

Boggs Paving, Inc. Rock Hill, South Carolina Warm Mix Demo

October 10, 2007

- 15,000 tons
- 50% RAP @ 270°F (132 C) / PG 64-22
- Contractor has 50,000 more tons under contract

Background

- Warm Mix: mix temperatures 50-100F cooler than conventional mix methods
- Achieved by lowering the viscosity of the AC binder
- Various methods: additives, additives with water, foaming with water only, etc.
- Foaming first introduced in the 1950's
- Current trends towards fuel efficiency and emissions reductions make Warm Mix more attractive

Background

- Warm Mix: mix temperatures 28-44C cooler than conventional mix methods
- Achieved by lowering the viscosity of the AC binder
- Various methods: additives, additives with water, foaming with water only, etc.
- Foaming first introduced in the 1950's
- Current trends towards fuel efficiency and emissions reductions make Warm Mix more attractive

Advantages of Warm Mix

- Economic Advantages:
 - 14% reduction in fuel consumption (50F)
 - Ideal for high percentages of RAP
- Ecological Advantages
 - Reduced fuel consumption = reduced greenhouse gas emissions
 - No visible smoke or odor
 - "Green" asphalt plants = better neighbors

Additional Warm Mix Advantages

- Less oxidation of AC
- Lower plant cost (\$300k \$500k)
- Lower plant maintenance cost
- Plant safety
- Paving crew safety

No Smoke – No Smell...Why?

- Light oils are either put in asphalt or left in asphalt during refining
- These light oils boil above 285°F
- By mixing at below 285°F, the boiling point is never reached...eliminating smoke (vapor) and corresponding smell

DANGER: Di-hydrogen Monoxide

Astec Multi-nozzle Device

- Mixes water and AC to create microscopic steam bubbles to foam the AC
- Water flow rate = 2% of AC flow rate (NOT 2% of mix!)
- 2.5 TPH AC per nozzle, 8 nozzles = 400 TPH mix
- PLC controlled
- Mix transported, placed and compacted using "normal" procedures

FOAM NOZZLE

TOUCH PANEL IN CONTROL HOUSE SIMATIC PANEL SO 151856 SIEMENS ALARM SILENCE

/ ⊙\	AC VALVES DBG : 2008.06.20						
\Box	* Enabled	* Hot Mix		* Spraying			
AC (TPI	16.28	Target H2	20 (G	PM):	1.30		
AC (GPN	(): 65.10	H2	20 (G	PM):	1.29		
AC 1	AC 2	AC 3	AC 4		AC 5		
0.00		20.00	30.0		40.00		
AC 6	AC 7	AC 8	AC 9		AC 10		
50.00	60.00	70.00	80.0	0	90.00		
Hysteresis Delay							
	3			Save			
Home	AC	H20	Conf	ig			

O\ No	zzle Test		DBG	DBG: 2008.06.20		
<i>∠</i> ∠∆∆ ∗ ı	* Hot M	Hot Mix * Diverted				
AC (TPH):	0.00	Target H	120 (GP	M); 0.00		
AC (GPM):	0.00	ŀ	120 (GP	M): 0.56		
1 Passed	6 N/A	Nozz	e Delay O	Pass Delay 5		
2 Test1-3	7 Waitin	ig Nozz	e Test	Water Speed		
3 Waiting	8 Waitir	19	30	10.00		
4 Waiting	9 Waitir	ng		Start		
5 Waiting	10 Waitir	19		Abort		
Home	AC	H20	PID	Manual		

VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)

VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)

Astec Foamed Asphalt

How much water <u>injected</u> per virgin ton of mix?

3 ¾" x 3 ¾" x 3 ¾"

How much water stays in the mix?

•AC Content: 5%

•Voids: 25% (pre-compaction), 5% (post-compaction)

•Density: 110 lbm/ft³ (pre-compaction);140 lbm/ft³ (post-compaction)

Volume of uncompacted mix (ft 3 /ton) = $\frac{2000 \text{ lbm/ton}}{110 \text{ lbm/ft}^3}$ = 18.2 ft 3 /ton

Of this 18.2ft³, 25% (4.54ft³) consists of air voids.

Volume of AC (ft³/ton) = $\frac{5\% \text{ X } 2000 \text{ lbm/ton}}{65 \text{ lbm/ft}^3}$ = 1.54 ft³/ton

How much water stays in the mix is limited by the volume of air voids.

0.016 ft³/lbm (ambient temperature liquid water) to 30.53 ft³/lbm (superheated steam at 300°F)

BEFORE COMPACTION

How much water stays in the mix is limited by the volume of air voids.

AFTER COMPACTION

Remaining void volume (ft³/ton) = 0.05 X 14.3 ft $\overline{\ }^{3}$ /ton = 0.715 ft³/ton

Mass of remaining water (lbm/ton) =
$$\frac{0.715 \text{ ft}^3/\text{ton}}{30.53 \text{ ft}^3/\text{lbm}}$$
 = 0.0234 lbm/ton

Mass % of remaining injected water =
$$\frac{0.0234 \text{ lbm/ton}}{2000 \text{ lbm/ton}}$$
 = 0.0012%

Installations

Double Barrel (most common)
Double RAP
Double Drum
Drum mix coater
Parallel flow

Mechanical Installation Requirements

- Piping recon a MUST for a "no surprises" retrofit installation.
 - >Sometimes may be by customer reps
 - **≻**Sometimes requires a visit by Astec
- Plant must be down 2 days for mechanical installation – typically Saturday-Sunday.
- Typical installation takes 2 fitter/welders about 2 x 10 hour days (+ or –)
 - >Starts Friday afternoon after shutdown.
 - **▶Plant ready to run HMA Monday morning.**
- "New" installation takes much less time as most of the piping is new
- No time-consuming pipe and AC box modifications.

Electrical Installation Requirements

- Time required depends upon plant configuration and cabling requirements.
- Generally, electrical installation takes between 16 and 20 man-hours including check-out.
- Most electrical and mechanical installation can occur concurrently.
 - After mechanical installation is complete, electrical installation may be finished.
 - Allow a day for system checkout (most system functions may be checked out while running HMA).

System Costs

1/4 ¢/ton additive cost:5 ¢ per truck load\$1 for every 400 tons

Based on 0.0785 \$/ft³ water including sewage fee

What we have done to date

- Sold over 180 units to create hot foam mechanically
- Stored in silo for 4 days
- Produced 76-22 (Polymers) and placed at 270°F
- Produced rubber mix at 270°F

What we have done to date

- **Numerous Demonstration Projects**

 - South Carolina
 - Tennessee x 4
 - Alabama
 - Texas
 - Arkansas
 - California
 - Kentucky

- North Carolina
 British Columbia
 - Ohio x 2
 - Illinois
 - Maryland
 - Louisiana
 - Florida x 2
 - Massachusetts

Mix Design Modifications

• No fines addition.

If some of the water remains in the mix, won't I show a high AC content?

- A small amount of water remains in the mix after compaction
- Theoretically, this could show up as AC content.
- Maximum of 0.0012% of the water remains.
- Beyond the measurement accuracy of AC content (typically reported to the nearest 0.1%).

Won't the baghouse temperature be too low when I lower mix temperature?

- Depends on a number of factors.
- Decreases BH temps about 35°F to 40°F (CF dryer) all other factors constant.
- Things go better with RAP

Can coating be affected?

- Depends on a number of factors
- Coating is affected by many factors: aggregate, mix temperature, AC type, and/or fines content
- Generally, coating decreases with mix temperature
- Coating begins to deteriorate below 250°F
- Good coating has been observed below 200°F
- Green System has significantly improved coating if coating initially appeared less complete

Do I have to do anything special to my binder?

- Keep standard binder at 300°F or higher
- AC Foaming nozzles have 3/8" openings
- AC temperatures above 300°F ensure low enough viscosity for a reasonable (<40psig) backpressure.

Won't I experience a drop in mix temperature since I am adding water?

- Significant temperatures drops during ordinary hauls in moderate weather is caused by internal moisture
- Internal moisture signs: steam and water at the silo tops, water running out of the truck beds, and a drop in mix temperature (27°F per ½%).
- Water remaining in the mix post compaction is 0.0012% (0.07°F drop)

What mix temperatures should I run?

Can I run WMA produced using the Astec Green System at higher temperatures?

- There is no danger in running the mix at higher temperatures
- Mix simply remains workable for a longer period

Will running WMA with RAP affect the heating and mixing of the RAP?

- RAP still obtains its heat from superheated virgin aggregate.
- There is just less superheat required.

Running RAP is like...

What affects the level of superheat?

How does WMA affect superheat?

Can WMA produced using the Astec Green System be stored?

- As long as the corresponding HMA may be stored
- First test was 24 hours then 48 hours
- Have stored as long as 4 days

Will rolling patterns change?

- Generally, crews have been able to begin rolling immediately.
- At some locations, less rolling was required
- Experiment. Each situation is unique.

Is handwork different than that of HMA?

- Can be different depending upon the situation
- Cold day tight quarter handwork became difficult on one job
- Straight pulls were no issue.

Does WMA produced with the Astec Green System look different?

- Can look the same as ordinary HMA minus smoke as smell
- Can look rich (especially virgin mixes) due to film thickness

Won't my water freeze when it gets cold?

- "Cold weather package" available through Astec Parts.
- Not meant for "winterizing".
- What about anti-freeze?

It's Green!

- Use 14% less fuel due to 50°F lower temperature and lower exhaust temp.
- 14% less CO₂ emissions
- Reduced volatiles
- Better, longer-lasting pavement

No Smoke - No Smell...Why?

- Light oils are either put in asphalt or left in asphalt during refining
- These light oils boil at above 285°F
- By mixing at below 285°F, the boiling point is never reached...eliminating smoke (vapor) and corresponding smell

Reduced Emissions

Volatile Organic Compounds (VOC)*

Mix Temperature	<u> </u>	Silo-filling Emissions	% Reduction
(°F)	(lb/yr)	(lb/yr)	
005	0040	7040	
325	2346	7312	
275	669	2084	71.5
260	459	1430	80.4

[❖] Based upon a plant producing mix at 400TPH with a total yearly production of 600,000 tons

Demonstration

- On June 21, 2007, the City of Chattanooga agreed to mill high traffic road and use 50% RAP @ 270°F with 64-22
- The RAP was fractionated
- The 64-22 AC was foamed
- Southeastern Materials produced and laid the mix

Lojac Inc. Nashville, Tennessee Warm Mix Demo

September 26, 2007

- 30% RAP @ 260°F / PG 64-22
- 700 tons binder
- 700 tons surface mix
- 100 tons surface / PG 76-22 @ 270°F

Lojac Inc. Nashville, Tennessee Warm Mix Demo

October 3, 2007

Tennessee D.O.T. Warm Mix Test

Tennessee DOT Warm Mix Test

Technology Demonstration Test Results:

Nashville Area, September 2007, Limestone

- Advera WMA
- 1150 Tons Placed
 705 Tons Placed
- % AC 5.16 & 5.28 % AC 5.14
- % Air Voids 4.7 % Air Voids 3.5
- Stability 1475Stability 1825
- Density 92.7%

- Sasobit

- TSR 51.9% TSR 65.5%
 - Density 91.0%

- Evotherm
- 750 Tons Placed
- % AC 5.22 & 5.36
- % Air Voids 5.1
- Stability 1455
- TSR 72.7%
- Density 91.0%

- Astec Green System
- 775 Tons Placed
- % AC 5.19 & 5.29
- % Air Voids 4.0
- Stability 2200
- TSR 84.3%
- Density 91.6%

QA Testing

Technology Demonstration Test Results:

Nashville Area, September 2007, Limestone

- Advera WMA
- % AC 5.16 & 5.28 % AC 5.14 % AC 5.22 & 5.36
- Stability 1475 Stability 1825 Stability 1455 Stability 2200

- Sasobit
- 1150 Tons Placed 705 Tons Placed

- Evotherm
- 750 Tons Placed
- % Air Voids 4.7
 % Air Voids 3.5
 % Air Voids 5.1
 % Air Voids 4.0
- Density 92.7%
 Density 91.0%
 Density 91.0%
 Density 91.0%

- Astec Green System
- 775 Tons Placed
- % AC 5.19 & 5.29

- TSR 51.9% TSR 65.5% TSR 72.7% TSR 84.3%

State may require TSR test prior to paving

Standard QA testing

Compaction at 10°F less than plant exit temp.

Reheated WMA retains WMA properties

Voluntary testing/documentation a good idea

Questions?