

INTELLIGENT COMPACTION

Nova Scotia Asphalt User Producer

Seminar

April 10, 2014

NOVA SCOTIA ASPHALT USER PRODUCER ASSOCIATION

Intelligent Compaction!!!

Soil Asphalt

Intelligent compaction

- Maximise compaction efficiency
- Reduce compaction variability
- Optimise labour force and construction time
- Identify non-compactable areas (Soil)
- Identify weak spots (Soil)
- Achieve uniform compaction with 100% coverage

INTELLIGENT COMPACTION

PROJECT OUTLINE

- Temporary ramp to carry the transport of a 49,5m long, 5,5m wide, 980 ton submarine (Neptun) on trailer
- Crushed gravel reinforced with geo-grids on top of existing lawn
- Compaction requirement: 6 vibratory passes with CA 5000
- Additional testing with static plate load test

AERIAL PHOTO WITH CMV MAP

ACTUAL RESULTS USING DCA DISPLAYS A MORE COMPLETE PICTURE

- Full surface coverage stiffness readings
- Shows true variation
- Possible to target weak areas
 - Additional compaction
 - Testing
 - Replacing material

2988 M² COMPACTED AREA

- Random sampling
- 8 spots
- All approved
- 0,019% of the area tested

PASS COUNT MAP (TARGET: MIN 6 VIBRATORY PASSES)

-19 -18

-15 -14 -13 -12 -11 -10 -9 -8 -7 -7 -6

-5 -4 -3 -2 -1

FINAL RESULT

Test method

Plate test

Rollers measurement values

Ammann (Kb)

Dynapac (CMV)

Bomag (Evib)

С

а

t

Atlas Copco

Is the road base gradation & compaction important???

PRODUCTIVITY, IMPROVED COMPACTION CAPACITY

Material	Required passes	Performed passes	Time reduction (%)
Soil	14	19,8	29
Soil	8	14,6	45
Soil	6	11,9	50
Asphalt	4	5,7	30
Asphalt	4	6,4	38
Soil			30-50
Asphalt			30-40

Figures from above is evaluated from the field on different job sites. Operator has not focused on the DCA display.

TWO STAGE APPROACH FOR QUALITY IMPROVEMENTS

- Stage I. Guided Production
- Stage II Post-production follow-up and feed-back

Intelligent Compaction (IC)

provides benefits over traditional testing methods:

Increase Operator Awareness

> Optimized passes count & coverage

Improve Rolling Pattern (asphalt)

Improve Density & Smoothness (asphalt)

- Lower Operating Costs
- Documentation (statistically significant)

IC includes:

- A. Compactor integrated data measurement
- B. Positioning tied to collected data (GPS)
- C. Ability to analyze & document data
- 1. IC on Soils is more a direct measure of compaction
- 2. IC on Asphalt is more process control at this point

Process Control -

Awareness Real-time

<u>Compaction,</u> <u>Temperature (asphalt),</u>

Pass count data

Easier night-time operation

Early detection of problem areas, etc.

Productivity & Efficiency

Maximized machine utilization with better efficiency

Identify poorly compacted Longitudinal joints

HAMM Compaction Control

STAGE II: POST PROCESSING, ANALYSIS AND THINGS TO IMPROVE

- Correlate compaction acceptance testing to initial temperature and number of passes.
- Use the information to optimize the process and to find the current operation procedures
- Highlight good results and find the reasons for poor results

Comparing the results and procedures to the preparations will generate a continuously improving process for paving and compaction

What is available?

✓ Mapping

✓ Stiffness reading

Mapping & stiffness reading

BOMAG

Asphalt Manager Stiffness reading

ACE- Ammann Compaction Expert Stiffness reading

HCQ Hamm Compaction Quality Stiffness reading

Cat Intelligent Compaction Stiffness reading

One dimension systems which measure only the stiffness of the asphalt

DOCUMENTATION AND OPTIMIZATION – IT'S ALL IN THE DETAILS

- Quality assurance
- Optimize productivity
- Right number of passes
- Longer lasting roads

Bomab Evib II

OPERATIONAL PANEL

EVIB - Indication

Effective Amplitude

Roller speed

Asphalt-Temperature

Frequency

- Slide 29

- Slide 31

Information sharing !!!

Bomag BCM Office

Ammann Compaction Expert

- Bearing capacity (kB)
- Amplitude
- Frequency
- Speed of roller
- Temperature of asphalt (only on Asphalt roller

DYNAPAC COMPACTION ANALYZER-ASPHALT DCA-A

Accelerometer

Compaction Information System

Temp sensor

Accelerometer

COMPARISON: Cat (Soils)

	MDP Machine Drive Power	VS.	CMV Compaction Meter Value
Measurement basis	Rolling resistance / Ener	gу	Accelerometer
Vib system for measuremer	nt Active or inactive		Active only
Soil types	Granular or Cohesive	;	Granular only
Machine configuration	Smooth drum, Padfoot Shell kit	,	Smooth drum only
Measurement depth*	30 – 60 cm (1-2 feet)		1- 2 meters
Can add GNSS mapping	Yes		Yes
Availability	CAT Dealers only		Several manufacturers

* Depends on machine weight, soil type and conditions

Equipment Required -

GPS

Rollers –

Soils – GPS, Compaction Measurement, Data Collection, Display

Asphalt – GPS, Compaction Measurement, Temperature, Data Collection, Display

CAT COMPACTION CONTROL

- Infrared temperature sensors (front and rear) Keeps operator informed of when optimal temperatures exist for compaction
- Temperature Mapping Record temperatures for data analysis
- Pass-Count Mapping

Keeps operator informed of where mat coverage has taken place and the number of passes made.

Accelerometers

Provides feedback of vibration energy for a measurement value

Temperature sensors

Not a direct measure of compaction, rather, a data for **process control** on asphalt

Dual infra-red sensors mounted on the front and rear of machine deliver real-time readings

Keep operator informed of when to begin rolling and when to stop *Help avoid tender-zones* that often occur in the 115° to 90° C (240° to 195° F) temperature range

Eliminates hand-held devices

Breakdown compaction operation should be between 135 and 140 C (275 and 300 F)

Upper limit of compaction is usually 149 C (300 F)

Lower limit of compaction is usually 85 C (185 F)

Mapping Temperature

- This illustration provides asphalt temperatures as the roller passed over the fresh mat.
- The color pattern signifies the different temperature ranges that were present.
- Green optimum temperature met
- Blue Target temperature met, lower range than green
- Red Temperature below target

Atlas Copco

DYNAPAC DCA-A TEMP

ROLLING PATTERNS/QUALITY

- What does today's rolling patterns look like?
- Is there an even number of passes made?
- At which temperature were the passes made?
- How fast was the roller going?
- What is the cost of insufficient compaction?
- What does excessive passes cost?

Rolling pattern Challenges

Maximize Efficiency – Monitor Starts and Stops

Completed pass

Overlap

Fresh mat

Incomplete pass

- Blue color indicates the compactor traveling too far onto the previous pass inefficient
- Red color indicates the compactor stopped short of the complete pass – improper pattern

- Why is Pass-Count mapping important?
- Pass-count mapping helps achieve target density and increases roller efficiency.
- With proper pre-project planning including machine selection, vibratory selection and speed, the operator can execute the rolling pattern in the most efficient manner possible.
- Eliminate excessive overlap
- Prevent incomplete passes, stopping short or missed
- Maximize coverage
- Easier night-time operation

Atlas Copco

Tender Mixes

Many reasons!!!

- ✓ Moisture
- ✓ Excessive asphalt content in mix
- ✓ Rounded aggregates
- ✓ Aggregates gradation
- \checkmark Poor bounding to the under laying layer
- ✓ Excessive mix temperature
- ✓ Rolling equipment and technique
- ✓ Stiffness of binder
- ✓ Contamination

HOW TO OPTIMIZE THE COMPACTION PROCESS

- The correct number of passes with the right machine on the maximum/required layer thickness for the material in question.
- Verify the compaction method
- Pay attention to changing conditions
- Provide real time feed-back to a well trained operator

Why IC again?

- Offers advantages over conventional compaction equipment
- Offers valuable new tools to Contractors / Operators to improve Quality Control
- Offers valuable new tools to the Authorities to improve pavement service life
- Improved density
 Better Performance
- Improve Efficiency
 Cost Saving
- Increase Information

Better QC / QA

Overall Benefit

Improved Pavement Performance

Intelligent Compaction Summary

A good road base compaction is needed

Intelligent compaction is a working tool

Intelligent compaction is a guide for the operators

Intelligent compaction will save \$ when used properly

Intelligent compaction provides backup data

The Authorities <u>Always</u> have the last word in compaction results!!

Conventional measurement - asphalt

- Density Gauges
- Cores

Thank You

To all my colleagues in the industry!!!

COMMITTED TO SUSTAINABLE PRODUCTIVITY.

