

Design and Application of Ultra Thin Lift Pavements

Amy Simpson AMEC Environment & Infrastructure, Inc.

Presentation Outline

- Definition
- Advantages
- Project Selection
- Design Considerations
- Construction Considerations
- Performance Expectations
- Summary

What is a thin overlay? And Why Use One?

- Asphalt concrete overlay of 1.5-inch thickness or less
- Generally have a maximum aggregate size of 12.5-mm or less
- Ability maintain grade and slope with minimum impact to drainage
- Provide functional improvement of the pavement section
- No curing time required after placement
- Mix design standards allow for use of a variety of different mixes to address function concerns
 - Warm-mix asphalt
 - \circ RAP
 - Open Graded mix

Project Selection

Projects with structural damage are not good candidates for thin overlay.

So what are good candidates?

Project Evaluation

- Visual Survey
 - Identify type, extent, and severity of distresses
- Structural Assessment
 - No structural improvement required
- Drainage Evaluation
 Identify needed changes
- Functional Evaluation
 - Ride quality
 - Skid resistance
- Discussion with Maintenance
 Personnel

Project Selection

Projects with minor distresses occurring primarily in the surface such as transverse cracking, non-wheelpath longitudinal cracking or raveling and weathering.

Project Selection

Pavement Sections with structural distress are not good candidates for treatment with a thin overlay

Mix Design Considerations – Dense-Graded

- Conventional mix design
- Abrasion resistant
- Functionally impermeable

Mix Design Considerations – Open-Graded

- Open-graded mixes are not recommended for areas of heavy snow and ice or areas with severe turning movements
- Open-graded allows surface water to quickly drain away
- Mitigate flushing
- Noise reduction

Mix Design Considerations – Gap-Graded

- Increase stone-to-stone contact
- Improved skid resistance
- Generally have low permeability and good durability

	Mill	Fill Cracks with Mix	Clean and Tack
Raveling			
Long. Crack – not in wheelpath	\checkmark	\checkmark	
Long. Crack – wheelpath	×2	×	
Transverse Crack		√	
Alligator Crack	~		
Rutting			

Construction Considerations

Production

- Aggregate Stockpiles
- Slower plant operations

Paving

- Tack coat is recommended
- Best to move continuously
- Cooling can be an issue
 - -1" cools 2X faster than 1.5"
- ○Warm mix

Compaction

- Seal voids & increase stability
- Low permeability
- No vibratory on < 1"</p>

- TRR 1940 "Analysis of Long-Term Effectiveness of Thin Hot-Mix Asphaltic Concrete Overlay Treatements" Labi et al. (2005)
 - 018 to 36% decrease in roughness
 - ○5 to 55% decrease in rut depth
 - 01 to 10% improvement in condition rating
- TRR 2005 "Ultrathin Bonded Wearing Course as a Pavement Preservation Treatment for Jointed Concrete Pavements" (2007) Corley-Lay and Mastin
 - 06.7 dB reduction on overlaid PCC
- Focus "Pilot Program Evaluates Quiet Pavements in Arizona" (June 2005)
 - ○5 dB reduction on overlaid PCC in Phoenix
- Remember 3dB reduction in noise = reduction of ½ traffic volume

Performance Expectations

- NCHRP 20-50(3/4) LTPP Data Analysis: Effectiveness of Maintenance and Rehabilitation Options (June 2002)
- Rate of increase in roughness on thin overlays reduced in comparison to control section
- Rate of increase in rutting on thin overlays reduced in comparison to control section
- Reduction in observed cracking on thin overlay sections

 TRR 1680 "Effectiveness of Maintenance Treatments of Flexible Pavements" (1999)

Original Condition	6-year Failure Probability (%)	Average Median Survival Time (Yrs)	Average Median Benefit Compared to no Treatment (Yrs)
Good	25	7.5	2.2
Fair	30	7.3	4.8
Poor	100	2.2	2.5

2008 NAPA Survey of State Asphalt Associations

Treatment	Expected Life (Yrs)	Range (Yrs)	Cost (\$/SY)	Range (\$/SY)	Annual Cost (\$/lane-mile)
Chip Seal	4.08	2.5 – 5	2.06	0.50 - 4.25	3,554.51
Slurry Seal	3.25	2 – 4	1.78	1.00 – 2.20	3,855.75
Microsurfacing	4.67	4 – 6	3.31	2.30 - 6.75	4,989.81
Thin Surfacing	10.69	7 – 14	4.52	2.40 - 6.75	2,976.69

- Thin overlay treatments consist of 1.5-inch or less asphalt material
- Used on pavement before extensive rehabilitation is required
- For Pavement Preservation
 - Improve ride quality
 - Maintain road geometrics
 - Reduce noise
 - Reduce long-term growth in distress

