocity components in this
vertical plane are vx and vy, where vx and vy are the velocity components in the horizontal and vertical
directions respectively.

v x= x
;v y= y

satisfies Laplace’s equation

In a homogeneous aquifer, the hydraulic conductivity, K, is the same at all points in the flow domain.
In actual practice, due to non-homogeneity of soil properties like porosity, mean grain diameter etc.,
K varies from point to point in a manner that is not deterministic. If for an aquifer, the mean value of
K is K  and the standard deviation of K is k , the hydraulic conductivity field may be considered to

be  weakly-random if k  << K.

Because it is difficult to solve for the velocity potential analytically in a vast range of situations,
numerical methods like the Finite Element Method (Mondal, 2001; Maji et al, 2002) have been employed
to compute the velocity potential. In the above two works, three-noded triangular finite elements
with Lagrangian Interpolation have been used. This has been extended to six-noded triangular finite
elements with Lagrangian Interpolation by Choudhury (2002), Manna et al (2003) and Bhattacharya
et al (2016). Whatever be the exact nature of the element being utilised, ultimately the matrix equation
developed comes out to be of the form

where,
[G(K)] is the global constitutive matrix
{ (K)} is the matrix of the nodal velocity potentials, and
{P(K)} is the equivalent of the load matrix in solid mechanics
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If the hydraulic conductivity is deterministic, a definite pattern of equipotential lines is obtained for
a definite flow geometry. If the hydraulic conductivity at different points is not deterministic, the
equipotential lines and flow lines become uncertain. The present work addresses this situation.

or,

Now, differentiating equation (4) with respect to K, one gets

or,

where,                           is the sensitivity of with respect to K.

or,

and

Now, undertaking a Neumann expansion,

where,                  is the deterministic component of [G (K)]

and                 is the residual component.
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Therefore, the velocity potential matrix can be written as

where,                 is the mean of {(K)}.

This can be written as

The above is a generalised equation for velocity potential in randomly heterogeneous soil, mild or
otherwise. It may be safely said that the equipotential lines for a randomly heterogeneous soil differ
considerably from that for a homogeneous soil. vx and vy may be obtained by differentiating the
above equation.

So,

and

The Cauchy – Riemann Equations are

and

where, = velocity potential, and

= stream function.

Again,
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Therefore,

Using complex variables and complex functions,      and  can be recast in terms of a single complex
potential (z)

where, z is complex variable

where,                     and (r, ) plane polar cordinate

To obtain an interpretable result, it is necessary to assume that the heterogeneity of soil is mildly
random. This entails assuming that the random matrix is much smaller than the averaged matrix.

Let now a weakly-random hydraulic conductivity field be considered.

Then

and [H] is small.

It is permissible, then, to write

and,

Thus,
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The uncertainty in the {vx} and {vy} matrices is introduced through the presence of the matrix [H].
However, the two velocity matrices are almost deterministic as [H] is small. Nevertheless, even for
minor a soil whose heterogeneity is only mildly random, the seepage path of the flow is random.

Conclusion

It can be concluded that the presence of a very high degree of random heterogeneity in the hydraulic
conductivity field of a soil stratum appreciably alters the velocity distribution as compared to a
perfectly homogeneous soil in the aquifer. The equations developed are very complex. If the
heterogeneity of soil is mildly random, the velocity matrices are almost deterministic. Localised
changes in point velocity do occur but these are unlikely to have a major impact on, for example, the
discharge into a pumping well.
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