

2nd Annual Seminar

FULL AND PARTIAL DEPTH RECYCLING APPLICATIONS - a Contractors Perspective

×

Chris Thompson, CET

Presentation Summary

- Nova Scotia's Experience with In-Place Recycling
- Evolution of Full Depth Reclamation to In-Place Recycling
- Recycling Techniques being used today in NS
- Project Selection Considerations
- Design issues and QA/QC
- Environmental Benefits

Nova Scotia's Recycling Experience

- NSTIR first used bituminous stabilization on a Partial depth project in 1997
- Have recently utilized both full and partial depth bituminous stabilization in addition to cement stabilization
- NSTIR have completed over 400 kms in the last 12 years

 HRM has been recycling since 1998 and have recently completed both partial and full depth bituminous stabilization.

 HRM has completed over lane 14 km
 Both agencies have committed to providing Sustainable Transportation Networks

FULL DEPTH RECLAMATION EVOLUTION OF AN INDUSTRY

> Began with pulverizing existing roadways
 > Evolved into In-Place Stabilization
 > Pulverize first pass, Stabilize to desired depth with binders;
 • Mechanical binders can include virgin granulars or RAP
 • Chemical binders include portland cement, calcium chloride, lime, flyash and water.
 • Bituminous binders include expanded or foamed asphalt and asphalt emulsions.

In-Place Recycling now includes Partial Depth applications

FUK - EVULUHUN UF AN INIDHETRY

FDR Chemical Stabilization

FDR

Paver Laid Bituminous Stab

Recycling Techniques Being Used in Nova Scotia

- Pulverization Full Depth Reclamation (FDR)
- Full Depth Reclamation with Expanded Asphalt
- Partial Depth Reclamation with Expanded Asphalt or Emulsified Asphalt Stabilization
- Full Depth Reclamation with Portland Cement
- Conventional Mill and Pave

FULL DEPTH RECLAMTION

- A Reconstruction technique that recycles bituminous pavements on site by:
- Pulverizing the existing pavement and,
- Mixing the processed material with the underlying granular base
- Grading and compacting

Pulverizing - Full Depth Reclamation

FULL DEPTH RECLAMTION with EXPANDED ASPHALT

- In-Place full depth reclamation of the existing HMA and underlying granular base, then
- Stabilization of reclaimed material by adding expanded (foamed) asphalt, and additives if required then
- Grading/Placing and compacting
- A surface wearing course is required,
 Concrally, 1 2 lifts of Hot Mix

Original Full Depth Expanded Asphalt Technology

Modified Pulverizer with Expansion Bar

Full Depth Expanded in to the underlying granular layer

Full Depth Expanded Asphalt

Full Depth Expanded Asphalt Grader-Laid

Full Depth Paver Laid Expanded Asphalt

Generally 3 step process But can also be done without pre-pulverize

1. Pre-pulverize the pavement layer and underlying granulars and any required additives (aggregate, lime, etc.) to specified depth

Shoulder material can be incorporated

to achieve widening

Full Depth Paver Laid Expanded

2. After Pre-Pulverizing grade and compact to required widths and cross falls

Full Depth Paver Laid Expanded

3. Process (expand) and place with paver to specified depth / width, compact and place wearing surface

Rural Project – 4.85 m (16') wide lanes

VÖGELE

Full Depth Paver Laid Expanded

Compaction

Compaction can commence immediately behind the paver. No concerns with temperature Partial Depth Reclamation with Expanded Asphalt or Emulsified Asphalt Stabilization

- Partial Depth Reclamation is a In-Place Recycling process that grinds up the existing asphalt pavement, sizes it, mixes in new bituminous binder and water, then
- Places the cold recycled bituminous mixture with a conventional paver in one continuous operation
- The binder is typically an off the rack PGAC or an emulsified asphalt

Partial Depth Paver Laid Expanded

Partial Depth Paver Laid Expanded

Partial Depth Rural Project

Milling/processing 125mm of existing Hot Mix

Leaving a portion of existing Hot Mix

125 mm partial depth

Partial Depth Paver Laid Expanded

Granton Abercrombie Road, 2008

100 mm depth

Partial Depth Paver Laid Expanded

Compaction

Steel Breakdown Rubber Tire Inter Steel Finish

Same compaction equipment as Hot Mix

Paver Laid Components

Full Depth Reclamation with Portland Cement

- In-Place full depth reclamation of the existing HMA and underlying granular base, then
- Stabilization of reclaimed material by adding required portland cement and re-pulverizing and then
- Grading, compacting and curing including pre-cracking 24 -48 hours from initial compaction

Initial Pulverizing Full Depth Reclamation

Add Cement, dry process

Add Cement – Slurry form

Stabilization with Cement, then grade, compact and cure

Blending of Cement, followed by grader and compaction

DESIGN CONSIDERATIONS for IN-PLACE RECYCLING

OBJECTIVE

- Surface rehabilitation
- Structural reinforcement
 TYPES OF BINDER
 - Bituminous binders
 - Chemical (hydraulic) binders
 - Combination of both

Blend of In-Place Materials – Full Depth

Ratio of bituminous and granular

Comparison on types of Recycling

Project Selection Considerations

Characteristi cs	Bitum	inous binder treat	Hydraulic binder	Composite binder	
Binder Selection	Partial depth treatment	Partial or Full Depth	Full depth	Partial or Full Depth	
Objective	Surface Re	Treatment habilitation	Structural Re	Treatment Surface Rehabilitation or Structural Reinforcement	
Principle	Recycling of bituminous surface layers	Reclamation and the full thicknes surface layers in a proportion of	d stabilization of s of bituminous icluding some or the underlying	Creation of a new pavement material using the in-situ material	
In-place materials	Bituminous material only	40 to 80 mm of bituminous material plus some underlying	material 75 to 150 mm material and 7: underlying gra	of bituminous 5 to 150 mm of Inular material	Bituminous material with or without underlying granular
Type of binder	Bituminous binder emulsified or foamed or rejuvenating	Bituminous bind material foar	ler emulsified or ned	Cement or other pozzolanic binders	Blend of bituminous and hydraulic binders
Added binder content	0.3 ^{binder} residual binder	1.3 to 2.0 % residual binder	1.8 to 4.0 % residual binder	3 to 6 % hydraulic binder	1.5 to 7 % composite binder
Depth of treatment	60 to 1	20 mm	125 to 200 mm	200 to 300 mm	75 to 300 mm

Source: Technical Guide, Cold In-situ Recycling, July 2003. France

Candidate Selection based on Pavement Distress, Ride and Strength											
	CANDIDATE REHABILITATION TECHNIQUES										
MODE	MILLAND PAVE	IN-PLACE RECYCLING	THIN HOT MIX OVERLAY	THICK HOT MIX OVERLAY	FDR PULVERIZE	Combination Treatments	Reconstruction				
Raveling											
Potholes											
Bleeding											
Skid Resistance											
Shoulder Drop Off											
Rutting											
Corrugations											
Shoving											
Fatigue Cracking											
Edge Cracking											
Slippage Cracking											
Block Cracking											
Longitudinal Gracking											
Transverse Gracking											
Reflection Cracking											
Discontinuity Gracking											
Swells											
Bumps											
Sags											
De pre ssions											
Ride Quality											
Strength											
	Most	Appropriate				Least	Appropriate				
Source: ARRA RAPA											
BOUICC. MININ DAIN											

PROCESS SELECTION

What is the appropriate process??

- Review of technical & economical factors
- Overlap between full depth and partial depth treatment is substantial

Objective to meet

- Surface rehabilitation
- Structural improvement

Pavement Condition

 Type and extent of pavement deformation
Pavement Condition vs. Time

Figure 2-1: Pavement Deterioration vs. Time

Time + Traffic + Environment = **Deterioration**

DESIGN CONSIDERATIONS FULL DEPTH RECLAMTION

- Suitable for all bituminous pavements exhibiting extensive distresses, including structural deficiencies
- Suitable for various depth pavements, maximum processing depth up to 350 mm
- Thicker pavements may require premilling
- Process depth can be varied to
 Achieve desired blond of underlying

Full Depth Reclamation

ADVANTAGES FULL DEPTH RECLAMTION

- 100 % reuse of existing materials
- Elimination of reflection cracking
- Can be used for all types of surface treatments, cold and hot mix pavements
- Cross fall, superelevation and profile can be easily adjusted
- Addition of stabilizing agents will increase strength without changing

FULL DEPTH RECLAMATION CANDIDATE ?

Design Considerations - FDR with Expanded Asphalt or Partial Depth Reclamation with Expanded/Emulsion Surface Rehab. or Structural

- Improvement?
- Pavement depth & distresses (rut depth, crack pattern) may dictate Full versus Partial
- Is cross-fall correction needed?
- What grade raise is acceptable
- Is pre-milling required

Full Depth or Partial Depth Bituminous Reclamation

Full Depth Reclamation

Elimination of the surface cracks with application of Expanded Asphalt to the pre-pulverized mixture of a portion of the underlying granulars with the entire road surface to stabilize and improve road strength **Partial Depth Reclamation**

Mitigation of surface cracks with application of bituminous binder to a portion of the existing asphalt structure - leaving the granulars and the remaining road base intact

Full Depth Expanded Candidates

May require base repair and drainage improvements

Trunk 19 **Cape Breton**

Distorted, severe rutting Severe cracking

Full Depth Paver Laid Expanded

Rural Project - 4.35 m (14 +') width

VÖGELE

Expanded Stabilized Base

Materials that can be recycled with the Expanded Asphalt process include :

- 1. 100% RAP
- 2. 100% Virgin
- 3. Any blend of RAP and underlying granulars
- 4. Any blend of Virgin Granulars and RAP
- 5. Any blend of Surface Treatment and underlying granulars
- 6. Stock piles of RAP and Crushed Concrete

ADVANTAGES FULL DEPTH RECLAMTION with EXPANDED ASPHALT

- Reuse of the full Asphalt layer and portion of underlying granulars and shoulder material
- Eliminates reflective cracking
- Pre-pulverizing allows cross-fall and profile correction, can accommodate Road widening
- Easy to add corrective aggregates or additional stabilizers during the

Partial Depth Reclamation with Expanded Asphalt or Emulsified Asphalt Stabilization

<u>One step Process</u>

Process <u>within</u> the existing Pavement Layer to appropriate design thickness (100 – 125 mm), cross fall and width, compact and place wearing course

Now covered by Provincial and Local Method Specifications

Considerations Partial Depth Reclamation with Emulsion/Expanded Asphalt

- Existing paverabilize point ? Is it sufficient ?
- Is cross-fall correction needed
- What grade raise is acceptable
- Is pre-milling required
- Are Cracks Full Depth, Load Associated?
- What surface wearing course is

Partial Depth Stabilization Candidates

Partial Depth Rural Project

Culvert replacement

Rte 336 with Pre-milling to restore cross-fall 100 mm depth, 2008 Project

Pre-Milling

Improves Longitudinal Smoothness

Corrects or restores cross-fall Electronically controlled

Partial Depth Rural Project

OGELE

Rte 333 Partial Depth Stabilization

100 mm processing depth

Partial Depth Core

50mm surface HOT MIX

100 mm of Partial DepthBituminous StabilizationPaver Laid

underlying existing hot mix

Partial Depth Project - Urban

Pre-mill to reveal curb & allow surface overlay and restore design cross-fall

Partial Depth Project – Urban HRM

ADVANTAGES

Partial Depth Reclamation with Expanded/Emulsion Asphalt

- One step process, no pre-pulverizing
- Less disruptive to traffic and adjacent properties
- Much lower amount of new Binder required, therefore less cost
- Mitigates reflective cracking
- Allows choice of binder Expanded Asphalt or Emulsified Asphalt

Design Considerations Full Depth Reclamation with Portland Cement Depth of Existing Asphalt

- Depth of Pre-Pulverizing
- Type and depth underlying granulars/sub base
- In-Situ moisture
- Amount of Cement Required
- Method to apply and evenly distribute cement

FDR Stabilization with Cement

FDR Reclamation with Cement

Application of Portland Cement

Stabilization with Cement

Mixing/Blending of Portland Cement

ADVANTAGES

Full Depth Reclamation with Portland Cement

- Provides an increase in strength of the processed material
- Reduces permeability
- Provides rigid support for surface wearing course
- Long working season

Design Considerations

Basic Asphalt Recycling Manual or BARM

Produced by the Asphalt Recycling and Reclaiming Association (ARRA)

good resource

Stabilization with various Binders

Effect of Portland Cement

AASHTO Structural Values

Table A3.1 Typical structural layer coefficients (from AASHTO)			
Material type	Characteristic	Structural layer coefficient (per inch) / (per cm)	
Asphalt surfacing	Elastic modulus 2500 to >10000 MPa	0.20 to 0.44 / 0.08 to 0.17	
Asphalt base	Continuous graded, 6 % voids	0.20 to 0.38 / 0.08 to 0.15	
Stabilized Asphalt base	est. 10 – 14% voids	0.30 - 0.38 / 0.12 - 0.15	
Bitumen treated base		0.10 to 0.30 / 0.04 to 0.12	
Graded crushed stone	CBR > 80 %	0.14 / 0.055	
Natural gravel, type 1	CBR 65 to 80 %	0.12 / 0.047	
Natural gravel, type 2	CBR 40 to 65 %	0.10 / 0.040	
Soil, type 1	CBR 15 to 40 %	0.08 / 0.032	
Soil, type 2	CBR 7 to 15 %	0.06 / 0.024	
Cohesionless sand	PI = 0	0.04 to 0.05 / 0.016 to 0.020	
Cement-treated crushed stone	UCS 1.0 to 3.0 MPa	0.17 / 0.067	
Cement-treated gravel	UCS < 1.0 MPa	0.12 / 0.047	

Suggested Layer Coefficients

In-Place Recycling GBE Values

GBE - Granular Base Equivalency

 GBE is used by some agencies to evaluate and design pavement structures based on load requirements and the level of traffic (SN used for AASHTO method)

GBE values

	GBE		
Virgin Granular "A"	1.00	0% AC	
Full Depth Expanded	1.6 - 1.80	2.5 – 3 % AC	
Partial Depth Bituminous	1.6 — 1.80	1.2 – 2.0 %AC	
Hot Mix	2.00	4.8 - 5.2% AC	

In-Place Recycling allows a substantial reduction of liquid AC compared to hot mix, with significant strength increase

Critical elements for process

 Site investigation for process design

Rehabilitation requirements

definition

Quality assurance and control

Required for any In-Place Recycling Project temeering and design Complete mix design for the recycled base material Field-quality control, i.e. compaction, general appearance of the mix, smoothness Lab quality control, i.e. sample handling, physical mix properties Ost construction review and acceptance

NSTIR Recycling Specifications Full Depth Reclamation with Expanded Asphalt Stabilization (Method Specification) Partial Depth Reclamation with Expanded Asphal **Stabilization (Method Specification)** 3.09 Partial Depth Reclamation with Expanded Asphal Stabilization (Method Specification) **Full Depth Reclamation with Portland Cement** 4 -HRM similar except FDR with Cement

Full Depth and Partial Depth Bituminous Reclamation Compaction and Thickness

Compaction to minimum 83.0% of the maximum theoretical density of the mix and no individual result below 79.0%.

Compaction Method Field Moisture Mat Thickness Requirements

Nuclear Gauge

Yes, as per ASTM D 2216

At least 90% minus 20 mm, No location > minus 30 mm

Environmental Benefits to Recycling Moving Towards a Sustainable Future

- Reduced energy costs due to the in-place process
- Reuses existing pavement and granular materials
- Minimizes material transfer and the related trucking
- Reduces the need for non-renewable resources, aggregates and liquid asphalt cement
- Significant reduction in the related green house gases due to cold process and reduced trucking
- An Environmental Life Cycle Model is available, PaLATE Model that can determine the reduction in Green House Gases and other models being developed
- Meets the principles of the Federal Nova Scotia Gas Tax Agreement, In-Place Recycling fitting the definition of a "Environmentally Sustainable Municipal Infrastructure Projects

Defining Sustainable Transportation

"Limits emissions and waste within the planet's ability to absorb them, minimizes consumption of non-renewal resources, limits consumption of renewable resources to sustainable yield levels, reuses and recycles its components, and minimizes the use of land and the production of noise."

Source: Centre for Sustainable Transportation, University of Winnipeg

Thank you.

Chris Thompson, C.E.T. <u>cthompson@rotomill.ca</u>

Questions? Phone 519 941-7686 Cell 416 460-1974 www.rotomill.ca

