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Advancing 3D Medical Image Analysis with
Variable Dimension Transform based

Supervised 3D Pre-training
Shu Zhang, Zihao Li, Hong-Yu Zhou, Jiechao Ma and Yizhou Yu, Fellow, IEEE

Abstract— The difficulties in both data acquisition and
annotation substantially restrict the sample sizes of train-
ing datasets for 3D medical imaging applications. As a re-
sult, constructing high-performance 3D convolutional neu-
ral networks from scratch remains a difficult task in the
absence of a sufficient pre-training parameter. Previous
efforts on 3D pre-training have frequently relied on self-
supervised approaches, which use either predictive or con-
trastive learning on unlabeled data to build invariant 3D
representations. However, because of the unavailability of
large-scale supervision information, obtaining semantically
invariant and discriminative representations from these
learning frameworks remains problematic. In this paper, we
revisit an innovative yet simple fully-supervised 3D network
pre-training framework to take advantage of semantic su-
pervisions from large-scale 2D natural image datasets. With
a redesigned 3D network architecture, reformulated natural
images are used to address the problem of data scarcity
and develop powerful 3D representations. Comprehensive
experiments on four benchmark datasets demonstrate that
the proposed pre-trained models can effectively accelerate
convergence while also improving accuracy for a variety of
3D medical imaging tasks such as classification, segmen-
tation and detection. In addition, as compared to training
from scratch, it can save up to 60% of annotation efforts. On
the NIH DeepLesion dataset, it likewise achieves state-of-
the-art detection performance, outperforming earlier self-
supervised and fully-supervised pre-training approaches,
as well as methods that do training from scratch. To facili-
tate further development of 3D medical models, our code
and pre-trained model weights are publicly available at
https://github.com/urmagicsmine/CSPR.

Index Terms— 3D Medical Image, Transfer Learning, Vari-
able Dimension Transform, Supervised Pre-training

I. INTRODUCTION

With the rapid advancement of deep learning techniques,
fast and accurate medical image analysis systems have
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emerged as an instrumental tool for routine clinical practice.
These systems have been deployed with the objectives of
improving efficiency and accuracy in a variety of applications,
including but not limited to assisting radiologists in image
interpretation with automatic lesion detection [1], [2], improv-
ing the accuracy of prognostic evaluation or disease triage
with image classification [3]–[5], and improving the efficiency
and accuracy of target area delineation in radiotherapy with
automatic target area segmentation [6], [7]. Deep learning
algorithms show promising results in the medical field, similar
to their success on natural images; nevertheless, large-scale
annotated medical image datasets are still required to develop
deep learning models further.

Collecting sufficient annotated medical image data remains
a considerable difficulty when compared to building large-
scale annotated natural image datasets with millions or even
billions of annotations. On the one hand, medical data col-
lecting is strictly regulated for privacy reasons; on the other
hand, the requisite specialist knowledge and the tedious nature
of medical image annotation make the formation of new
annotated medical datasets prohibitively expensive and time-
consuming. As a result, transfer learning employing weights
pre-trained on large-scale 2D natural image datasets (e.g. Ima-
geNet [8]) has become the de-facto paradigm for speeding up
model convergence and improving overall model performance
on small-scale medical image datasets. Despite the fact that
there is a domain shift between natural images and medical
images, in reality, representations learned from natural images
can significantly improve feature discrimination ability for 2D
medical image analysis tasks [11], [12].

At now, pre-training approaches are largely developed for
2D CNNs. Not until recently, more researches have attempted
to solve this issue for 3D CNNs, i.e., proposing self-supervised
or fully-supervised models [24], [27], [29], [30] to pre-train
a universal 3D model, which can be subsequently utilized to
fine-tune 3D CNNs on the target task. Furthermore, because
non-annotated 3D medical data is on a much bigger scale than
annotated data, a rising amount of research attention has been
paid to learning self-supervised 3D representations by building
various proxy tasks on top of unannotated medical datasets.
These proxy tasks, which include but are not limited to
anatomical similarity models [24] and cube ordering [27], are
frequently reliant on the use of prior knowledge information.
They deeply mine free supervision signals from unlabeled
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data, and empirical results show that they outperform most
2D/2.5D approaches as well as 3D models trained from
scratch [13], [31].

Nonetheless, despite their effectiveness, unsupervised learn-
ing algorithms, including self-supervised learning, are fre-
quently overshadowed by supervised learning algorithms. For
example, as demonstrated in the most recent 3D pre-training
studies [24], [42], even state-of-the-art self-supervised learn-
ing algorithms could not outperform ImageNet pre-trained
models. This might be because, due to a lack of supervised
signals, semantically discriminative representations are diffi-
cult to be mined from un/self-supervised learning algorithms.
Unfortunately, there are no publicly accessible annotated 3D
medical image datasets that are large and diverse enough
to give adequate training data and supervision signals for
universal 3D feature learning. [30] proposed to build a large
3D heterogeneous medical dataset with diverse modalities,
target organs, and pathologies, and designing a heterogeneous
Med3D network to co-train on the multi-domain dataset.
However, the generated dataset is still too small to be useful
for pre-training 3D CNNs.

In this paper, we introduce a simple yet effective Supervised
pre-training technique based on Variable Dimension trans-
form (SVD-Net). The proposed SVD-Net is employed to
learn 3D representations from large-scale 2D natural image
datasets, which are then used for transfer learning in target
3D medical tasks. The data-scarce problem is addressed with
our proposed variable dimension transform, which reformulate
2D natural images to yield our source of 3D data. During
the process, the color information is transformed to pseudo-
3D structure information, which is then used to learn 3D
structural and textural representations. In contrast to self-
supervised approaches, we might employ high-level vision
tasks as proxy tasks to benefit from semantic supervision for
learning discriminative and invariant 3D representations.

The idea of pre-training a 3D network with 2D natural
images was initially proposed as a trick in our conference
paper [32], the objective of which is to construct 3D models
for universal lesion detection. This work significantly expands
on the preceding conference paper in the following aspects:
Firstly, we revisit the mixed usage of RGB images and adja-
cent slices of 3D volume images in medical problems to shed
lights on the root of our proposed idea, and further re-establish
the idea as the variable dimension transform based supervised
pre-training technique. Secondly, this work highlights a com-
prehensive experimental analysis to confirm the efficacy of the
proposed 3D pre-training approach. To validate its universal
effectiveness on 3D medical image analysis tasks, we conduct
experiments on four benchmark 3D medical datasets and com-
pare our proposed pre-trained 3D models to existing state-of-
the-art self-supervised and fully-supervised pre-trained models
on four target tasks, namely, pulmonary nodule classification,
pulmonary nodule segmentation, liver segmentation, and lesion
detection. The SVD-Net, as simple as it appears, is quite
effective in practical applications, supporting the principle of
translating color information into 3D structural and textual
information for efficient feature learning. Last but not least,
comprehensive experiments are designed to investigate the

design decisions that contribute to the success of the compact
SVD-Net.

II. RELATED WORK

In clinical practice, the inspection of 3D medical data
requires information on 3D shape and texture. Nevertheless,
popular 2D deep learning based methods, such as [19], can
only capture spatial correlation while leaving the rich 3D
context information unexploited. The use of 3D convolution
is the most straightforward solution for effective 3D context
modeling. However, compared to 2D CNNs, training deep
3D CNNs from scratch is much more difficult and prone to
overfitting due to the increased number of parameters. There-
fore, the research of 3D pre-trained models are of significant
importance for its development.

A. Transfer Learning from 2D Weights

To alleviate the problem of the lack of 3D pre-trained mod-
els, some studies explored to generate 3D weights from 2D
ImageNet pre-trained models for further transfer learning. I3D
[22] proposed to repeat 2D convolution kernels along the new
axis for k times to form the K×K×K 3D convolution layers.
Similarly, [9] extended the 2D pre-trained convolution kernels
to 3D with the additional parameters initialized by the means
of zero padding. However, these methods failed to model 3D
context in the z-axis with the repeated 2D kernels. It can
only be adopted to capture spatial information from multiple
axial slices. To make up for the inconsistent representation
ability along the depth axis and the height/width axis, ACS
[20] further performed a symmetric pseudo-3D convolution
operation. It expanded the dimensions of 2D convolution ker-
nel along depth, height and width axis respectively to generate
three view-based 3D convolution kernels. Input feature maps
are divided into three parts and view-based 3D convolutions
are performed on each part. With such a design, 2D weights
can be seamlessly copied to the newly generate view-based
3D kernels and the resultant 3D convolutional layers have the
ability to model structure and texture information in all three
views. However, the kernel-by-kernel conversion might break
the correlation among subsequent layers and thus potentially
hurt the performance. Therefore, there are more methods that
explore to learning 3D representations as a whole network
rather than converting existing pre-trained 2D weights kernel
by kernel separately.

B. Fully-supervised 3D Representation Learning
Methods

NiftyNet [29] provided a modular pipeline for a range of
medical imaging applications as well as a manually annotated
abdominal CT dataset, which contains 90 abdominal CTs
collected from publicly available datasets. There are in total
8 kinds of organs annotated by radiologists with pixel-level
annotation. The scale of this dataset is relatively small and
is not sufficient for effective training of large 3D convolution
models. Considering the difficulty of data collection and man-
ual annotation, it’s impractical to acquire a single large-scale,
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TABLE I
DIFFERENT 3D REPRESENTATION LEARNING METHODS AND THEIR CHARACTERISTICS.

Pre-train Type Method Source modality Dataset Scale Cross Domain Training Task
Self-supervised Rubik’s Cube CT Medium N Restoration
Self-supervised Models Genesis CT Medium N Restoration

Supervised NiftyNet CT Small N Segmentation
Supervised Med3D CT,MRI Medium N Segmentation
Supervised Kinetics Video Data Large Y Classification
Supervised I3D Natural Image Very Large Y Classification

Fig. 1. Illustration of the Variable Dimension Transform. To take advantage of model weights pre-trained on ImageNet, 3D medical images are
often reassembled to simulate 2D natural images. On the contrary, we reversely reformulate 2D natural images to the form of 3D medical images
for 3D supervised pre-training. During the variable Dimension transform process, color information in the original 2D images are transformed to
pseudo 3D structure information and would be exploited by 3D CNNs for effective feature learning. Best viewed in color and with zoom.

high-quality 3D image dataset for 3D CNN pre-training. To
address this issue, [30] aggregated eight datasets from several
medical image challenges to build a larger heterogeneous
dataset. They further proposed a heterogeneous 3D network
called Med3D to obtain a series of pre-trained CNN models
with supervised tasks like segmentation. The Med3D enjoys
the advantage of a similar data distribution with a number
of target tasks, but its small data scale severely limits the
performance of the pre-trained models.

C. Self-supervised 3D Representation Learning
Methods

One of the common strategies for self-supervised learning
is generating artificial data and label pairs by constructing an
image proxy task (e.g. image restoration), and training the
network in a fully-supervised manner to learn good represen-
tations.

Authors in [23] proposed to learn semantic features by a
context restoration proxy task which randomly picking some
boxes in medical images and exchanging their content. [24]
further explored more image transformations including non-
linear pixel value mapping, local pixel shuffling, image inner
and outer cutouts, and built a set of pre-trained models nick-
named Models Genesis for different medical imaging tasks.
[25] extended Models Genesis to conduct Semantic Genesis

which leveraged semantically enriched visual representations
from the consistent and recurrent anatomical patterns.

Authors in [26] presented Rubik’s Cube, their proxy task
is to predict the order and rotation state of the 3D sub-cubes
cropped from the entire 3D data cube. [27] added an extra
cutout restoration task based on Rubik’s Cube to achieve better
generalization ability. Furthermore, [28] adopted a GAN-like
structure to recover the original state of Rubik’s cube from
the disarranged state so as to better exploit the inherent 3D
anatomical information of organs.

In TableI, we give a brief summary of some of the aforemen-
tioned pre-trained models according to their data modalities,
dataset scales and types of proxy task.

III. METHODS

To address the deficiency of training 3D CNNs from scratch,
in this paper, we propose to pre-train a high-performance 3D
CNN by leveraging large-scale supervised learning tasks in
the natural image domain. The obtained generic and powerful
3D representations can be further used as pre-trained weights
to boost the performance of target 3D medical image analysis
tasks through transfer learning (model fine-tuning).

Details of how our SVD-Net are trained and transferred
will be elaborated in the following subsections. Two key
questions regarding fully-supervised 3D pre-training using
natural images are addressed, i.e. how to construct large-scale
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3D data from natural images and how to design 3D network
architectures used in such pre-training.

A. Variable Dimension Transform
Deep neural network models pre-trained in the natural

image domain have been successfully explored for medical
imaging tasks. For instance, for 3D medical imaging problems,
researchers often combine three adjacent slices to form a three-
channel RGB image [31], [33] so that weights pre-trained
on ImageNet can be exploited for transfer learning. The left
part of Figure 1 illustrates the process of converting adjacent
slices in CT scan to RGB images. For most well-aligned
structures, their appearance after reassembling resembles the
original slice input. As for pulmonary vessels, the change
in their position and shape among neighboring slices in the
original 3D space is transformed into color information in
the RGB space. Thus, after such a reformulation, rich 3D
structural information is preserved in the 2D space through
color encoding. For such reformulated 2D data, color encodes
completely different information from that of the original
natural images. Nonetheless, it can still benefit from ImageNet
pre-trained weights to achieve better performance.

Intuitively, the 3D-to-2D reformulation process motivates
us to conduct a reverse reformulation, where we call it
the variable dimension transform. It decomposes a natural
image with RGB channels into three adjacent slices in the
3D space. As shown in the right part of Figure 1, given
a 2D natural image X ∈ (Cin, Hin,Win) where Cin = 3
denotes the three channels of the RGB image, we reshape it
as (C ′, D′, Hin,Win) where D′ = Cin = 3 and C ′ = 1 to
form a pseudo 3D input. Through such reverse reformulation,
we convert the color information in the original 2D natural
image into complex 3D structural information in the simulated
3D image. 3D convolution kernels learned on such pseudo-3D
data can potentially model complex 3D structures and textures
that exist in 3D medical images.

With the proposed variable dimension transform, we can
construct large-scale 3D datasets for fully-supervised 3D pre-
training as the natural image domain has by far the largest
annotation scale for visual learning. Supervision signals in the
large-scale annotated datasets, which are the fundamental driv-
ing force for learning generic and powerful 3D representations,
can be exploited for 3D feature learning.

B. Architecture Design and Supervision Tasks
We leverage existing popular backbone architectures for

feature extraction and focus on training such backbone net-
works for 3D transfer learning. When integrated with proper
necks (e.g. FPN [14]), decoders (e.g. U-Net [7], PSPNet [15])
or heads (R-CNN head [2]), these backbone networks can
be further extended to carry out detection, segmentation and
classification tasks.

Off-the-shelf 3D backbones perform down-sampling along
all D,H,W axes after layers of convolutions, while for our
pseudo-3D input, the size of the depth dimension is far less
than that of the height and width dimensions. Simply applying
the original down-sampling operation would degenerate the

Fig. 2. Network architecture for pre-training detection models on the
MS-COCO Dataset. The proposed architecture has a 3D backbone
and a 2D FPN neck, a 2D RPN and an RCNN head. The input
image is reformulated as 3D data, while the object-level bounding box
annotations remain 2D. The GTM is adopted to transform 3D features to
2D for further prediction.

depth axis to one single slice, which would apparently neutral-
ize the learning ability of 3D context modeling. To tackle this
problem, we keep the resolution of the depth dimension fixed
by setting all the down-sampling ratios (pooling or convolution
stride) along the depth axis to 1, while retaining original
ratios along the height and width axes. In the meantime, zero
padding with the size of (kernel size − 1)/2 is adopted
along the z-axis to preserve the depth of the 3D feature
maps. The shape of the output from the modified 3D CNN
is (Dout, Cout, Hout,Wout) with Dout kept as 3.
Pre-training with Classification Task: Benefiting from such
a modified architecture, we can make use of a large number
of annotated natural images for fully supervised pre-training.
For example, when the pre-training task is the ImageNet
classification task, after obtaining the 3D feature map, we
can use a 3D global average pooling layer to aggregate the
feature vector, and employ a fully-connected layer afterwards
to produce the final category prediction for the input image.
Denote the input image and its category label as x and y,
and the modified 3D classification network as θ, we adopt
cross entropy as the loss function, which can be described as
follows:

Lc = −
∑
i

y log(θ(x)). (1)

Pre-training with Detection Task: The ImageNet dataset was
collected from the Internet, and each image in the dataset has
been associated with a human-annotated category label. Due
to the diversity of data sources, a significant number of images
have more than one object categories, while only one of them
was taken as the image category label and the rest was ignored.
This would force the models to learn partial image features
only, and may hurt performance on dense prediction tasks, e.g.
object detection. There are similar conclusions [34] suggesting
that taking model weights pre-trained on appropriate tasks as
initial weights provides better performance.

In this paper, we also consider object detection on another
widely used dataset, MS-COCO, which contains millions of
object-level annotations, as a supervised pre-training task to
explore the influence brought by different proxy and target
tasks. Figure 2 illustrates the modified FPN architecture used
for pre-training with a detection task. As in a classification
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task, the backbone network also extracts 3D feature maps from
the reformulated natural images.

To accommodate for predicting of 2D ground-truth bound-
ing box annotations, we need to convert the 3D feature
maps back to 2D ones before feeding them to the RPN and
RCNN heads for further prediction. Specifically, we introduce
a group transform module (GTM) to aggregate 3D feature
maps into 2D ones. For instance, for a 3D feature map with
size (Cout, 3, Hout,Wout), we first view the 3D feature map
as a 2D one with size (3Cout, Hout,Wout), and then apply
a group convolutional layer with Cout groups (each group
contains 3 channels) to fuse features from all neighboring
slices to yield the final 2D feature maps (Cout, Hout,Wout).
Afterwards, a 2D FPN and a detection head are appended to
its output to produce the final 2D predictions.

Generalizing our proposed method to pre-training with a
segmentation task (e.g. Pascal VOC [38] and Cityscapes [39])
is straightforward. However, due to the limited data scale of
existing segmentation datasets, we do not adopt any segmenta-
tion task as a supervised pre-training task in our experiments.

C. Transferring to Medical Imaging Tasks
Once we have obtained the pre-trained network with mod-

ified architecture, it is convenient to transfer it to various
3D medical imaging modalities and tasks. We could simply
initialize a vanilla ResNet3D network with the pre-trained
weights from the modified backbone by copying correspond-
ing parameters form the Conv or BatchNorm layers and
neglecting pooling or stride configurations in the modified
backbone. 3D down-sampling operations should be configured
to be suitable for target tasks. Then according to the type of
the target task, we simply add a randomly initialized neck,
decoder or head to the backbone.

It is worth noting that our pre-training framework is both
model-independent and task-independent. One can pre-train
an arbitrary 3D CNN architecture on any 2D annotated image
dataset, which makes the proposed method more flexible and
generalizable.

IV. EXPERIMENTS

In this section, we first report the performance of the pro-
posed pre-training method on proxy tasks of 2D natural image
datasets. In the next part, we conduct extensive experiments
on different target tasks including classification, segmentation
and detection, to analyze the effectiveness and generalization
of our 3D pre-training method.

A. Pre-training on Natural Image Dataset
1) Dataset and Implementation Details: Dataset: The Im-

ageNet [8] classification dataset provided by ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) contains
around 1.2 million natural images which belong to 1000
classes. The images were collected from the Internet and la-
beled by humans manually. MS-COCO [10] is the most widely
used dataset for general object detection. It is composed of
118k natural images and a total of 0.9 million bounding boxes
annotations for 80 categories.

Both datasets provide large varieties in data distribution and
include rich semantic supervision for learning discriminative
and invariant representations.
Implementation Details: For 3D network pre-training, we
adopt ResNet with 3D convolution with our proposed modifi-
cations as the backbone. 2D images are transformed to pseudo-
3D format using variable dimension transform as its input.
For pre-training with the ImageNet classification task, we first
resize images to 3 × 1 × 256 × 256 and then randomly crop
them to the size of 3×1×224×224. Models are trained with
the cross entropy loss for 100 epochs. The learning rate is
initially set to 1e-1 and decayed with the cosine annealing
policy. Besides, we adopt label smoothing [40] for better
generalization ability.

For pre-training with MS-COCO, the proposed modi-
fied FPN architecture is adopted. We perform horizon-
tal flipping as well as multi-scale training with scales of
(384, 448, 512, 576, 640) as data augmentation. Since the CNN
parameters are randomly initialized, we apply longer training
steps as described in [41] to ensure model convergence. The
models are trained for 72 epochs with an initial learning rate
of 2e-2, which is further decreased by a factor of 10 after 48
and 66 epochs. The batch size on each GPU is set to 2 due
to limited GPU memory, and we use group normalization to
replace batch normalization to stabilize training. Besides the
ResNet3D architecture, we also pre-train a P3D [?] based 3D
FPN model to acquire computational and memory-efficient 3D
context modeling.

Both pre-training tasks are implemented using the open-
mmlab toolbox1. Stochastic Gradient Descent (SGD) with a
momentum of 0.9 and weight decay of 0.0001 is adopted as
the optimizer.

2) Performance Evaluation on the Proxy Tasks: With the
proposed data reformulation and architecture modification, we
are able to train 3D ResNets on 2D natural images. Perfor-
mances of our proposed 3D networks pre-trained on ImageNet,
along with detailed time and space complexity information are
presented in Table II. Classification performance of baseline
2D networks are also reported for a fair comparison. It’s worth
noting that all the 3D models get higher top-1 and top-5 accu-
racy compared with their corresponding 2D counterparts under
the same training settings. This suggests that the proposed
variable dimension transform doesn’t harm the performances
on proxy tasks; on the contrary, benefiting from enhanced
representation power from an additional dimension, the pro-
posed 3D models can yield better performance given the same
network depth. For pre-training on MS-COCO, our detection
model with ResNet3D-18 achieves a mean average precision
(MAP) of 34.2, while our detection model with ResNet3D-50
and P3D-63 achieves comparable detection performance (37.0
vs 36.5).

B. Transfer to 3D Medical Imaging Tasks
By pre-training on either ImageNet or MS-COCO, we are

able to obtain 3D backbone networks for transfer learning. In
the next few sections, to demonstrate the generalization ability

1https://github.com/open-mmlab
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TABLE II
NUMBER OF PARAMETERS, FLOPS AND IMAGENET PRE-TRAINING

PERFORMANCE OF DIFFERENT MODEL ARCHITECTURES.

Models Params(M) Flops(G) Top-1 (%) Top-5 (%)

ResNet-18 11.69 1.82 70.07 89.44
ResNet-34 21.80 3.68 73.85 91.53
ResNet-50 25.56 4.12 76.55 93.15

Our ResNet3D-18 33.67 15.99 73.43 91.31
Our ResNet3D-34 63.98 32.65 76.11 92.71
Our ResNet3D-50 48.20 23.93 77.45 93.67

TABLE III
DICE COEFFICIENT ON LIDC-IDRI SEGMENTATION TASK. RESULTS ARE

GIVEN AS mean ± standard deviation FORMAT.

Methods Backbone Dice P-value

Scratch ResNet3D-18 75.12± 0.23 0.00
Med3D ResNet3D-18 75.29± 0.16 0.00
Models Genesis U-Net 3D 74.67± 0.28 0.00
ACS scratch ResNet3D-18 74.55 + 0.35 0.00
ACS ResNet3D-18 75.65± 0.22 0.06
I3D ResNet3D-18 74.98± 0.38 0.00
Kinetics ResNet3D-18 75.62± 0.17 0.02

Ours ResNet3D-18 75.95 ± 0.16 −

and effectiveness of the proposed pre-trained models, we will
evaluate our pre-trained models on three fundamental medical
scenarios: 3D medical data classification, segmentation and
detection with four specific medical imaging problems in the
following three sub-sections.

As have been explained in Sec III-C, the pre-trained 3D
backbones can be conveniently adapted to new imaging tasks.
To train the newly generated models on target tasks, we can
either fine-tune all the layers in the network or keep some of
the lower-level layers fixed and only fine-tune the subsequent
layers. In all our implementations, we fine-tune all the layers
in the network unless otherwise specified.

To provide a thorough model comparison, we include sev-
eral state-of-the-art 3D pre-training methods in our experi-
ment as well as the baseline of training 3D networks from
Scratch. For self-supervised methods, we mainly compare
our models with Models Genesis2 [24], the most recent
state-of-the-art for self-supervised representation learning. For
fully-supervised methods, Med3D3 [30] and 3D ResNet pre-
trained on Kinetics4 [22] are included for comparison, both of
which show impressive performance and have released their
pre-trained weights to the public. For methods that convert
2D pre-trained weights, we compare our models with the
classic I3D [22] and the newly proposed ACS5 [20], which
have achieved competitive performance on many 3D medical
imaging tasks [16]. For all the compared methods, we use their
publicly released model architecture and pre-trained weights
in all our experiments. All compared models adopt the ResNet

2Models Genesis: https://github.com/MrGiovanni/ModelsGenesis
3Med3D: https://github.com/Tencent/MedicalNet
4Kinetics: https://github.com/kenshohara/3D-ResNets-PyTorch
5ACS: https://github.com/M3DV/ACSConv

based architecture, except for Models Genesis, whose official
pre-trained models are based on a 3D U-Net architecture. If not
otherwise specified, ResNet models pre-trained on ImageNet
are adopted for evaluation of our proposed method in all the
following experiments.

C. Lung Nodule Classification and Segmentation

1) Dataset and Implementation Details: Dataset: The Lung
Image Database Consortium image collection (LIDC-IDRI)
[36] is a large scale lung nodule dataset that consists of 2,669
nodules from 1,018 CT scans. Each nodule is annotated by up
to 4 radiologists, which has pixel-level mask annotations for
lung nodule segmentation and 5-level malignancy scores for
malignancy classification.

Following the prior works [20], [21], only nodules with
diameters ≥ 3mm are adopted in our study, since smaller
nodules are not considered to be clinically relevant by current
screening protocols. For both tasks, we apply the same data
split as used in ACS [20] for model training and evaluation.
Specifically, for lung nodule segmentation, a total of 2,142
samples are used for training and 526 samples for testing.
The Dice coefficient score is reported for model comparison.

With regards to lung nodule classification, nodules with
uncertain annotations (level 3) are further ignored to re-
duce ambiguity for malignancy evaluation. A binary benign-
malignant classification task is conducted by grouping level
1,2 to the benign and level 4,5 to the malignant class. Finally,
as done in ACS, we enrolled 1,633 nodules for the lung nod-
ule classification, including 1,156 benign and 556 malignant
nodules. We use a series of metrics to evaluate the two-class
classification problem, including AUC, accuracy, sensitivity,
specificity, precision and F-score for evaluation, among which,
the AUC is the main compared metric.
Implementation Details: ResNet3D-18 is employed as the
backbone for all the compared methods in this experiment,
except for Models Genesis, which is based on a 3D U-Net
architecture. With regards to nodule segmentation, as done in
ACS, to keep a higher resolution for the final output feature
maps, we change the stride of the first convolution layer and
the third res-block in backbone to 1, and remove the first max-
pooling layer. The change in the stride of the convolutional
layer would not affect the load of the pre-trained weights.
Then, a light-weight FCN-like [?] module which consists of
two convolution and up-sample layers is employed as the
decoder for segmentation map prediction. We use ResNet-
18 as the backbone for most experiments except Models
Genesis, whose official implementation is based on a U-Net-
like structure.

For nodule classification, we use the Adam [?] optimizer
with an initial learning rate (lr) of 5e-4 to train all compared
models for 100 epochs. The learning rate is decreased by
a factor of 10 after 30, 60 and 90 epochs respectively. The
polynomial learning rate policy with power of 0.9, initial lr
of 1e-3 and min lr of 1e-6 are used for all nodule segmentation
models except Models Genesis with U-Net structure, for which
lr is set to 1e-4 to achieve its best performance. A dice
loss and a cross-entropy loss with a loss weight of (0.3, 1.0)

https://github.com/MrGiovanni/ModelsGenesis
https://github.com/Tencent/MedicalNet
https://github.com/kenshohara/3D-ResNets-PyTorch
https://github.com/M3DV/ACSConv
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TABLE IV
AUC ON LIDC-IDRI CLASSIFICATION TASK. RESULTS ARE GIVEN AS mean ± standard deviation FORMAT.

Methods Accuracy AUC F1-score Precision Recall/Sensitivity Specificity P-value

Scratch 85.10 ± 1.56 92.75 ± 0.58 71.01 ± 1.65 59.68 ± 3.52 88.13 ± 3.64 84.31 ± 2.74 0.00
Med3D 83.81 ± 2.68 86.50 ± 1.06 65.68 ± 2.73 59.59 ± 6.65 74.37 ± 5.28 86.26 ± 4.57 0.00
Models Genesis 86.32 ± 1.23 94.18 ± 0.43 73.14 ± 1.65 61.71 ± 2.94 90.00 ± 2.12 85.37 ± 1.90 0.03
ACS Scratch 85.10 ± 1.79 92.82 ± 0.40 70.98 ± 1.78 59.84 ± 4.12 87.81 ± 3.48 84.39 ± 3.12 0.00
ACS 83.93 ± 2.07 93.54 ± 0.37 70.30 ± 1.91 57.31 ± 3.90 91.56 ± 4.03 81.95 ± 3.61 0.00
I3D 84.77 ± 1.33 93.23 ± 0.55 70.25 ± 1.24 59.16 ± 3.04 86.87 ± 3.51 84.23 ± 2.47 0.00
Kinetics 84.58 ± 1.26 94.04 ± 0.32 70.43 ± 1.59 58.44 ± 2.52 88.75 ± 1.17 83.50 ± 1.79 0.00

Ours 85.49 ± 0.98 94.84± 0.22 72.15 ± 0.79 59.92 ± 2.37 90.94 ± 3.34 84.06 ± 2.05 −

are used for network supervision. Random center-cropping
is implemented to generate 48 × 48 × 48 image patches as
input. We use random center-cropping/flipping/axis-rotation
as data augmentation in both classification and segmentation
experiments.

We repeat all experiments by 5 times and report the mean
and standard deviation for all evaluation metrics. In each run,
we fix the random seed for all compared methods to reduce
the difference incurred by random data augmentation.

2) Performance Evaluation: The experimental results of dif-
ferent methods on lung nodule classification task are shown
in Table IV. As done in [24] and [20], we also employ AUC
as the main compared evaluation metric. It reflects the overall
performance of a binary classifier and is not affected by class
imbalance problems. On the contrary, accuracy, sensitivity and
precision rely on the selection of the threshold and may vary
greatly given different thresholds.

It can be observed that our proposed pre-trained ResNet3D-
18 model outperforms competing methods significantly. Our
pre-trained model surpasses the model trained from scratch
by 2.09%, demonstrating the effectiveness of the proposed
pre-training approach. What’s more, we achieve better per-
formance than the state-of-the-art self-supervised pre-training
approach, Models Genesis, which is pre-trained on a subset
of the LIDC dataset. Meanwhile, other natural image pre-
trained methods (ACS, I3D, Kinetics) also obtain considerable
performance advantage compared with training from scratch,
revealing the potential of transferring knowledge learned from
large-scale natural image datasets to different domains and
tasks.

Independent two-sample t-test is performed between our
proposed method and other compared methods with the AUC
metric. All the compared pairs are statistically significantly
different at p=0.05 level, some of them are even significantly
different at p=0.01 and p=0.001 level. These clearly prove
that our proposed supervised pre-training framework is able
to acquire powerful 3D representations for transfer learning
on medical image analysis.

Table III shows the mean and standard deviation of the
dice score of different methods on the LIDC segmentation
task. Our pre-trained model consistently achieves a higher
dice score compared with other methods. With the pre-trained
weights learned from ImageNet, our nodule segmentation
model obtains a dice score improvement of 0.83% compared
with training from scratch.

TABLE V
DICE COEFFICIENT PER CASE (DPC) FOR LIVER SEGMENTATION ON

LITS. RESULTS ARE GIVEN AS mean ± standard deviation

FORMAT.

Methods Backbone DPC P-value

Scratch ResNet3D-18 92.59± 0.41 0.00
Med3D ResNet3D-18 93.71± 0.54 0.00
Models Genesis U-Net 3D 95.68± 0.14 0.02
ACS ResNet3D-18 95.64± 0.37 0.08
I3D ResNet3D-18 94.75± 0.57 0.00
Kinetics ResNet3D-18 95.59± 0.33 0.04

Ours (Fix-Res1) ResNet3D-18 95.82± 0.22 0.15
Ours ResNet3D-18 96.07 ± 0.23 -

D. Liver Segmentation

1) Dataset and Implementation Details: Dataset: In this
section, we further validate our proposed method on a chal-
lenging 3D medical image segmentation dataset. The Liver
Tumor Segmentation Benchmark (LiTS) [17] is composed of
201 contrast-enhanced abdominal CT scans collected from
several clinical centers, including 131 volumes for training and
volumes for online evaluation. In this experiment, we only
use 131 scans whose annotations are publicly available for
developing 3D segmentation networks. Segmentation masks
of both liver and liver tumors are provided on this dataset.
For our experiments, the segmentation target is liver only. The
pixel spacing of CT scans ranges from 0.56˜1.0 mm in the
xy-plane and the slice spacing ranges from 0.45˜6.0 mm in
z-axis.

To remove irrelevant information, we clip the Hounsfield
Unit (HU) value to [-200, 250] and then normalize it to [0,
255]. Slice spacing is normalized to 1 mm to mitigate its
impact on performance. Following the evaluation protocols
of the LiTS challenge, we evaluated the liver segmentation
performance with an average of Dice per volume score (Dice
per case).
Implementation Details: We build a 3D U-Net with
ResNet3D-18 as the backbone for liver segmentation. The
stride of the first convolution layer is changed to 1 to maintain
full image resolution after the stem layers. Models are trained
with combined supervision from the dice loss and a cross-
entropy loss with a loss weight of (0.5, 1.0). At the training
stage, 3D patches with the size of 32×256×256 are cropped
out from the normalized CT scans to serve as the network
input. For network inference, we densely crop 32×256×256
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Fig. 3. Visual comparison of our proposed methods with competing pre-training methods and training from scratch on the LITS dataset.

patches with a sliding stride of 12 × 128 × 128 to get the
prediction for the whole CT. Data augmentation in the training
stage includes random cropping, flipping and re-scaling, and
no test-time augmentation is implemented. Adam method with
an initial lr of 1e-4 is used for optimization. We use polyno-
mial to schedule the learning rate with a power of 0.9 and min
lr of 1e-6. We randomly split the dataset into training (105
patients), validation (13 patients) and test (13 patients) subsets.
We train all the models for 500 epochs. Best performed models
on the validation set are used to report the final performance on
the test set. Post-processing is implemented by only keeping
the largest connected components in the 3D volume.

In this experiment, we also repeat all experiments by 5
times with fixed random seeds and report mean and standard
deviation for all evaluation metrics. It takes approximately
three hours to run a ResNet3D U-Net experiment on 8 Titan-
XP GPUs.

2) Performance Evaluation and Ablation Study: As shown in
Table V, all the pre-training methods significantly improve the
dice score compared to training from scratch. Our pre-trained
model achieves the best performance of 96.07%, consistently
surpassing all the compared methods (3.48% higher than
training from scratch). We also performed an independent
two-sample t-test between our proposed method and other
compared methods. The superiority of our SVD-Net is statisti-
cally significant (p < 0.05) for almost all competing methods,
except for ACS (marginally significant, i.e. p < 0.1). Visual
comparison of the segmentation results on three CT volumes
from the test set is provided in Figure 3.

Among the competing methods, Models Genesis, which
adopts the in-domain medical data for feature learning,
achieves the best performance. It should be noted that the
UNet-3D network used by Models Genesis is slightly larger
than the ResNet3D U-Net employed by all other methods.

To further study the impact of domain difference on the
performance of transfer learning, we conduct an ablation study
on our proposed SVD-Net. Specifically, by keeping the pre-
trained weights on the stem layers and the first ResBlock fixed
during fine-tuning on the target task (i.e. Ours (Fix-Res1)), we
achieve a dice score of 95.82%, which still outperforms all
the competing methods. And the difference between Ours and
Ours-Fix-Res1 is not significant (p-value > 0.1). This indicates
that shallow features learned from our pseudo-3D data can
be well generalized to medical data without any further fine-
tuning, validating our motivation for learning representations
from cross-domain data.

E. Universal Lesion Detection

1) Dataset and Implementation Details: Dataset: The NIH
DeepLesion is a large-scale dataset for universal lesion detec-
tion, which contains 32,735 lesions on 32,120 axial CT slices
captured from 4,427 patients. RECIST diameter coordinates
and bounding boxes are provided on the key slices, with
adjacent slices (above and below 30mm) also provided as
contextual information. Only bounding box annotations are
used in this experiment. The official split of DeepLesion with
training (70%), validation (15%), and test (15%) sets are used
in our experiments. We evaluate all the compared methods on
the test set by reporting sensitivities at different false positives
(FPs) per image and their average (mFROC). As for pre-
processing, the Hounsfield units (HU) are clipped into the
range of [−1024, 1050]. We also implement interpolation in
the z-axis to normalize the intervals of all CT slices to 2.5mm.
Implementation Details: All the compared methods take 9
consecutive slices as input, which can be represented as a
gray-scale 3D tensor of 1 × 9 × 512 × 512. Since only 2D
annotations (2D bounding boxes on the key slice) are provided
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in the DeepLesion dataset, we use a similar architecture as
MP3D [32] for lesion detection. MP3D neglects all the down-
sampling operations for the z-axis to keep the depth of all
backbone outputs as 9. In our implementation, to further
improve model efficiency, we conduct down-sampling for
the z-axis like the original ResNet architecture on all the
res-blocks, which will result in 3D feature maps of size
1 × (9, 5, 3, 1, 1) × H ×W for each FPN level. ResNet3D-
18 is adopted as the backbone network for comparison with
competing pre-trained methods.

Anchor scales of FPN are set to (16, 32, 64, 128, 256) to
improve detection performance for small lesions. We ap-
ply multi-scale training with scales randomly sampled from
(384, 448, 512, 576, 640). Apart from re-scaling, we also im-
plement horizontal and vertical flipping for input tensors
during training, and no other data augmentation strategies are
applied. No test-time augmentation (TTA) is applied for model
inference. All models are trained for 24 epochs at the base
learning rate of 0.02 with SGD, and reduce it by a factor of
10 after the 16-th and 22-th epoch (corresponding to the 2x
learning schedule [41] on MS-COCO).

2) Performance Evaluation: Table VI depicts the perfor-
mance of previous state-of-the-arts and compared pre-trained
models. With our proposed pre-training technique and a P3D-
63 [35] backbone, we achieve a new state-of-the-art mFROC
of 88.55% on the DeepLesion Dataset, surpassing previous
state-of-the-art by a large margin. Note that unlike previous
state-of-the-arts AlignShift, which also take advantage of
RECIST supervision and tags from medical reports and demo-
graphic information, our detection models only use bounding
box annotation for lesion detection. The P3D-63 backbone has
a similar model capacity with ResNet3D-50 and DenseNet3D-
121, but it is more computational- and memory-efficient with
its specially designed model architecture.

Compared to the MP3D, our implementation features the
down-sampling operation for z-axis on the 3D backbone. Such
an implementation can significantly reduce the computational
cost for feature extraction, and is a natural fit for the FPN
architecture. With regards to FPN levels that are adopted to
detect small-sized bounding boxes, the feature maps has larger
resolutions on the z-axis (9,5,3,1,1 for each level), and vice
versa. Therefore, the down-sampling operation will not impose
a negative impact on the localization performance.

From the second part of Table VI, we can observe that our
proposed pre-trained weights consistently outperforms all the
competing pre-training method and training from scratch. Till
now, our SVD-Net has been able to achieve better performance
on all three types of target medical image analysis tasks, e.g.
classification, segmentation and detection.

3) Ablation Study on Pre-training Task and Architecture: In
this subsection, we conduct three ablation studies to explore
the impact of pretext tasks and model architectures. In Table
VI, Ours (MS-COCO) slightly outperforms Ours (ImageNet)
on the mFROC for our target detection task. This suggests that
task similarity between the pretext task and the target task
should be taken into consideration when selecting a proper
pre-trained model.

We also look into the details in network design for per-

formance ablation. Normal ResNet3D-18 adopts a 7 × 7 × 7
kernel for the stem convs, however, when pre-training with
our proposed pseudo-3D input, its depth is only three. Large
portions of the convolutional kernels will not be updated
during pre-training. To mitigate this problem, we adopt a
network architecture proposed in [18], i.e. ResNet3DV1c-18
for pre-training. The ResNet3DV1c-18 model replaces the
7 × 7 × 7 kernel with three 3 × 3 × 3 kernels, so that all
the parameters will be able to update during pre-training.
Experimental results in Table VI demonstrate that such a
change greatly improves model performance for the lesion
detection task. This suggests that proper training of the 3D
kernels is essential for advanced performance on the target
task.

In Table VII, we further conduct an experiment to validate
the importance of 3D kernel learning in our proposed pre-
training framework. Specifically, we pre-train a ResNet3DV1c-
18 backbone on the MS-COCO dataset without our proposed
modifications, i.e. the models are trained with vanilla down-
sampling operations on the depth dimension. With such a
model, the depth dimension will be down-sampled to 1 after
the first two down-sampling layers, and thus 3D kernels in
the succeeding layers will be degenerated to 2D ones, since
only the center 3× 3 part could be optimized. When applying
those two pre-trained models on the lesion detection task, a
large performance gap (2.50% on mFROC) is observed. This
evidently proves that our proposed modification to the pre-
trained network plays a vital role for effective learning of 3D
representations.

4) Performance with Limited Training Data: To evaluate the
robustness of the proposed method in data-limited scenarios,
we train a series of models with various amount of annotated
training data (20%, 40%, 60%, 80% and 100%) under the
same experimental setting.

In Figure 4, it can be clearly seen that compared with
training from scratch, our proposed pre-trained models con-
sistently obtain better performance. And the performance gap
is larger when fewer training samples are available (the gap on
mFROC is 22.44% when training on 20% samples, while when
training on 80% samples, the gap is 12.64%). This indicates
that when dealing with small-scale datasets, the pre-trained
weights have a larger influence on the final performance.
From the last diagram in Figure 4, we can observe that
using only about 38% of the annotated data, our pre-trained
models achieve equal performance to that of training from
scratch with all the annotated data. Therefore, the cost of
annotation could be reduced by over 60% when initializing 3D
models with our proposed pre-trained weights compared with
training from scratch. This indicates that with our proposed
pre-training framework, we will be able to efficiently verify
some initial ideas with fewer annotation labors. This would
promote the development of 3D-based deep learning methods
for 3D medical image analysis problems.

V. CONCLUSIONS

In this paper, we propose a novel variable dimension
transform based fully-supervised learning framework to pre-
train 3D neural networks for 3D medical imaging tasks. The
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TABLE VI
SENSITIVITIES (%) AT VARIOUS FPS PER IMAGE ON THE TEST SET OF NIH DEEPLESION. OURS (IMAGENET) AND OURS (MS-COCO) INDICATES

PRE-TRAINING ON IMAGENET AND MS-COCO RESPECTIVELY.

Methods Backbone Slices 0.5 1 2 4 mFROC[0.5,1,2,4]

3DCE [33] ResNet-50 27 slices 52.86 64.80 74.84 84.38 69.22
MVP-Net [31] ResNet-50 9 slices 73.83 81.82 87.60 91.30 83.64
ACS [20] DenseNet3D-121 7 slices 78.38 85.39 90.07 93.19 86.76
AlignShift [37] DenseNet3D-121 7 slices 79.40 85.50 90.09 93.26 87.06
MP3D [32] MP3D-63 9 slices 79.60 85.29 89.61 92.45 86.74

Scratch ResNet3D-18 9 slices 66.51 74.20 80.33 85.22 76.57
Med3D ResNet3D-18 9 slices 58.66 68.36 76.11 82.46 71.40
ACS ResNet3D-18 9 slices 71.16 78.95 84.98 89.20 81.07
I3D ResNet3D-18 9 slices 57.93 67.51 75.54 81.69 70.67
Kinetics ResNet3D-18 9 slices 72.94 80.92 86.00 89.91 82.44
Ours (ImageNet) ResNet3D-18 9 slices 74.18 81.55 86.77 90.68 83.30

Ours (MS-COCO) ResNet3D-18 9 slices 76.07 82.16 86.67 90.12 83.76
Ours (MS-COCO) ResNet3DV1c-18 9 slices 79.28 84.8 89.04 91.90 86.26
Ours (MS-COCO) P3D-63 9 slices 82.22 87.42 90.91 93.65 88.55

Fig. 4. Detection performance on the NIH DeepLesion dataset at different annotated data scales.

TABLE VII
ABLATION STUDIES OF PRE-TRAIN ARCHITECTURE ON NIH

DEEPLESION DATASET. W/O MOD INDICATES MODELS TRAINED

WITHOUT PROPOSED MODIFICATIONS, I.E. THE MODELS ARE TRAINED

WITH Z-POOLING ON THE DEPTH AXIS. ALL COMPARED MODELS ARE

PRE-TRAINED ON THE MS-COCO DATASET.

Methods Backbones 0.5 1 2 4 mFROC

Ours ResNet3DV1c-18 79.28 84.8 89.04 91.9 86.26
w/o mod ResNet3DV1c-18 76.07 82.16 86.67 90.12 83.76

proposed SVD-Net takes advantage of the large-scale semantic
annotations of 2D natural image dataset to enforce learning of
discriminative and invariant 3D feature representations with
the proposed variable dimension transform scheme. Com-
pared to self-supervised methods, the learned representations
enforced by semantic annotation are more general and dis-
criminative. Although there exists a certain degree of domain
shift between the reformulated natural image and 3D medical
image, comprehensive empirical experimental results demon-
strate that our proposed method outperforms previous state-of-
the-art 3D pre-training methods on four benchmark datasets
for 3D medical image analysis, validating its strong ability
in generalizing to major tasks like classification, segmentation
and detection. Moreover, comprehensive experiments are de-
signed and analyzed to look into the factors that contribute to
the success of our proposed methods. To benefit the research

community, we release our codes and pre-trained weights to
the public.
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