Use of Warm Mix/RAP in New Brunswick

Terry Hughes, P.Eng. Paving Engineer NBDOT

> NSUPA Seminar April 12, 2012

Outline of Presentation

- Warm Mix History in NB Experience to date Issues/Discussion
- Recycled Hot Mixes (HRB/HRD) History in NB Current Approach Cost Comparison Issues/Discussion
- Questions

NBDOT Warm Mix Projects Projects to Date:

- 2007 -1 contract 1,000 t (Evotherm emulsion)
- 2008 2 contracts (WMA vrs HMA trials)
- 2009 -8% of program
- 2010 -13 contracts 100,000 t
 - -13% of program

-Evotherm/Advera/Foaming Systems/Sonne Warm Mix

Projects to Date

•2011 -25 contracts 65,000 t -23 % of program -Evotherm/Foaming Systems/Sonne WarmMix/Cecabase

•2012-All collectors/locals-Approx 50% of program

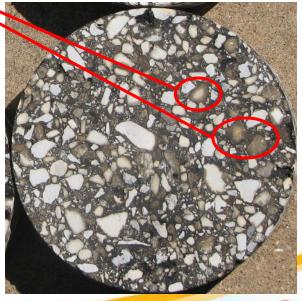
•No projects in North Western NB- stone absorption>1% Trial project-1km using Recycle Base Warm Mix

Temperature Specs

- <u>Spec Evolution</u>:
 - 1st contract-Additive suppliers recommendation
 - 2009-2011 Max 130C mixing temperature
 - 2012 -Max 125C behind spreader prior to compaction
 - -mix temp can vary (haul distance/air temp)
 -checked with a stem thermometer or probe
 -contractor can request an increase in temp after October 1st

Other Specifications

- List of approved technologies in the spec
 4 foaming systems/4 chemicals/1 powder
- Asphalt Binder must meet grade with additive
- Minimum TSR =80%
- Min. temp prior to compaction from supplier
- Max moisture content in mix=0.10%
- Mat temp below 90 c -transverse joint


Overall results have been very positive:

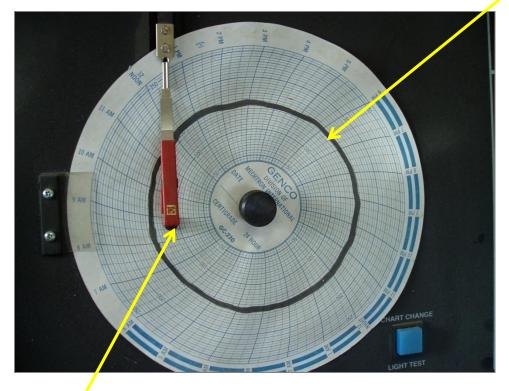
- Reduced need for anti-strip additives with certain technologies
- Reduction in Binder content due to less absorption

Warm Mix Asphalt

Hot Mix Control

Overall results have been very positive (cont'd):

- Decrease in emissions at plant/road; environmentally/politically friendly
- Fuel savings at plant
- Decreased oxidation of mix = better durability



freshly crushed dry aggregate Burner setting while producing WMA with

Brunswick Energy Savings- St Isidore Rte 135, 2008

•4000 lb batch; baghouse•Plant fired with propane

Black Line – HMA Agg Temp = 160C

Burner Position:

- HMA typically at 2.5.
- WMA was at 1.6

 ~ 360

Tracer for WMA Agg Temp = 125C

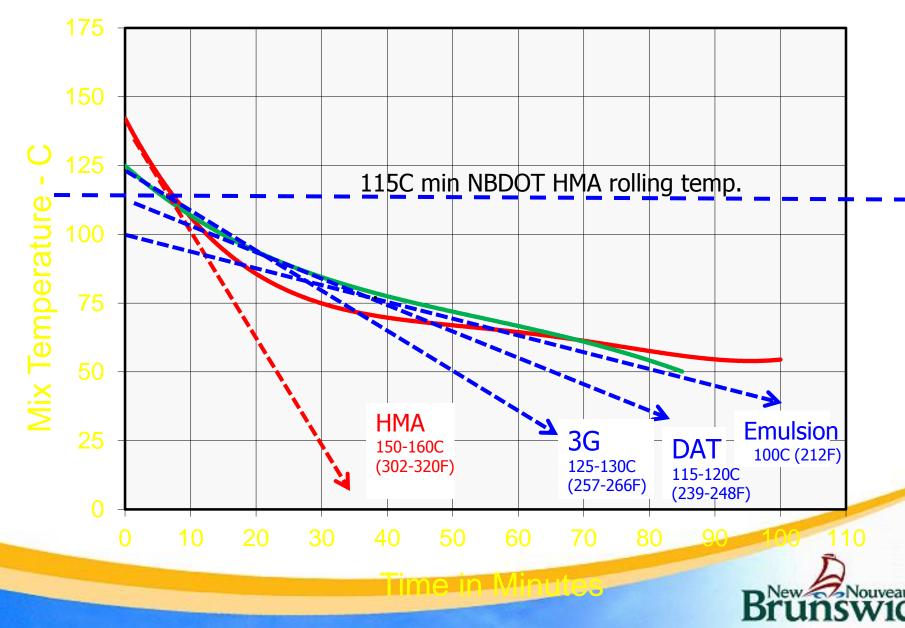
Practical Benefits of WMA

- Decrease Oxidation of mix:
 - Each 25F decrease in mix temp = 50% less oxidation of the binder \odot .
- Evotherm binder after 7-10 years of laboratory simulated aging = New HMA binder ^(C)
- Studies have shown it to be more resistant to reflective and fatigue cracking.
 - More testing/trials needed; would depend on underlying crack movement/type

Overall results have been very positive

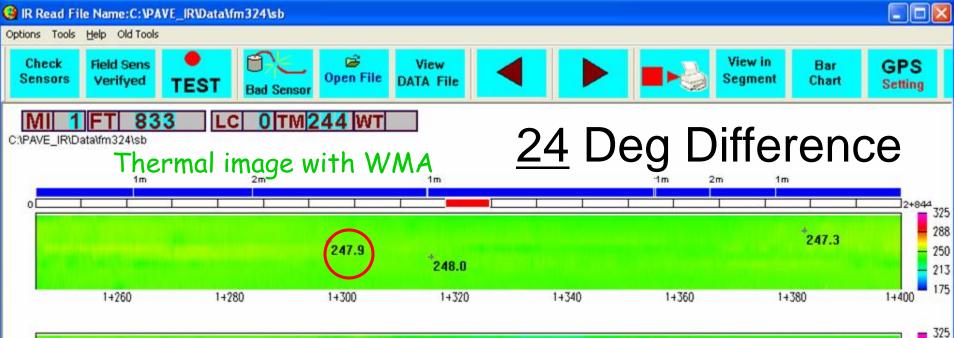
Overall results have been very positive (cont'd):

- Longer time available for compaction
- Extended paving season
- Quality of longitudinal joints improved; seamless



Typical Summer Cooling Curve - 50mm

Overall results have been very positive (cont'd):


• Mixes tend to be more stable

Consistency of finished mat improved

				226.1		240.			288
		244.4				920.0			250
						238.0			213
1+400	1+420	1+440	1+460	1+480	1+500	1+520	1+540		175

			235.3					28
			200.0			238.0	and the second	- 25
								- 2
1+560	1+580	1+600	1+620	1+640	1+660	1+680	1+700	- 13

224.0					[*] 244.0		325 288 250	
	\smile		243.8					213
1+720	1+740	1+760	1+780	1+800	1+820	1+840	1+860	175

(3) IR Read File Name:C:...
IR Read File Name:C:...

🛃 start

End of Load Segregation

lssues:

- Temperature modifications for late season work
- Effect of low temperatures on dust collection systems
- Potential production limitations if piles too wet
- Contractor following specified WMA temps

Moisture Management

- It is crucial to minimize stockpile moisture. <u>Especially with WMA</u>.
- Lower WMA temperatures = less drying potential
- The key is to:
 - Minimize aggregate H20 before it enters the drier/drum

Ideal scenario

Stockpile Drainage

Work Pile to Control H2O

Issues (cont'd):

 Dust balls(check moisture in fine aggregate), flights modifications, stockpile moisture management/limit washed sand

Cost Analysis

- Chemical Additives
 - -Cost= \$30-\$50/t of binder (\$2.40/t of mix)
 - -Savings

=no anti-strip (\$1.50/t of mix)
=fuel savings at plant (\$1.50/t of mix)
=reduction in binder (\$1.30/t of mix)
-Cost of WMA should be =/less than HMA

lssues:

- Temperature modifications for late season work
- Effect of low temperatures on dust collection systems
- Potential production limitations if piles too wet
- Contractors following specified WMA temps

Issues / Discussion

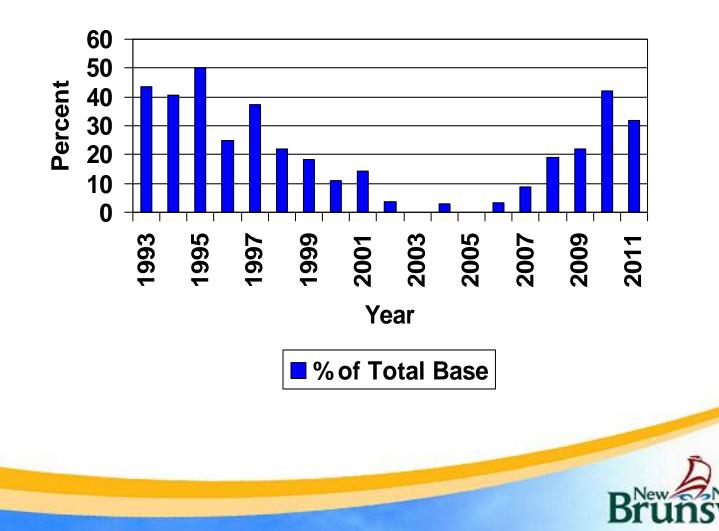
- Should WMA be used for other purposes?
 - Compaction aid on HMA contracts
 - Bridge decks/compaction aid
 - Anti-strip additive
- Long term performance of different technologies
- Approval process for new technologies
- Testing issues with certain processes
 - Foam mix design
 - Recompaction of older samples
- How to incorporate WMA into future years
 - Allow use as an alternate on all work
 - Offer incentives

Conclusion

- Placing WMA is just like placing HMA
- It's just a better alternative!
 - Decreased life cycle cost
 - Increased longevity
 - Performance
 - Environmentally friendly
 - Politically correct
- Better product for same price

History of RAP Mixes in N.B.

- 1st Contract in 1981-14,500 t @ 50 % RAP
 -RAP removed by Grader/scarifier
- Since 1981 N.B.D.O.T


-2.8 Million tonnes of Recycle Base Mixes @35-40 % RAP

-approx. 1700 km. paved with RAP -conservation -1 million t of aggregate -60,000 t of binder

• \$\$\$ Savings Approx \$28 Million

HRB % of Total Base Placed

NBDOT'S CURRENT APPROACH

- Recap Contracts >3,000t of mix
 - -Contracts called with option to use HRB @30%+/- 5 RAP
 - -Started using recycle surface mixes HRD @15% RAP

2 contracts in 2101/1 contract in 2011

- -RAP being milled within contract limits
- -Contractor responsible for extra costs if using virgin mix-Binder/Aggregate
- -Contractor allowed to keep an equivalent amount of RAP which would have been used in recycle mix
- -Excess RAP generated on the contract utilized as shouldering/local roads

Preparation/Stockpiling RAP

- Must be processed within 14 Days of the introduction into the cold feed
- All particles passing 50 mm sieve
 -screening vrs crushing
 -fractionation not required
- Maximum height of stockpile 3 m to prevent consolidation

Mix Design Procedures

- Obtain 6 samples of RAP (approx 20 kg each)during milling operation
- Split a 2400 g sample from each 20 kg sample
 -2011-Ignition Oven used for extractions vrs chemicals
 -Recovered aggregate used for gradation/RD's
 -Assume a correction factor for % binder in RAP
- Split a 3.3 kg sample from each RAP sample for mix design/field ignition oven calibration
- Above 20% RAP-need softer Binder -If required grade PG 58-28
 New Binder PG 52-34
- Recycle surface mix (HRD) use same binder PG 58-28

Mix Designs

- Gradation finer than virgin aggregate mix
- Higher dust contents than virgin mix
- Results in lower VMA
- May require adding clean blending sand or washed sand

-tender mixes?

 Results in tighter finished surface-less permeability

Mix Designs-Excess Washed Sand

Cost Comparison

- 30 % RAP Mix vrs. Virgin Aggregate Mix
- Assumptions

5.7 % A.C. in RAP(A.C. =\$650/t)
Cost of aggregate delivered to plant
= 25 mm stone \$11.50/t
= crusher sand \$12.00/t
Cost to haul/screen/stockpile RAP
=\$ 7.00/t (20 km haul)

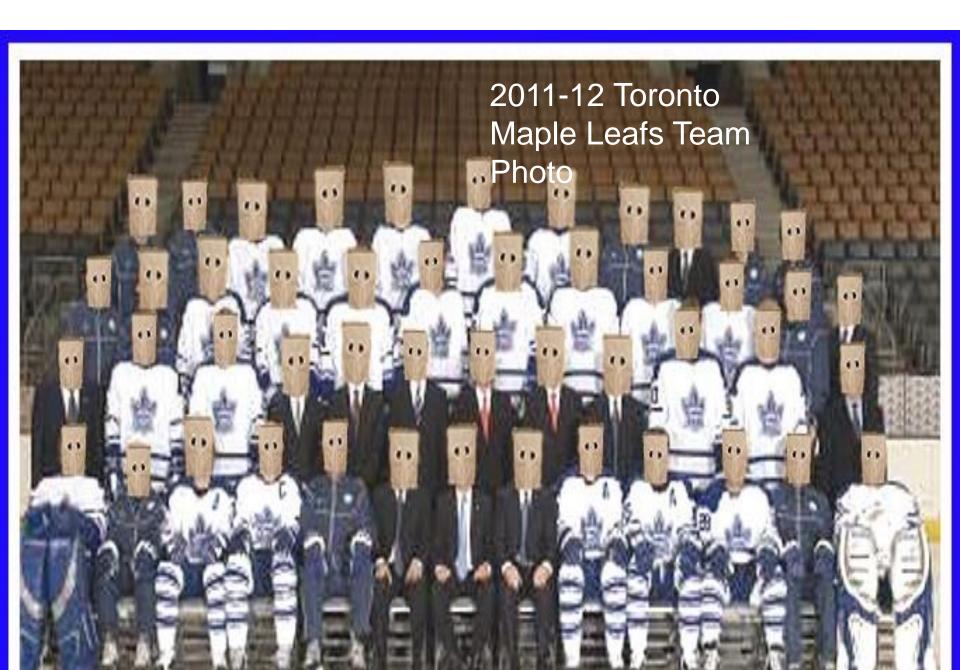
Cost savings approx \$12/t

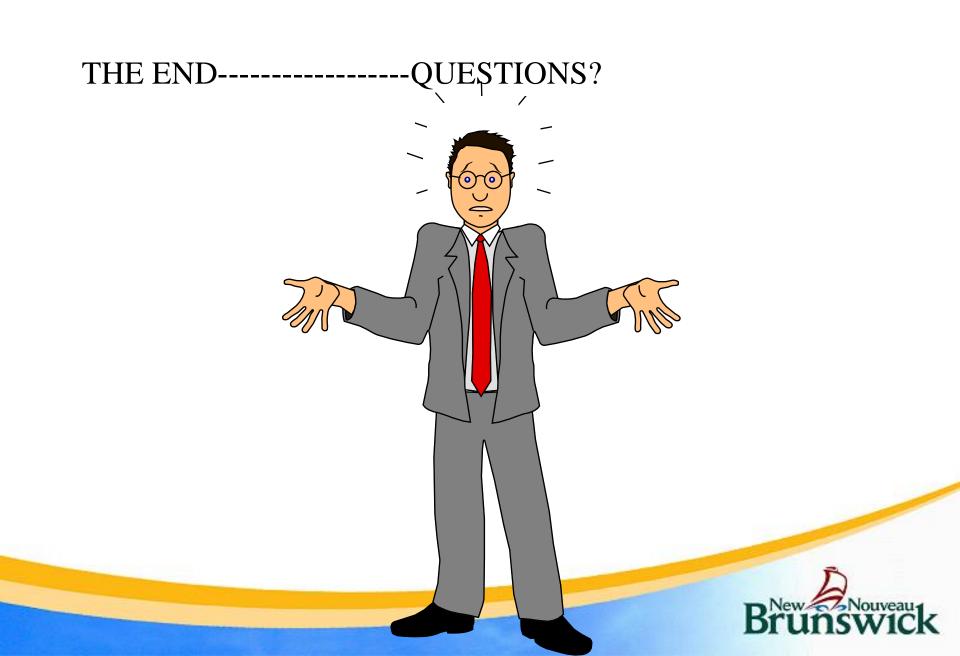
Mix Variability

- Historical data indicates RAP mixes equal/more consistent
- 2007 Contract
 10,000 t HRB -13 tests
 14,500 t B -21 tests
- Proper QC practices are essential to consistent RAP mixes

% passing 4.75 mm
 HRB- Std Dev =3.8

B - Std Dev = 3.3


- % passing 75 um
 HRB- Std Dev =0.4
 B Std Dev =0.5
- Asphalt Content
 HRB -Std Dev =.21
 B -Std Dev =.24



Issues

- Quality of RAP from private stockpiles
- Stack Emissions-older plants
- Value of RAP if contractor purchases/replaces
- Use of RAP & Warm Mix

