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Abstract 

The present study presents a mathematical model of flow in a deep, weakly meandering open 

channel. A complete mathematical model for the tangential velocity, radial velocity, vertical velocity 

and pressure is developed for the entire the flow domain. Experimental data have been used to 

develop empirical equations for a few parameters; parameters which are embedded in the 

mathematical model. The mathematical model is in agreement with mathematical models developed 

by other investigators. A fundamental strength of the present mathematical model is that it is valid 

for the entire flow domain, both near the walls as well as in the core region. 

 

Introduction 

An open channel is a conduit in which a liquid flows with a free surface. The free surface is 

actually an interface between the moving liquid and an overlying fluid medium and is 

subject to constant pressure. In engineering practice, activities for utilization of water 

resources involve open channel of varying magnitude in one way or other. Flows in natural 

rivers, streams and rivulets, artificial, that is, man-made canal for transmitting water from a 

source to a place of need, such as for irrigation water supply and hydro power generation. It 

is evident that the size, shape and roughness of open channel vary over a sizable range, 

covering a few order of magnitudes. Basically, all open channel channels have a bottom 

slope and the mechanism of flow is akin to the movement down an inclined plane due to 

gravity. The component of the weight of the liquid along the slope acts as driving force. 
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The boundary resistance at the perimeter acts as the resisting force. Water flows in open 

channel is largely in the turbulent regime with negligible surface tension effects. In 

addition, the fact that water behaves as an incompressible fluid leads one to appropriate the 

importance of the force due to gravity as the major force and the Froude Number as the 

prime non-dimensional number governing the flow phenomenon in open channels. 

 

Natural channels include all watercourses that exist naturally on the earth, varying in size 

from tiny hillside rivulets, through brooks, streams, small and large rivers, to tidal estuaries. 

The hydraulic properties of the natural channels are generally very irregular. In some cases 

empirical assumption reasonably consistent with actual observations and experience may be 

made such that the conditions of flows in these channels become amenable to the analytical 

treatment of theoretical hydraulics. 

 

The artificial channels are those constructed or developed by human effort; navigation 

channels, power canals, irrigation canals and flumes, floodways etc. as well as model 

channels that are built at the laboratory for testing purposes. The hydraulic properties of 

such channels can be either controlled to the extent as desired or designed to meet given 

requirement. The application of hydraulic theories to artificial channels will, therefore, 

produce results fairly close to the actual condition and hence, are reasonably accurate for 

practical design purposes. 
 

There have been a number of attempts to mathematically model the flow in meandering channels ( 

Engelund(1977); Ikeda, Parker and Sawai(1981); Odgaard(1986a,b); Ikeda and Nishimura(1986); 

Odgaard(1989a,b) ). Most of these are essentially models describing flow in shallow, weakly 

meandering erodible bed streams. A feature of such streams is that the flow may be assumed to be 

two-dimensional. Although most meandering river stretches probably fall in the shallow, weakly-

meandering category, one can find cases where the river channel is somewhat deeper. In such 

stretches, one cannot apply the shallow meander models. 

The ratio mean depth divided by the width (or d/b), is a convenient parameter to use when talking 

about shallow and deep meanders. In shallow meanders, i.e. where d/b value is small, the influence 

of the wall is confined to a small zone near the wall which may be called the “wall zone”. The 

central portion, which may be called the “core zone”, is essentially free of wall effects. In deep 

meanders, i.e. where the d/b value is larger, such a core zone does not exist and the influence of the 

wall is felt throughout the flow. 

Similarly the ratio width divided by least centreline radius of curvature (or b/rcm) is a useful 

parameter in connection with the sinuosity of the meandering channel. The larger the value of this 

parameter, the more strongly meandering a channel is. 
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These two parameters, considered together, can be used to classify meandering channels into 

different categories. For example, in Ikeda and Nishimura’s (1986) channel, d/b equalled 0.18 and 

b/rcm equalled 0.44. So this channel fell in the shallow and weakly meandering category. In Kar’s 

(1977) experiments, d/b varied from 0.453 to 0.985 while b/rcm equalled 1.06. These experiments, 

therefore, can be said to have been conducted on a deep, strongly meandering channel flow. 

In the present study conducted at IIT Kharagpur ( Bhattacharya (1995) ), a mathematical study is 

made of, and experiments have been conducted on, a mild meander which falls into the so-called 

deep category. A rigid bed is considered as it is felt that in the present state of knowledge of deep, 

mild meanders, obtaining a picture of the basic nature of flow in such channels is more appropriate. 

The meander model formulated in the present work satisfies all boundary conditions – at the bed 

and at the side walls. In shallow, weak meanders, because of order of magnitude considerations, 

considerable simplifications can be made in the governing equations but for deep meanders such 

simplifications cannot be made in the governing equations. Therefore for deep meanders, one has to 

solve the full equations which are quite complex. So, in these circumstances, in place of a direct 

solution of the governing equations, a different approach is adopted in the present study. Because 

the model formulated in the present study is not restricted to shallow meanders, it is valid from wall 

to wall whereas the shallow meander models are for the core zone. 

 

Review of Literature 
 

Meandering of river is one of the natural processes. Leliavsky (1955) in his renowned book 

says that “The centrifugal effect (which causes the superelevation) may possibly be 

visualized as the fundamental principle of the meandering theory, for it represents the main 

cause of the helicoidal cross-currents which remove the soil from the concave banks, 

transported the eroded material across the channel, and deposit in on the convex banks, thus 

intensifying the tendency towards meandering. It follows therefore that the slightest 

accidental irregularity in channel formation turning as it does, the stream lines from their 

straight course may under certain circumstances constitute their focal point for the erosion 

process which leads to ultimately to meander”. 

 

According to Inglis (1947), "Where however, banks are not tough enough to withstand the 

excess turbulent energy developed during floods, the banks erode and the river widen and 

shoals…. In channels with widely fluctuating discharges and silt charges, there is a 

tendency for silt to deposit at one bank and for the river to move to the other bank. This is 

the origin of meandering….". 

 

A meander is called shallow if its depth is small compared to its width and it is called mild- 

meandering if its width is small compared to its least centerline radius of curvature. These 

ratios are considered to be very small in most analysis as in most natural channels. The 
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effect of considering these ratios to be very small is that the governing equation of the flow 

(three momentum and one continuity) is much simplified from order of magnitude 

consideration. However, not all-natural meanders are shallow.  

 

Investigators have studied meanders and compound channel flows for a long time. 

Thomson (1876) was probably the first to point out the existence of spiral motion in a 

curved open channel. 

 

Rozovskii (1957) used order of magnitude consideration and assumptions of eddy viscosity, 

vertical distribution of tangential (streamwise) velocity components and zero net lateral 

discharge and he found an approximate solution for the radial velocity component from the 

equation of motion. He also tried to solve for the radial distribution of the tangential 

velocity component and growth and decay of the spiral motion. He concluded that the 

solution for the vertical distribution of the radial velocity based on the logarithmic 

distribution of the vertical of the tangential velocity is acceptable. It should be noted that 

the Reynold's number for the experiments were generally low. 

 

Kikkawa, Ikeda and Kitagawa (1976) reported a study on the flow and bed topography in a 

constant curvature bend. In their flow model, they assumed that the radius of curvature is 

large and that the width is sufficiently large compared with the depth. They considered the 

equation of motion governing the secondary flow and obtain an equation for the radial 

velocity distribution. 

 

Zimmermann and Kennedy (1978) made a formulation for the transverse bed slope in a 

constant curvature bend. In the process of doing so, they assumed that a power law could 

express the vertical distribution of the tangential velocity. 

 

Meandering channel flow is considerably more complexes than constant curvature bend 

flow. Unlike a constant curvature bend, where one finds that in the initial portion of the 

bends, the flow is in the developing stage and thereafter it is in the developed stage, in 

meanders due to the continuous streamwise variation of the radius of curvature, no 

developed region is reached and the flow parameters vary continuously in the streamwise 

direction. 

 

De Vriend and Geldof (1983) compared the results of a mathematical model for the depth-

averaged main flow velocity in shallow river bends with measurements in two consecutive 

sharply curved short bends in the river Dommel. 

They found that, 

a) The velocity distribution in the Dommel showed essentially the same features as 

observed in other channels of similar geometry. 
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b) A mathematical model derived from the “Kalkwijk/De Vriend model” worked rather 

well in the greater part of the two bends if secondary flow convection is ignored. 

c) The inward skewing tendency of the velocity distribution near the entrance of the bend 

was due to the main flow inertia combined with the longitudinal pressure gradients 

arising from the growth of the transverse surface slope. 

d) In the river section under consideration, the gradual outward shift of the main velocity 

maximum further downstream in the bend was a matter of retard adaptation of the 

flow to the bed configuration, rather than of secondary flow convection.  

e) Secondary flow convection was only important in the last part of each of the surveyed 

beds; there it seemed to hamper the outward skewing of the flow instead of enhancing 

it. 

f) As the flow stage became higher, the main velocity maximum tended to shift towards 

the inner bank; this was attained to the reduced a symmetry of the channel, rather than 

to the slower development of the secondary flow. 

 

Ikeda and Nishimura (1986) presented an analytical model for describing three-dimensional 

flow. This was presented as an extension of the depth-averaged two-dimensional flow 

model of Engelund (1974) which had not treated the secondary flow in sinuous channels. 

To describe the flow they split the flow into the depth-averaged two-dimensional flow 

component and secondary flow component. The depth-averaged flow was expressed as the 

sum of unperturbed reach-averaged hydraulic variables and the perturbed quantities 

denoting perturbations induced by curvature. 

The reach-averaged tangential velocity, the perturbed component of tangential velocity and 

the perturbed component of radial velocity were evaluated (the reach-averaged radial 

velocity is zero). Next, an expression was formulated for the zero depth-average pure 

helical component of the radial velocity. These results were incorporated in a bed 

topography model and the bed topography model was validated thus indirectly validating 

the flow model also. 

 

Johannession and Parker (1989a) studied the secondary flow in a mildly sinuous channel. 

They obtained a derivation of the phase lag (the lag between the secondary flow and the 

channel curvature). They found that the predicted lag was small in natural channels. 

However, the predicted lag was much higher in many experimental channels, in agreement 

with data. 

 

Johannesson and Parker (1989b) presented an analytical model for calculating the lateral 

distribution of the depth-averaged primary flow velocity in meandering rivers. The method 

they used took into account the convective transport of primary flow momentum by 

secondary flow. 
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Zhou, Chang and Stow (1993) reported a study on the phase lag of secondary flow in 

meanders. 

 

Bhattacharya (1995) conducted a mathematical study and experiments on a deep mild 

meander without and with adjacent flood plains. 

 
 

 

Geometric Elements of Channel Section 
   

Geometric elements are properties of a channel section that can be defined entirely by the 

geometry of the section and the depth of flow. These elements are very important and area 

used extensively in flow computations. 

For simple rectangular channel sections, the geometric element can be expressed 

mathematically in terms of the depth of flow and other dimensions of the section.  

 

The definition of several geometric elements of channel cross-section are given below 

1. Depth of flow: The depth of flow is the vertical distance of the lowest point of a 

channel section from the free surface. Strictly speaking, the depth of flow section is 

the depth of flow normal to the direction of flow or the height of the channel section 

containing the water. 

2. Stage: It is the elevation or vertical distance of the free surface above a datum. If a 

lowest point of the channel section is chosen as the datum, the stage is identical with 

the depth of flow. 

 

3. Top width (T): It is the width of the channel section at the free surface. 

                                   

   4. Water area (A): It is the cross sectional area of the flow normal to the direction of 

flow. 

 

   5. Wetted perimeter (P): It is the length of the line of intersection of the channel-wetted 

surface with a cross sectional plane normal to the direction of flow. 

 

   6.Hydraulic Radius (R): It is the ratio of the water area to its wetted perimeter i.e  

                                   R=A/P 

 

  7. Hydraulic Depth (D): It is the ratio of water area to the width of the top  

                                  D=A/T 
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8. Sinuosity (Sr): It is defined as the ratio of one wave length of the main channel in the 

down-valley direction (ls) to the one wave length of the main channel along its center line 

(lc) 

                                 Sr=ls/lc       

 

 

 

Distribution of tangential and radial velocity in meandering channel 

There are a number of mathematical models of shallow meanders in the literature (Odgaard 1986a, 

1986b, 1989a, 1989b; Ikeda Nishimura 1986:  Smith and McLane1984) but to the knowledge of 

writer, there exists no model capable of describing the flow in deep meandering channels, unlike 

shallow menders, in deep menders there does not exist a central zone of flow where effect of the 

side-walls is insignificant. Kar (1977) and Das (1984) carried out experiment on flow in a sinuous 

channel as part of their overall experiment works Theoretical studies on meandering channels has 

been reported by Bhattacharya and Kar (1992,1993) and an experimental work has been reported in 

Kar and Bhattacharya (1995). 

A curvilinear system as shown in Fig 5.1 is used. The s axis is along the centreline, positive in the 

downstream direction: and the z axis is perpendicular to the s and n axes the points normally 

upward from the channel bed. For very small slope, the z axis can be assumed to coincide with the 

vertical axis. Fig 5.1 which is a plan view is also the definition sketch. The channel bed is assumed 

to have no lateral slope and the depth is assume to have the same order of magnitude as the width 

.the channel centreline is given by a cosine curve and the width of the channel is constant. The 

channel boundaries are non-erodible. 

For deep weak menders, v (the radial velocity) is an order less than u (the tangential velocity) and w 

(the vertical velocity) is of the order v. there is no wall-zone and the wall effect can be felt 

throughout the flow. In shallow menders, the wall effect is limited to the wall zone. The core zone is 

substantially free of wall effect and in the zone the flow is conventionally analysed by assuming it 

to be two dimensional neglecting variation the pressure from hydrostatic condition. In deep mender 

vertical velocity must be retained in the governing equation throughout the flow and the pressure 

must be taken to the flow are of complex nature. 

Ikeda, Parker and Sawai (1981), analysing shallow, weak meanders, considered the following 

equation for ú and v́  (the depth-averaged tangential and radial velocities) 

 

ú
∂ ú

∂ s
+v́
∂ú

∂n
+

úv

rc
= −g

∂ξ

∂ s
−
ζ s

ρd
(1)  



International Society for Green, Sustainable Engineering and Management 
Recognized 

Voluntary Organization 

(Research, Development & Training) 

Planning Commission 

Government of India 

 

 

Journal GSD - Green & Sustainable Development- ISSN: 2350-1464, Vol.2, Issue.18, September 2015 

Dr. Amartya Kumar Bhattacharya,Akshat Chandanam, Akshay Thakur, Rahul Meena 

 

8

ú
∂ v́

∂ s
+ v́
∂ v́

∂n
−

ú
2

rc
= −g

∂ξ

∂n
−
ζ n

ρd
(2)  

v́

rc

+
∂(v́ d )

∂n
+
∂(ú d )

∂ s
= 0(3)  

 

 

 

where 

 

ξ is the water-surface elevation 

τs and τn are the bed stresses; and 

d is the local depth. 

The above are the St. Venant equations with the metric coefficients neglected. τs and  τn are 

evaluated using a constant friction factor Cf as 

ζ s= ρC f ú√ú
2
+ v́

2
(4)  

ζ n= ρC f v́√ú
2
+ v́

2
(5)  

 

 

 

After decomposing ú  in the following manner 

ú  = U + u '(6) ʹ 

and following Ikeda, Parker and Sawai (1981), Ikeda and Nishimura (1986) obtained for uʹ (U is 

the zeroth-order value that is the reach-averaged tangential velocity) as follows: 

(ks)
a sin (ks)+bcos¿

¿
u '

U
=

n

r cm

¿
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So, 

(ks)
a sin (ks)+bcos¿

¿

ú= U +U
n

rcm

¿

where a and b are coefficients. 

 

It may be noted that this equation does not satisfy the no-slip condition at the sidewalls. 

In the present analysis, the equation has been modified into the following form: 

ú= ú0+ú1(9)  

(
2π

L
s)

A1 sin(
2π

L
s)+A2 cos¿

¿

¿ú0+ú0(
n

rcm

)¿

with 

1−(2n

b
¿

m̂](11)

ú0=(m̂+1

m̂ )U ¿
where 

ú0  = depth-averaged zeroth order tangential velocity, the zeroth order tangential velocity, the 

zeroth order state being a straight channel whose width is the same as that of the curved channel and 

whose depth of flow is the reach-averaged of the reach-averaged depth of the curved channel. 

 

rcm is the centreline radius of curvature, at the apex of the cosine curve 

 

L = wavelength (measured along the centreline)  

 

s and n are the stream wise and the cross-stream co-ordinates respectively; and 

 

 Λ  and A2 are coefficients. 

 

This form of equation is for application in deep channels. It is the evident that this equation satisfies 

the no-slip condition at the sidewalls. m̂  is an even integer used in the power law describing the 
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lateral variation of the zeroth order tangential velocity. Λ  and A2 are different form Ikeda and 

Nishimura’s (1986) a and b are to be evaluated later. U may be evaluated by Manning’s equation as 

U=
1

n
R

2

3 S

1

2 (12) where  

 

n = Manning’s coefficient of roughness 

R = reach-averaged hydraulic radius and 

S = reach-averaged slope. 

The equation 

1−¿(13)

ú0=(m̂+1

m̂ )U ¿ is equivalent to the equation  

2 n

b
¿

m̂
(14)

ú0

ú0 c

= 1− ¿
where 

ú0 c  = depth-averaged zeroth order tangential velocity at the centreline. (This is incidentally, 

equivalent to u because the depth-averaged tangential velocity at the centreline has no first order 

component). 

The tangential velocity in a straight channel is zero at the side-walls (to satisfy the no slip 

condition) and then increases very rapidly to almost its centreline value and remains almost constant 

over the central part of the cross-section. 

 To find the depth averaged radial velocity, the depth averaged continuity equation  

∂ú

∂ s
+

1

rc

∂

∂n
(v́ r)= 0(15) where 

 
v́  is the depth –averaged radial velocity 

r is the radius of curvature and 

rc is the radius of curvature at centreline,  

 

is used with the equation for u and the equation  
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(
2π

L
s)

Λ sin(2π

L
s)− A2 cos¿

¿

v́=
r c

r (m̂+1

m̂ )U
2π

L
¿

 

[
1

2 rcm
{(b

2)
2

−n
2}−(2

b)
m̂

1

rcm (̂m+2){(b

2)
m̂+2

−n
m̂+ 2}](17)  

results. 

 From the above equation, the following equation for v́c , the value of v́  at the centerline, can be 

obtained and it is as follows  

(
2π

L
s)

Λ cos(2π

L
s)− A2 sin ¿

v́c=(m̂+1

m̂ )U
2π

L
¿

 

[
1

2 rcm
(b

2)
2

−(2

b)
m̂

1

rcm (̂m+2)(
b

2)
m̂+2

](18)  

 

The above equation can be simplified to  

(
2π

L
s )

Λ cos(2π

L
s)− A2sin ¿

¿

v́c=(m̂+1

m̂+2)
U

r cm

π

L(
b

2)
2

¿
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At those point where v́c = 0, 

 

(
2π

L
s)

Λ cos(2π

L
s)− A2 sin ¿

¿

(m̂+1

m̂+2)
U

rcm

π

L(
b

2)
2

¿

 

 

At these points therefore, since (m̂+1

m̂+2)
U

rcm

π

L(
b

2)
2

≠0 , 

 

Λ cos(2π

L
s)− A2 sin(2 π

L
s)= 0 (21)  

Now, as per the current modelling, v́c = 0 at the value of s given by the following equation  

s=
L

4
+

Lσ

2π
+i

L

2
(22)  

Where i = 0,1,2,3…… 

and σ is the phase angle by which the point where v́c = 0 lags the geometrical point of inflection. 

So, 

Λ cos(2π

L
(

L

4
+

Lσ

2 π
+i

L

2
))− A2 sin(2 π

L
(

L

4
+

Lσ

2π
+i

L

2
))= 0 (23) or 

tan(2π

L
(

L

4
+

Lσ

2 π
+i

L

2
))= Λ

A2

(24) or 
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tan [(π2 +σ)+iπ ]=
Λ

A2

(25) or 

σ= ¿
Λ

A2

(26)

tan ¿
or 

A2= Λ tanσ (27)  

 

Therefore, the equation for ú is rewritten as follows: 

(
2π

L
s)

sin (
2π

L
s)+ tanσ cos¿

¿

ú= ú0+ ú0(
n

rcm

) Λ¿

 

 

The equation for v́  is rewritten as follow  

(
2π

L
s)

cos(2π

L
s)− tanσ sin ¿

v́=
r c

r (m̂+1

m̂ )U
2π

L
Λ¿

 

[
1

2 rcm
{(b

2)
2

−n
2}−(2

b)
m̂

1

rcm (̂m+2){(b

2)
m̂+2

−n
m̂+ 2}](29)  

 

 

These equations contain some undetermined coefficients ( m̂ , Λ and σ) which are to be obtained 

from experimental data. 
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It was found difficult to formulate an analytic expression for the phase lag, σ, in the deep mender so 

it was decide to modify a shallow mender phase lag equation, by adding a correction coefficient, for 

use in deep menders. The correction coefficient is found by matching the equation with the 

experimental data of present study Bhattacharya ( 1995 ). 

The shallow mender phase lag equation chosen (Bhattacharya,1995) is that proposed by Zhou, 

Chang and Stow (1993) (some of the notation has been recast into the terminology of the present 

analysis) 

σ= tan
−1{πκ [1

κ
+(8

f )
1

2]d0

L }(30) where 

 

κ= von Karman’s coefficient, 

 

d0 = reach-averaged flow depth, 

 

and f = friction factor = 
8k

2

v
2  where  

ν is the “power –law” coefficient appearing in the vertical distribution of the tangential velocity. 

κ has a value of 0.4. ν has a value of 7 in straight channels and lower values in curved channels. 

The phase lag equation proposed by Zhou Chang and Stow (1993) is chosen because it was shown 

by Zhou Chang and Stow (1993) that the phase lag obtained by the equations proposed by them 

agreed better with experimentally measured phase lags than the phase lags obtained by the 

equations proposed by Kitanidis and Kennedy (1984), Ikeda and Nishimura (1986) and 

Johannesson and Parker (1989a). 

Zhou Chang and Stow’s (1993) equation is modified in the present analysis to the equation 

σ= k̂ tan
−1{πκ [1

κ
+(8

f )
1

2]d0

L }(31)  

where, 
^
k  is a coefficient which is to be obtained by matching the equation with the experimentally 

obtained phase lag for deep meander. 

By taking the values of k obtained by Bhattacharya (1995) from his experimental data and 

by curve fitting we get an empirical equation for k . The data used are given in Table 1, 

Table 1 

d/b ^
k    

0.363 0.425 
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0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Variation of k with d/b

d/b

k

Figure 

1 
By using a parabolic curve fitting, an equation for k in terms of d/b is obtained as given 

below 

                                   k= 4 .634±√3. 463 (d /b)−11. 44
                                                 (32)

 

 

The procedure adopted for finding out Λ involves finding it from the depth averaged 

tangential velocity,u ,(Bhattacharya,1995) 

                   

u= u
0
+u

0
[

n

r
cm

] Λ [sin
2 π

L
s+ tanσ cos

2 π

L
s ]

                                                 (33) 
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u

u
0

= 1+Λ [
n

r
cm

][ sin
2π

L
s+tanσ cos

2π

L
s ]

                                                  (34)                                                                     

or,                

Λ=

u

u
0

−1

[
n

r
cm

][ sin
2π

L
s+tanσ cos

2π

L
s ]

                                                           (35) 

where, 

                   

u
0
= (

m+1

m
)U [ 1−(

2 n

b
)m]

 

Again              

u
c
= [

m+1

m
]U

 

From tis equation we can get the different m at different sections (except those at which  
U
¿

u
c
¿

¿  where it is not possible to find m ) and averaged to get the value of m to be used. 

Table3.2 gives the values of m  

 

Table 4 

Serial No. m 

1 26 

2 58 

3 158 

 

And finally taking the data which is given below ( Bhattacharya,1995) 

 

Table 5 
Λ d/b 

0.385 0.195 

0.263 0.235 

0.150 0.365 

An equation for Λ is obtained by curve fitting. 

The equation for Λ is, 

                   Λ= 0.369±√0. 136−(0 .677−(d /b ) ……..       (36)          
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where,                             

v
max,s= σ=

r
c

r
(
m+1

m
)U

2π

L
(0 .369±√0 .136-0 . 283(0 . 677-d/b))[ cos

2π

L
σ− tanσ sin

2π

L
σ ]

1−(
2 n

b
)m ]+

¿
¿

U
rc

r
(

u

U
)2 [cos

2π

L
σ− tanσ sin

2π

L
s ] f (

z

d
)

[
1

2r cm

{(
b

2
)2−n

2 }−
1

mrcm

¿

¿  
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Figure 2 
 

  and     
σ= (4 .634±√3 . 4363(d /b−11 . 44 ) ) tan−1 [

π

κ
{

1

κ
+(

8

f
)1/2}

d
0

L
]

 

 

As an extension of the model for ʹu, if it is described to model the point tangential velocity, u0  it 

can be modeled by the equation 
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u= u0+u1(37)  

¿ú0(n1+1

n1
)(z

d)
1

n
1+ ú1(n2+1

n2
)(z

d)
1

n
2(38)  

Where ú0 , ú1  are as have already been modeled. Different power law coefficients ( n1 , n2 ) may be 

used in the zeroth order tangential velocity formulation and the first order tangential velocity 

formulation as has been done above if it is desired to stimulate experimentally any observed 

irregularities in the vertical distribution of the tangential velocity. However, using n1= n2  is 

sufficiently accurate for the most purposes. 

It may be noted that if n1= n2= ν , then the equation for u may be written as  

u= ú0(n1+1

n1
)(z

d)
1

ν+ú1(n2+1

n2
)(z

d)
1

ν (39)  

u= (ú0+ú1)(n1+1

n1
)(z

d)
1

ν (40)  

¿ú(n1+1

n1
)(z

d)
1

ν (41)  

Which is the model of the vertical distribution of the tangential velocities used by Odgaard (1986a, 

1989a) and is also the well-known “power law” for the vertical distribution of the stream wise 

velocity. Since the power law is not done in the present study. 

The point radial velocity is modelled as the summation of the depth-average radial velocity and a 

zero depth- average “residual” component of the radial velocity includes an assumption of its 

vertical distribution. 

Support for the assumption of a vertical distribution of the radial velocity is provided by Ikeda and 

Nishimura (1986) who assume that the radial velocity retains a certain shape in the vertical 

throughout the flow domain inn a shallow meander with changes only in magnitude and phase. This 

assumption has been shown to be approximately corrected by Johannesson and Parker (1989a). 

Any modelling of the radial velocity must incorporate in itself the net lateral mass flux which is 

present in the sinuous channel flow (but absent in fully developed constant-radius bend flow). 

Odgaard’s (1989a) vertical profile of the radial velocity is linear and his equation for the radial 

velocity is given by the following equation: 
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v= v́+2 v
,

s(z

d
−

1

2)(42)  

Where v = radial velocity, 

           v́  = depth-averaged radial velocity, 

          v
,

s = v s− v́  where v s = value of v at any water surface, 

           z = vertical coordinate, 

           d = local depth, 

The radial velocity distribution used by Kitanidis and Kennedy (1984) does not take into account 

the net lateral mass flux. The radial velocity distribution used by them has a linear vertical profile 

with the inward flux in balance. 

It seems that the vertical distribution of the radial velocities in a deep channel differs from that in a 

shallow channel in one significant point. In the shallow channels, a linear or roughly linear variation 

is present in the central portion of the vertical profile both for the meander and for fully developed 

constant- radius bend flows (Kikkawa, Ikeda and Kitagawa (1976), Falcon Ascanio and Kennedy 

(1983) but in a deep channel the vertical profile of the radial velocity does not show that 

characteristics and must be considered to be non-linear throughout. 

Experimental data from the present experiment is taken and by curve-fitting it is found to be the 

cubic parabola is the most suitable representation of the vertical distribution of the radial velocity. 

The residual component of the radial velocity, v R  is formulated as follows: 

v R= U
r0

r (
ú

U)
2

[cos
2π

L
s− tanσ sin

2 π

L
s]f(z

d)(43)   

Where f (
z

d
)  is a function of

z

d  . 

The most appropriate form of f (
z

d
)  is a cubic parabola and then Eqn. (5.35) may be written as 

follows: 

v R= U
r0

r (
ú

U )
2

[cos
2π

L
s− tanσ sin

2 π

L
s][C0+C1(z

d)+C2(z

d)
2

+C3(
z

d
)

3

](44)   

Where C0 , C1 , C2  and C3  are coefficients, all of which lie between -1 and 1. 
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The function [cos
2π

L
s− tanσ sin

2π

L
s] has been selected to be the same function that appears in 

the formulation of v́   . It is to be noted that v R vanishes at the side walls because ú  vanishes at 

the sidewalls. The terms (ú

U)
2

is modelled after Ikeda and Nishimura’s (1986) term 

^
f

2(ú

U)
2

which appears in their formulation of v R . This artificial function,
^
f , was used by Ikeda 

and Nishimura’s (1986) to make their formulation for v R  match at the sidewalls as their ú  does 

not satisfy the sidewall matching requirement. Such an artificial function has not been needed in the 

present study as here the formulation for ú  has been made in a way that ensures vanishing at the 

sidewalls. 

The four unknown coefficients appearing in the cubic parabola describing the vertical distribution 

of the residual component of the radial velocity are evaluated from experimental data. 

Therefore,  

                   
v

max,s= σ= ( v+v
R
)
max, s= σ

                                                                      (45)
 

              

v
max,s= σ=

r
c

r
(
m+1

m
)U

2π

L
Λ [ cos

2π

L
σ− tanσ sin

2 π

L
σ ]

[
1

2 r
cm

{(
b

2
)2−n2}−(

2

b
)m 1

r
cm

(m+2 )
{(

b

2
)m+2− nm+2)}]+

U
r

c

r
(
u

U
)2 [cos

2π

L
σ− tanσ sin

2π

L
s ] f (

z

d
)

                                 (46)  

Now it is assumed that m>>2 (which is justified by the experimental result of 

Bhattacharya, 1995), 

So, 
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v
max,s= σ=

r
c

r
(

m+1

m
)U

2π

L
Λ[ cos

2 π

L
σ− tanσ sin

2 π

L
σ ]

1−(
2 n

b
)m ]+

¿
¿

U
rc

r
(

u

U
)2 [ cos

2 π

L
σ− tanσ sin

2 π

L
s ] f (

z

d
)

[
1

2 rcm

{(
b

2
)2− n

2}−
1

mrcm

¿

¿                                  (47) 

v
max, s= σ=

r
c

r
(

m+1

m
)U

2π

L
(0 .369±√0 .136-0. 283(0 . 677-d/b))[ cos

2 π

L
σ− tanσ sin

2π

L
σ ]

1−(
2 n

b
)m ]+

¿
¿

U
r c

r
(

u

U
)2[ cos

2π

L
σ− tanσ sin

2π

L
s ] f (

z

d
). .. .. . .. .. . .. .. . .. .. . .. .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .(48 )

[
1

2 rcm

{(
b

2
)2−n2}−

1

mrcm

¿

¿  

 

 

Comparison of tangential and radial velocity distribution with those obtained by other 

investigators  

Odgaard (1989a) present the present formula for the depth averaged radial velocity at the centreline, 
v́c : 

v́c=
C

8
úc

b
2

dc

d

ds
(STC +UTC)(49) where 

 

C = coefficient  

 
úc = depth-averaged tangential velocity at the centerline 

dc = depth of the centreline 

STC = transverse bed slope at centerline, and 

UTC = normalized transverse velocity gradient at the centreline 

¿dc[ ∂∂n(
ú

ú)]c
 

For a right bed, STC = 0 and Odgaard’s equation for v́c  can be written in following form 
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v́c= ¿  

sinusoidal functionhaving dimensionof
1

length
2

(non−dimensionalconstant )X U b
2
X ¿

 

In the present modelling, v́c  can be written as  

(
2 π

L
s )

Λ

L rcm

cos(2 π

L
s)− Λ tanσ

L rcm

sin ¿

¿

v́c=(m̂+1

m̂+2)
π

4
U b

2
¿

 

which is also of the form  

v́c= ¿  

sinusoidal functionhaving dimensionof
1

length
2

(non−dimensionalconstant )X U b
2
X ¿

 

The laboratory and field data of  DeVriend and Geldof (1983), Kikkawa et al. (1976), Odgaard 

(1984), Zimmermann and Kenney (1978) and Throne et al. (1983) show that u is essentially  

constant along the channel centreline and that its variation in the transvers direction is nearly linear 

over the central portion of the cross section (Odgaard 1989a) 

In the general modelling, the expression for uc , the tangential velocity at the centerline can be 

written as follows  

uc= u0 ¿n= 0+u1 ¿n= 0  

¿u0 ¿n= 0(n1+1

n1
)(z

d)
1

n
1+u1¿n= 0(n2+1

n2
)(z

d)
1

n
2
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Now, 

(
2π

L
s)

sin (
2π

L
s)+ tanσ cos¿

ú1= ú0(
n

rcm

)Λ¿

 

and so ú1= 0  at the centerline  

So, uc= u0 ¿n= 0(n1+1

n1
)(z

d)
1

n
1=(m̂+1

m̂ )U(n1+1

n1
)(z

d)
1

n
1

 

Therefore uc is constant. 

In the present modelling, the derivative of the tangential velocity in the transverse direction can be 

written as  

(
2π

L
s)

sin(2π

L
s)+ tanσ cos¿

¿

∂u

∂n
=(m̂+1

m̂ )U[−(2

b)
m̂

m̂n
m̂− 1](n1+1

n1
)(z

d)
1

n1 +(m̂+1

m̂ )U[ 1

rcm

−1

r cm
(2

b)
m̂

(̂m+1)nm̂]Λ¿

 

 

which is constant only at the centreline. So, in the present modelling the transverse variation of the 

tangential velocity is linear at the centreline. 

Based on previous work where the velocity field in a constant radius band with d/b << 1 and 

d/ rc <<1 was solved by the perturbation method resulting in the finding that v́  had a parabolic 

distribution in the n direction (this solution had a good agreement with experiments), Yen and Ho 

(1990) adopted the following distribution of v́  for their work on bed evolution in (constant-radius) 

channel bends: 

v́= v́c[1−4(n

b)
2

](52)  

 

 

In the present modelling v́  and v́c  are as follows: 
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(
2π

L
s)

cos(2π

L
s)− tanσ sin ¿

¿

v́=
r c

r (m̂+1

m̂ )U
2π

L
Λ¿

 

(
2 π

L
s )

cos(2π

L
s)− tanσ sin ¿

¿

v́c=(m̂+1

m̂ )U
2 π

L
Λ¿

 

 

Therefore, v́  can be written as 

v́=
r c

r
v́c(m̂+2

m̂ )(2

b)
2

[2(m̂+1

m̂ )][1

2{(b

2)
2

−n
2}−(2

b)
m̂

1

(̂m+2){(b

2)
m̂+2

−n
m̂+2}](55)  

 

which can be written as  

v́=
r c

r
v́c(m̂+2

m̂ )[{1−(2n

b )
2

}−
2

(̂m+2){1−(2n

b )
m̂+2

}](56)  

 

If the metric coefficient is ignored  
rc

r
= 1   .Further, if d/ rc  << 1, that is if a shallow channel is 

considered m̂  is very large or  

m̂+2

m̂
= 1(57)  

And 
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2

(̂m+2)
= 0(58) It is noticed that  {1−(2n

b )
m̂+2

}  can never be more than 1. So ignoring the 

metric coefficient and for shallow flow, 

v́= v́c[1−4(n

b)
2

](59)  

 

Which is identical to the expression for v́  adopted by Yen and Ho (1990).     

 

Distribution of vertical velocity and pressure in the meandering channel 

An approximate formulation has been made for the distribution of vertical velocity and pressure in 

the meandering channel. The distribution of vertical velocity may have considerable implication for 

sediment transport, particularly for suspended sediment transport. 

In a constant curvature bend, where a single spiral system of circulation exists, the vertical velocity 

is directed upwards near the inner walls and downwards towards the outer wall. The vertical 

velocity is zero at both the inner and the outer wall to satisfy the “no-slip” condition. Also it is 

clearly zero at both the bed and the free surface.  

In the present study, it has been experimentally found that a single spiral system of circulation exists 

in a mildly meandering channel at flows that are not shallow. 

This observation, made on the basis of radial velocity measurements, enables one to state that the 

vertical velocity must be directed upwards near the inner wall and downwards near the outer wall. 

Thus it may be stated that along any vertical line, the velocity is the same sign throughout and it is 

possible to conveniently express the vertical distribution of the vertical velocity in terms of depth-

averaged vertical velocity.  
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ẃ s= 0, n=
b

4

 

Figure 3: Distribution of depth-averaged vertical velocity 

 

Since an approximate formulation is sought, the vertical distribution of the vertical velocity is 

considered to be parabolic and is considered to be given by an equation of the form 

w= ẃ [c1+c2(z

d)+c3(z

d)
2

](60)  

subject to the following conditions 

i. At z = 0, w = 0 

ii. At z = d, w = 0 

iii. At z = 
d

2 , w = wmax  

Where wmax  is the maximum vertical velocity on that vertical. For a parabolic distribution 

 wmax  = 
3

2
ẃ  . 

Section at which s = 

b/4 
+

+

+

- - -
b 

s

n 

THE Z-AXIS IS TOWARDS THE 
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Using the above conditions, the following equation is obtained: 

w= 6 ẃ [(z

d)−(
z

d)
2

](61)  

With the reference to the Fig.1 which shows the distribution of ẃ  in plan, the following for the 

transverse distribution of ẃ  at the section where s = 0 can be down 

ẃ s= 0= ẃ
s= 0,n=

b

4

sin
2π

b
n(62)

 

And adding a streamwise variation to the above distribution, the following equation is obtained 

ẃ= ẃ
s= 0,n=

b

4

sin
2 π

b
ncos

2π

L
s (63)

 

 
ẃ

s= 0,n=
b

4
must now be estimated. As per the current modelling, at any section the maximum value 

of point vertical velocity occurs at n =  
b

4  , z =
d

2 , If it is now assumed from dimensional 

considerations that 

ẃ
s= 0,n=

b

4
z=

d

2

=
b

d
vmax, s= 0(64)

 

Where vmax ,s = 0  is the maximum point radial velocity at the section s = 0, then since  

ẃ
s= 0, n=

b

4

=
2

3
ẃ

s= 0, n=
b

4
z =

d

2

(65)
 

ẃ
s= 0,n=

b

4

=
2

3

b

d
vmax, s= 0(66)

 

So, ẃ=
2

3

b

d
vmax ,s= 0 sin

2 π

b
ncos

2π

L
s (67)  

and w= 4
b

d
vmax, s= 0 sin

2π

b
ncos

2π

L
s [(z

d)−(
z

d)
2

](68)  

The above equation gives a rough estimate of the vertical velocity. The above equation can be 

further improved by considering that since the radial velocity and vertical velocity are both 

curvature-driven and are both components of the circulation, they are in phase with each other and 

their development lags behind the channel platform by the same amount. So, the maximum vertical 

velocity is found not at the section s = 0 but at section s = σ, where σ is the phase lag. Then the 

equation point vertical velocity becomes 
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w= 4
b

d
vmax, s= σ sin

2π

b
ncos

2π

L
(s−σ )[(z

d)−(
z

d)
2

] (69)  

The formulation for the point vertical velocity does not satisfy the continuity equation. However, 

since an idea of the overall nature of the flow is desired rather than an exact description of the flow 

is desired rather than an exact description of the flow details, this is not considered to be a serious 

defect. In Kitanidis and Kennedy (1984), the assumed distribution of the radial and vertical 

velocities violate the continuity equations locally and also violate the boundary conditions but are 

retained because , in context of their analysis, the details of distributions are not very important. 

For steady-state flow, using the following very simplified equation 

−∂( p+γz)

∂ z
= ρw

∂w

∂ z
(70)  

 

Where  

 

p = pressure 

γ = unit weight of water 

ρ = density of water 

The expression of w in terms of ẃ  and the boundary condition at the water surface, the following 

very approximate equation is obtained for the pressure 

ρ= γ (d− z)−36 ρ ẃ
2[1

2(
z

d)
2

−(z

d)
3

+
1

2(
z

d)
4

](71)  

 The equation reduce to the hydrostatic equation when ẃ = 0 because pressure has not been 

measured in the experiments, it has not been possible to compare the above equation with the actual 

pressure distribution. 

This equation is further expanded in the present study thereby getting, 

                   

p= γ (d− z )−16 ρ [
1

2
( z /d )2−( z /d )3+

1

2
( z /d )4 ] (

d

b
)2 V

max,s= 0
2 sin2 2 π

b
ncos2 2 π

L
( s− σ ) .. . .. .. . .(72)

 

So one can rewrite above equation as, 

     

p= γ (d− z )−16 ρ [
1

2
(

z

d
)2−(

z

d
)3+

1

2
(

z

d
)4 ](

d

b
)2sin2 2π

b
ncos2 2π

L
(s−σ )[φ ]2

        (73)
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Now the equation (73) can be rewritten as, 

        

p= γ (d− z )−16 ρ [
1

2
(

z

d
)2−(

z

d
)3+

1

2
(

z

d
)4 ](

d

b
)2 sin2 2π

b
ncos2 2π

L
(s−σ )[φ ]2 .. .. . .. .. .. (74 )

 

 where, φ is defined as  

              φ = vmax,s=σ 

From the equation (74) it can be concluded that if 

            

cos
2π

L
(s−σ )= 0

   then 

            
p= γ (d− z )

 

i.e pressure is hydrostatic. 

Now,        

s= σ+
L

4
+i

L

2
    

and we can say that at the sections 

s= σ+
L

4
+i

L

2
, the pressure is hydrostatic. 

So one can rewrite equation (74) as, 

     

p= γ (d− z )−16 ρ [
1

2
(

z

d
)2−(

z

d
)3+

1

2
(

z

d
)4 ](

d

b
)2sin2 2π

b
ncos2 2π

L
(s−σ )[φ ]2

    (75) 

 

It has not been attempted to obtain a more accurate expression for the pressure because of the 

peripheral nature of the pressure to the main purpose of the current work.Also, a boundary layer 

can be visualised very close to the channel bed where the pressure distribution is linearly 

varying with depth. If it is required to model the bed load transport by modeling the rolling 

motion or saltation of individual grains first, and then aggregating to find the total bed load, 
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then the static pressure distribution around the grain can be considered as linearly 

increasing with the depth.   

 

Conclusion 

A single spiral system of circulation exists for flow in the meandering channel used in the present 

experiments. In contrast to the flow in the much more strongly meandering channel of Kar (1977) 

where a double spiral system of circulation exists. This implies that in meandering channels with 

relatively less sinuosity a single spiral system of circulation exists and with increase in sinuosity, the 

single spiral system of circulation changes into a double spiral system of circulation. 

For the meandering channel of the present study, the thread of maximum tangential velocity lies 

close to the inner wall. This has also been found in the experimental work of Kar (1977) and is in 

contrast with the findings, present in the literature, for shallow meanders particularly with erodible 

beds. This indicates that whereas for shallow meanders the tangential velocity maximum is shifted 

outward by the secondary flow, this redistribution process is much less effective for larger depths of 

flow. 

It is experimentally observed in the present meandering channel that there is not much irregularity 

in the vertical distribution of the tangential velocity and so the well-established power law may be 

assumed to be valid. This is in contrast to the findings of Kar (1977) who found, for the much more 

strongly meandering channel used in his experiments, that the vertical distribution of the tangential 

velocity changes its nature and becomes highly irregular and the power law or logarithmic law do 

not hold good for the vertical distribution of the tangential velocity in meandering channels of high 

sinuosity. 

Even for a simple meander, Manning’s n is found to increase with increasing depth of flow. 

Manning’s n increases monotonically from 0.55 at the lowest depth to 0.85 at the highest depth. 

Therefore, the use of an average value of n does not result in an accurate prediction of the mean 

velocity of the simple meander. Thus it follows that Manning’s n is dependent on flow stage and 

field engineers who calculate the mean velocity in meanders by Manning’s formula assuming a 

fixed value of Manning’s n incur a significant error in their calculations. 

For a simple meander, the experimentally obtained phase lags are much less than the phase lags 

calculated using Zhou, Chang and Stow’s (1993) formula which was developed for use in shallow 

meanders. The coefficient k lies between 0 and 1 in all cases. 

The coefficient Λ is also found to lie between 0 and 1 in all cases. 
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The tangential velocity model for the meander shows a fairly good agreement with the observed 

tangential velocity where the calculated tangential velocity is more towards the outer bank whereas 

the observed tangential velocity is greater towards the inner bank. 

For the meandering channel, the vertical distribution of the radial velocity may be modelled in a 

cubic parabolic form.  
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