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Opportunities to integrate energy innovation & social justice

€he New Pork imes

Why Housing Policy Is Climate Policy

In California, where home prices are pushing people farther from
their jobs, rising traffic is creating more pollution.

By Scott Wiener and Daniel Kammen

Senator Wiener is the chairman of the California Senate’s Housing Committee. Dr. Kammen is
a professor of energy at the University of California, Berkeley.

March 25, 2019 f vy = » [

San Francisco Chronicle

WILDFIRES VIRUS LOCAL FOOD ELECTION SPORTING GREEN BIZ+TECH CULTURE DATEB(

OPINION

How electric vehicles can help
advance social justice

By Daniel Kammen | June 21,2020 | Updated: June 22, 2020 6:21 p.m




Mapping Resource Footprints (coolclimate.Berkeley.edu)
€he New York Eimes

The Climate Impact of Your
Neighborhood, Mapped

By Nadja Popovich, Mira Rojanasakul and Brad Plumer Dec. 13, 2022

New data shared with The New York Times reveals stark
disparities in how different U.S. households contribute to climate
change. Looking at America’s cities, a pattern emerges.
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Mapping Resource Footprints (coolclimate.Berkeley.edu)
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COP27 Transition Agenda

CLEAN POWER already the least cost
option for new construction in many

settings.

Zero emissions ROAD

TRANSPORT the new normal —
accessible, affordable and sustainable in all
regions by 2030.

Near zero STEEL the preferred choice in

global markets, with efficient use and near-

zero emission steel production established
and growing in every region by 2030.

Zero and very low
carbon HYDROGEN globally available
by 2030.

Climate-resilient,

sustainable AGRICULTURE the most
attractive and widely adopted option for
farmers everywhere by 2030.

Projected trends in emissions and warming

Global greenhouse gas emissions in gigatonnes of carbon
dioxide equivalent
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Historical Current policies (2.5-2.9C)
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Commitments to
2030 only (2.4C)

Pledges & targets (1.9-2.1C)
Optimistic targets (1.8C)

10

1.5C pathway
-10
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https://racetozero.unfccc.int/system/breakthrough-agenda/


https://climatechampions.unfccc.int/wp-content/uploads/2022/11/Power-Breakthrough-Priority-International-Actions-for-2023-final.docx
https://climatechampions.unfccc.int/wp-content/uploads/2022/11/Road-Transport-Breakthrough-Priority-International-Actions-for-2023-final-11.docx
https://climatechampions.unfccc.int/wp-content/uploads/2022/11/Steel-Breakthrough-Priority-International-Actions-for-2023-final.docx.pdf
https://climatechampions.unfccc.int/wp-content/uploads/2022/11/Hydrogen-Breakthrough-Priority-International-Actions-for-2023-final1.docx
https://climatechampions.unfccc.int/wp-content/uploads/2022/11/Agriculture-Breakthrough-Priority-International-Actions-for-2023-FINAL-002.docx
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According to Bloomberg New Enetgy, it is now cheaper to build renewables than to operate fossil fuel power plants in most locations’.

Uhttps:/ /www.bloomberg.com/news/atticles/2021-06-23 /building-new-renewables-cheaper-than-running-fossil-fuel-plants
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RAEL’s "SWITCH” Power System Models
to Plan the Clean Energy Transition

China
-
gl
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|
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. East African In progress
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2. Planned:
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Tanzania

http://rael.berkeley/edu/project/SWITCH



The SWITCH Modeling Framework

http://rael.Berkeley.edu/project/SWITCH
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Dispatch in 2050:
Flexibility and variable renewables dominate

Storage almost exclusively moves solar to the night
Geothermal only remaining substantial baseload
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Average Generation (GW)
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Figure 1. Maps of average transmission and generation in the Reference scenario in 2020, 2030, 2040,
and 2050.

11



Pathways for
Western
North America

Annual Electricity Production (TWh)
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From (perceived) utility crisis to clean energy opportunity

California's duck curve is dipping deeper than ever

Bidirectional EV Charging
Lowest net load day each year in CAISO, 2015-2021 /
20GW

Energy Flow Cycle

//
Evening L~ AC e AC
demand peak -
Morning
demand peak

AC power from Grid to Charger Excess Energy used by homes
Midday solar Converted DC power into the DC power converted to AC, and
saturation 2021 EV battery supplied back to grid
3PM 6PM 9PM 12AM
Note: Net load shown is demand minus utility-scale wind and solar

(1 [ —
12AM 3AM 6AM 9AM 12PM
Source: CAISO

Grey hydrogen

Green hydrogen
CO; «~_

A& p T

from natural gas from natural gas from water
with carbon capture using zero-carbon
and storage electricity

Blue hydrogen
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Electric Vehicle Data Science:

China and New York City
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Example: Shenzhen Taxi Fleet Transformed
in partnership with RAEL

As of 2021: 95% of the taxi fleet is EV in Shenzhen, China (31,000+ vehicles)




Shenzhen e-taxi rleet: long queues and lost revenue

Solutions through data analytics and optimization
20 % increase In driver revenue, charging queues reduced 80%
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Solar cost decreases 10% per year

The Learning Curve Cumulative production GigaWp
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Materials Science & Engineering for Storage Innovation
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Schmidt, O., Hawkes, A., Gambhir, A., & Staffell, I. (2017) The future cost of electrical energy storage. Nature Energy, 2, 2017110.
Qiu, Y., & Anadon, L. D. (2012) The price of wind power in China during its expansion. Energy Economics, 34(3), 772-785.
Kittner, Lil & Kammen (2017) Energy storage innovation. Nature Energy, 2, 17125
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Two-factor learning curves: engineering

, manufacturing and R&D

Deployment as a function of cost and R&D ... a significantly better fit

Li+ price ($/kWh)

—b —-a
G (V3 [R&D];

C1 4 [R&D]4

Post IRA, Chips & Science Act, and Infrastructure Act, it is critical we collaborate
to a accelerate investment in not only R&D, moving research to implementation
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ARTICLES

nature
energy mvmen s e 2o v 3 e e

Energy storage deployment and innovation for the
clean energy transition

Noah Kittner', Falix Lili* and Danis| M. Kamman'24

Kittner, N., Lill, F., Kammen, D.M. (2017). “Energy storage deployment and innovation for the clean energy transition.”

Nature Energy 2 17125.
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About Disciplines Resources News Blog

-
I, ‘W= ecoblock™
- W

Block by Block:

Transforming Cities for a Resilient and Carbon Neutral Future

ABOUT THE PROJECT

EcoBIoc Prolect Overview.

EcoBlock is a radical retrofit of existing
residential homes to improve resilience,

sustainability, and quality of life for all

community members.
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A Social Cost
of Carbon;
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