ARC TRAINING CENTRE FOR GREEN CHEMISTRY IN MANUFACTURING

The Outreach Program is proudly sponsored by

DKSH Biodegradable Water Bottles from Brown Seaweed

Learning intentions

1. Introduce you to green chemistry

2. Understand how we can use a sustainable resource (seaweed) to reduce plastic pollution
3. Ideas on creating a safer future through next generation... ALL OF YOU!

Who has heard about Green Chemistry before?

0

0

Green Chemistry principles

After your experiment, we want you to think about:

What principles you might have achieved today?

SUSTAINABLE GOALS

17 GOALS TO TRANSFORM OUR WORLD

SUSTAINABLE GOALS

17 GOALS TO TRANSFORM OUR WORLD

Setting the scene

We have a problem: Plastics are everywhere in the environment

88 % of the sea surface is polluted with plastic waste

They can take 20-500 years to break down...

They can take 20-500 years to break down...

and they don't completely go away

Instead you get a plastic 'soup'

Instead you get a plastic 'soup'

Macroplastics > 1 cm

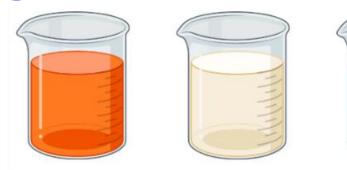
> Mesoplastics 1–10 mm

Microplastics < 1 mm

So... What can we do about it?

 https://edition.cnn.com/videos/wo rld/2021/10/27/seaweed-packagingnotpla-c2e-spc-intl.cnn

Let's make some sustainable plastic!

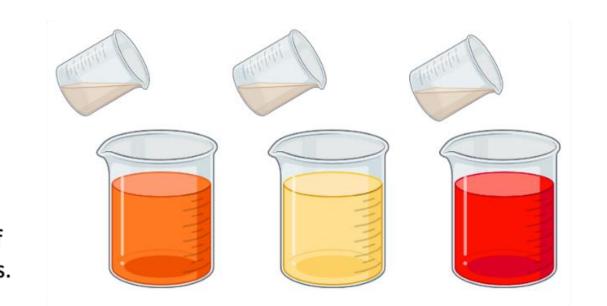

) °

Ground rules

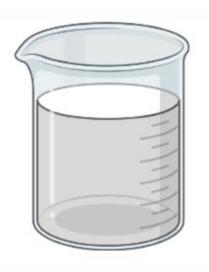
- 1. No eating your experiment!
- 2. No running in the lab.
- 3. Use gloves.
- 4. Allergies to seaweed, please do not touch.
- 5. Do not throw objects/liquids.
- 6. If there is a spill, please let us know. There is paper towel on your table.
- 7. Be careful not to get food dye on your clothes.

Making small seaweed water bottles!

STEP 1: Collect your liquids.



Orange juice


Water + food colouring (few drops)

STEP 2: Mix 10ml of alginate with 10ml of your liquid. Stir to combine. Test the pH of your solutions.

Milk

STEP 3: Pipette drop your alginate liquids into the calcium chloride. Observe what happens ⓒ OJ + alginate

Calcium chloride

Pit-stop: How are you going? Begin to have a go answering questions

111111

5 minute warning! Pack up, clean materials and be seated for discussion

What did you observe?

What happened? Can this be used for a water bottle? Why/why not?

How could you improve this experiment?

EXPLORE

Green Chemistry principles

What principles do you think you observed today?

Green Chemistry principles

What principles do you think you observed today?

Extension questions

What was the solvent and what was the solute? How else could you use the properties of alginate to help the environment?

Was this a chemical reaction? Why/why not?

References

- Atsuhiko Isobe, et.al. A multilevel dataset of microplastic abundance in the world's upper ocean and the Laurentian Great Lakes. *Microplastics and Nanoplastics*, (2021)
- Chamas, A. et al. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 8, 3494–3511 (2020)
- Icons made by <u>Pixel perfect</u> from <u>www.flaticon.com</u>
- Icons made by <u>Freepik</u> from <u>www.flaticon.com</u>
- All other images are creative commons licensed