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Question 1

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 1.a)

The parameters of the user-defined bisection() function are; f, a, b, tolerance, and nmax. These parameters are defined as; f, is the

function that is to be analysed, a is the starting interval input value, b is the stopping interval input value, tolerance is the value that

determines the degree of error that is acceptable which will terminate the function's process once the current error of approximation

is within the error tolerance threshold, and nmax is the maximum number of iterations that will compute before the bisection

processing loop terminates. If the loop terminates due the the nmax threshold being reached, then the approximation result that is

returned, x, may not be accurate since the error will not be within the error tolerance threshold.

Problem 1.b)

This problem is applying the bisection() function that was generated in 1.a) by implementing the function, f, log(x) + x, in the interval

[0.1, 1.0]; meaning a = 0.1, and b = 1.0. Since f(a) * f(b) < 0, the interval meets the condition of Bolzano's Theorem, so the user-

defined bisection() function can be implemented to solve for the approximation of the roots.

1 0.55

2 0.325

3 0.4375

4 0.38125

5 0.409375
6 0.39531249999999996

7 0.40234375

8 0.398828125

9 0.4005859375

10 0.39970703124999996

11 0.39926757812499997

12 0.3990478515625

13 0.39893798828125

14 0.398992919921875

15 0.3990203857421875

16 0.3990066528320313

17 0.3990135192871094

18 0.39901008605957033

19 0.39901180267333985

20 0.3990126609802246

21 0.399013090133667

22 0.39901287555694576

23 0.3990129828453064

24 0.3990129292011261

25 0.39901295602321624

26 0.39901296943426134

27 0.39901297613978387

28 0.3990129794925451

29 0.3990129778161645

30 0.3990129786543548

31 0.39901297823525966

32 0.3990129784448072

33 0.39901297834003346

34 0.3990129782876466

35 0.3990129782614531

36 0.39901297824835635

37 0.3990129782549047

38 0.39901297825817894

39 0.399012978259816

40 0.39901297826063453

41 0.3990129782602253

42 0.3990129782604299

43 0.3990129782603276

44 0.3990129782602765

45 0.3990129782602509

46 0.3990129782602637

47 0.3990129782602573

48 0.39901297826025406

49 0.3990129782602525

50 0.3990129782602517

tolerance:  1e-15

The approximate solution is:  0.3990129782602517

And the error is:  -7.216449660063518e-16


Observations

1.a)
The requirement of Bolzano's Theorem requires the user to first find value a and b that will satisfy the requirement, f(a) * f(b) <

0, meaning each value is on opposite side of the x-axis from the other. This means either analytical intuition is required to have

good guesses as to which values a and b should be; or it would be required to graph the function in order for the function to visually

show where f(a) and f(b) are on varying sides of the x-axis.

1.b)
Implementing a function into the user-defined bisection() function required creating a user-defined function, f(x) that could be

used as an input value as one of the arguments (input paramaters). The given function log(x) + x seems simple to write in Python

using Numpy; however, np.log(x) is used to compute ln(x), and np.log10(x) is used to compute log(x). My result was not correct at

first, then I realized the need to specify log base 10, and not simply log, since those have different function calls.

Conclusions

When translating a mathematics equation into a function that can compute approximate results, it's vital to first test the code with a

function that you can compute the result so the code can be tested and verified for its accuracy. Additionally, it's important to

understand the details of the pre-built functions you apply, because it's easy to assume simple things like log(x) is written as

np.log(x), when in reality, it is written np.log10(x).

In order to find the proper intervals of a, b to find all the roots of the function using the Bisection Method; it is possible to find the

turning points of the function by solving f'(x) = 0 and identifying if the function is increasing, decreasing, or neither within the

intervals of those roots found by computing f'(x) = 0.

Question 2

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using Newton's Method.

Newton's Method requires finding the derivative of the given function, as well as choosing an arbitrary initial value, x0, to use as the

first input to the function and the derivative function in the context of Newton's Method that continually iterates through the

algorithm, xn+1 = xn - f(xn) / f'(xn), until reaching an approximate solution of the root of the function.

Procedure

Problem 2.a)

For creating and testing this user-defined newtons_method function, I implemnted my own function to test the function before

moving on to 2.b); i.e. f(x) = x^2 - x - 1, where df(x) = 2x - 1. Since there are two roots to this equation, which can be found by

graphing the function, then two separate calls to the function, newtons_method() should be run with the varying intial guesses; -1.0,

and 10.0. The solution for x0 = -1.0 should be -0.618, and the solution for x0 = 10.0 should be 1.618.

Find first root:


iteration: 1

approximate solution: -0.6666666666666667

cuurent output; f(xn): 0.11111111111111116

error: 0.33333333333333326


iteration: 2

approximate solution: -0.6190476190476191

cuurent output; f(xn): 0.0022675736961450532

error: 0.04761904761904767


iteration: 3

approximate solution: -0.6180344478216819

cuurent output; f(xn): 1.0265159331446227e-06

error: 0.0010131712259371373


iteration: 4

approximate solution: -0.6180339887499892

cuurent output; f(xn): 2.1094237467877974e-13

error: 4.590716927710403e-07


iteration: 5

approximate solution: -0.6180339887498948

cuurent output; f(xn): -1.1102230246251565e-16

error: 9.43689570931383e-14


iteration: 6

approximate solution: -0.6180339887498948

cuurent output; f(xn): -1.1102230246251565e-16

error: 0.0

The aproximate solution is:  -0.6180339887498948

And the error is:  0.0


---------------------------


Find second root:


iteration: 1

approximate solution: 5.315789473684211

cuurent output; f(xn): 21.94182825484765

error: 4.684210526315789


iteration: 2

approximate solution: 3.037676157607132

cuurent output; f(xn): 5.189800280887697

error: 2.2781133160770786


iteration: 3

approximate solution: 2.015126399764636

cuurent output; f(xn): 1.0456080072637475

error: 1.022549757842496


iteration: 4

approximate solution: 1.67007003765974

cuurent output; f(xn): 0.11906389302906528

error: 0.3450563621048961


iteration: 5

approximate solution: 1.619191077769781

cuurent output; f(xn): 0.002588668559484031

error: 0.05087895988995883


iteration: 6

approximate solution: 1.618034586885024

cuurent output; f(xn): 1.3374711664848604e-06

error: 0.001156490884757


iteration: 7

approximate solution: 1.6180339887500548

cuurent output; f(xn): 3.574918139293004e-13

error: 5.981349693318094e-07


iteration: 8

approximate solution: 1.618033988749895

cuurent output; f(xn): 0.0

error: 1.5987211554602254e-13


iteration: 9

approximate solution: 1.618033988749895

cuurent output; f(xn): 0.0

error: 0.0

The aproximate solution is:  1.618033988749895

And the error is:  0.0


---------------------------


Problem 2.b)

Used provided function, f(x) = log(x) + x, has the derivative function, df(x) = 1/x + 1. After graphing the function, it can be observed

that there is only one root to the function, so only one call to the newtons_method() function should be necessary, assuming x0

does not result in an infinite loop, which is a known error or Newton's Method. When the initial guess is x0 = 0.1 the solution should

be 0.399.

Find root:

iteration: 1

approximate solution: 0.18181818181818182

cuurent output; f(xn): -0.558544507676062

error: 0.08181818181818182


iteration: 2

approximate solution: 0.2677481060760375

cuurent output; f(xn): -0.3045254864037672

error: 0.08592992425785567


iteration: 3

approximate solution: 0.3320638182003216

cuurent output; f(xn): -0.1467146245150302

error: 0.06431571212428411


iteration: 4

approximate solution: 0.36863760523412037

cuurent output; f(xn): -0.06476275863966457

error: 0.036573787033798766


iteration: 5

approximate solution: 0.3860812208135691

cuurent output; f(xn): -0.027240101352557833

error: 0.017443615579448735


iteration: 6

approximate solution: 0.3936687210461369

cuurent output; f(xn): -0.011200369667107246

error: 0.007587500232567823


iteration: 7

approximate solution: 0.3968324823729925

cuurent output; f(xn): -0.00456030389794243

error: 0.0031637613268555853


iteration: 8

approximate solution: 0.3981280398138686

cuurent output; f(xn): -0.001849194539737642

error: 0.0012955574408760606


iteration: 9

approximate solution: 0.39865461261433843

cuurent output; f(xn): -0.0007485939434544453

error: 0.00052657280046986


iteration: 10

approximate solution: 0.39886798225244763

cuurent output; f(xn): -0.00030284152586318447

error: 0.0002133696381091954


iteration: 11

approximate solution: 0.39895433335197655

cuurent output; f(xn): -0.00012248000460340913

error: 8.635109952892517e-05


iteration: 12

approximate solution: 0.39898926224666637

cuurent output; f(xn): -4.952981037281701e-05

error: 3.492889468981186e-05


iteration: 13

approximate solution: 0.39900338806094754

cuurent output; f(xn): -2.0028508126990197e-05

error: 1.4125814281173987e-05


iteration: 14

approximate solution: 0.3990091003005809

cuurent output; f(xn): -8.0988365904755e-06

error: 5.712239633359761e-06


iteration: 15

approximate solution: 0.3990114101565359

cuurent output; f(xn): -3.274865566726959e-06

error: 2.3098559550072117e-06


iteration: 16

approximate solution: 0.3990123441794598

cuurent output; f(xn): -1.3242287899006833e-06

error: 9.340229238929965e-07


iteration: 17

approximate solution: 0.3990127218627847

cuurent output; f(xn): -5.354661872236655e-07

error: 3.776833248925193e-07


iteration: 18

approximate solution: 0.3990128745832121

cuurent output; f(xn): -2.1652142012662523e-07

error: 1.5272042741543146e-07


iteration: 19

approximate solution: 0.3990129363373502

cuurent output; f(xn): -8.75527106924956e-08

error: 6.175413808096053e-08


iteration: 20

approximate solution: 0.3990129613082874

cuurent output; f(xn): -3.54028554250263e-08

error: 2.4970937206880706e-08


iteration: 21

approximate solution: 0.3990129714055478

cuurent output; f(xn): -1.4315514884621905e-08

error: 1.0097260416674914e-08


iteration: 22

approximate solution: 0.39901297548848075

cuurent output; f(xn): -5.788628076874858e-09

error: 4.08293293618911e-09


iteration: 23

approximate solution: 0.3990129771394574

cuurent output; f(xn): -2.3406922511348682e-09

error: 1.6509766331829212e-09


iteration: 24

approximate solution: 0.39901297780704703

cuurent output; f(xn): -9.464833361505498e-10

error: 6.675896502272849e-10


iteration: 25

approximate solution: 0.3990129780769939

cuurent output; f(xn): -3.8272046642973123e-10

error: 2.699468426570206e-10


iteration: 26

approximate solution: 0.3990129781861497

cuurent output; f(xn): -1.5475698500466706e-10

error: 1.0915585102466707e-10


iteration: 27

approximate solution: 0.39901297823028803

cuurent output; f(xn): -6.257755424954325e-11

error: 4.413830412275388e-11


iteration: 28

approximate solution: 0.3990129782481358

cuurent output; f(xn): -2.530387011034918e-11

error: 1.7847778810420323e-11


iteration: 29

approximate solution: 0.39901297825535276

cuurent output; f(xn): -1.0231815394945443e-11

error: 7.216949260424599e-12


iteration: 30

approximate solution: 0.399012978258271

cuurent output; f(xn): -4.137357123568108e-12

error: 2.918221220227224e-12


iteration: 31

approximate solution: 0.399012978259451

cuurent output; f(xn): -1.6729950758076484e-12

error: 1.1800005417228476e-12


iteration: 32

approximate solution: 0.39901297825992815

cuurent output; f(xn): -6.764588889041079e-13

error: 4.771738559838923e-13


iteration: 33

approximate solution: 0.3990129782601211

cuurent output; f(xn): -2.735034421164073e-13

error: 1.929567616798522e-13


iteration: 34

approximate solution: 0.3990129782601991

cuurent output; f(xn): -1.1063372440389685e-13

error: 7.799316747991725e-14


iteration: 35

approximate solution: 0.39901297826023063

cuurent output; f(xn): -4.4797499043625066e-14

error: 3.1530333899354446e-14


iteration: 36

approximate solution: 0.3990129782602434

cuurent output; f(xn): -1.8096635301390052e-14

error: 1.27675647831893e-14


iteration: 37

approximate solution: 0.39901297826024856

cuurent output; f(xn): -7.327471962526033e-15

error: 5.162537064506978e-15


iteration: 38

approximate solution: 0.3990129782602507

cuurent output; f(xn): -2.942091015256665e-15

error: 2.1094237467877974e-15


iteration: 39

approximate solution: 0.3990129782602515

cuurent output; f(xn): -1.1657341758564144e-15

error: 8.326672684688674e-16


The aproximate solution is:  0.3990129782602515

And the error is:  8.326672684688674e-16


---------------------------


Observations

Since Newton's Method is capable of finding a root regardless of the arbitrary initial guess value (x0), any value can be chosen, so

long as it does not cause an infinite loop error; however, if there are multiple roots, then the function must be called for every root

with a value near the root that will result in the approximation of that root. This may require graphing the function and observing

where the roots should be, then using a guess, x0, near that observed root.

Conclusions

Newton's Method is easier to implement than the Bisection Method, in regards to the fact that the intial guess value, x0, can be

arbitrary, so long as it does not cause an infinite loop. This process of finding proper a and b values for the interval of the Bisection

Method can require much more work to verify Bolzano's Theorem before proceeding.

The main difficulty in Newton's Method is the requirement to compute the derivative of f(x) beforehand; however it is possible to

right a function (problem 5) that can compute an aproximation of the derivative at a give location, x.

Question 3

Introduction

The purpose of this problem is to create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 3.a)

The intervals of monotonicity of the function can be observed from the graph and identifying where the function increases and

decreases. A more precise way to find the intervals of monotonicity is to find the turning points of the function by finding the roots of

the derivative of the function, i.e. f'(x) = 0. The roots of f'(x) are located at; 0.691, 1.809, and there is a vertical asymptote at 0.0.

Intervals of Monotonicity:
(-inf, 0): increasing

(0.0, 0.691): decreasing

(0.691, 1.809): increasing

(1.809, inf): decreasing

The roots of the given equation are located at within each of these intervals:

The first root is -0.3 which is within the interval (-inf, 0).

The second root is 0.425 which is within the interval (0.0, 0.691).

The third root is 1.0 which is within the interval (0.691, 1.809).

The fourth root is 4.099 which is within the interval (1.809, inf).

[-3.09922871 -3.09709301 -3.09495284 ... -0.78540862 -0.78634838

 -0.78728727]

[<matplotlib.lines.Line2D at 0x1f8bc03a6a0>]

Problem 3.b)

f(x) = arctan(2(x-1)) - ln|x|

f'(x) = (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5))

Find the roots of f'(x) = 0 to find the points of inflection points. To do this find where the numerator of f'(x) equals 0:

-4x^2 + 10x - 5 = 0

The equation is quadratic, so use the quadratic formula to solve.

f'(x) = 0 at x = 0.691 and 1.809

The denominator generates a vertical asymptote; so, we must find where the denominator of f'(x) equals zero, to know where the

vertical asymptote is.

x(4x^2 - 8x + 5) = 0

The denominator of f'(x) equals 0 at x = 0.0

Now Bolzano's Theorem can be implemented to prove the existence of the roots by plugging in these inflection point values (or very

near values for -inf and inf) as the a and b values in the equation f(a) * f(b) < 0 to prove the existence (or non-existence) of each real

root within the respective interval.

Check Bolzano's Theorem for first interval, (-inf, 0.0):

f(-1000000000) = negative

f(-0.00000001) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval (-inf, 0.0).

Check Bolzano's Theorem for second interval, (0.0, 0.691]:

f(0.00000001) = positive

f(0.691) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval (0.0, 0.691].

Check Bolzano's Theorem for third interval, [0.691, 1.809]:

f(0.691) = negative

f(1.809) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

Check Bolzano's Theorem for fourth interval, [1.809, inf):

f(1.809) = positive

f(1000000000) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

This proves that the function, f(x) = arctan(2(x-1)) - ln|x|, has exactly for real roots for its entire domain, (-inf, inf).

Problem 3.c) -> Part 1

For this problem you can simply use the code from problem 1. The main alteration I made was creating a list of inputs for both the a

and b values, which can be iterated through a for loop the to compute each interval's respective outcome.

The implementation of this code with the provided function can be solved resulting in an error of 0.0, when the error tolerance is set

to a very small value. This means when the approximate solution is plugged into f(x) the result is 0.0. This returns a failure warning

that checks Bolzano's Theorem, despite the approximation being accurate. I added an additional statement to the Bolzano's

Theorem check for failure statement to inform the user, when this check fails, the result is still accurate when the error is 0.0.

Error Tolerance:  1e-15


Find root 1

1 -0.325

2 -0.2875

3 -0.30625
4 -0.296875

5 -0.3015625

6 -0.29921875

7 -0.300390625

8 -0.2998046875

9 -0.30009765625

10 -0.299951171875

11 -0.3000244140625

12 -0.30006103515625004

13 -0.300079345703125

14 -0.3000885009765625

15 -0.30009307861328127

16 -0.30009536743164067

17 -0.3000965118408203

18 -0.30009708404541013

19 -0.3000973701477051

20 -0.3000975131988526

21 -0.30009758472442627

22 -0.3000975489616394

23 -0.30009756684303285

24 -0.30009755790233617

25 -0.3000975623726845

26 -0.30009756460785864

27 -0.30009756572544577

28 -0.30009756628423934

29 -0.30009756600484255

30 -0.30009756586514413

31 -0.30009756593499337

32 -0.300097565969918

33 -0.30009756598738024

34 -0.30009756599611137

35 -0.300097566000477

36 -0.3000975659982942

37 -0.3000975659972028

38 -0.30009756599665705

39 -0.30009756599692994

40 -0.3000975659970664

41 -0.30009756599699816

42 -0.3000975659970323

43 -0.30009756599704934

44 -0.30009756599705784

45 -0.3000975659970621

46 -0.30009756599705995

47 -0.30009756599706106

48 -0.3000975659970605

The aproximate solution when a is -0.4 and b is -0.25: -0.3000975659970605

error: 6.661338147750939e-16


Find root 2

1 0.52

2 0.445

3 0.4075

4 0.42625

5 0.416875
6 0.4215625

7 0.42390625000000004

8 0.42507812500000003

9 0.4256640625

10 0.42537109375000004

11 0.425517578125

12 0.42544433593750003

13 0.42540771484375006

14 0.425426025390625

15 0.42541687011718754

16 0.4254122924804688

17 0.42541000366210946

18 0.4254111480712891

19 0.4254117202758789

20 0.425411434173584

21 0.42541157722473144

22 0.42541150569915775

23 0.4254115414619446

24 0.425411559343338

25 0.4254115682840347

26 0.42541157275438307

27 0.4254115749895573

28 0.42541157387197015

29 0.4254115744307637

30 0.42541157415136693

31 0.4254115740116685

32 0.42541157394181933

33 0.42541157390689477

34 0.425411573924357

35 0.4254115739156259

36 0.42541157391999146

37 0.4254115739178087

38 0.42541157391890005

39 0.4254115739183544

40 0.4254115739186272

41 0.4254115739187636

42 0.42541157391869544

43 0.42541157391866136

44 0.42541157391864426

45 0.4254115739186528

46 0.4254115739186571

failure: did not pass Bolzano's Theorem this iteration.

Thus, the bisection process cannot procceed any further.

However, if the error is 0.0, then the solution is accurate.

The aproximate solution when a is 0.37 and b is 0.67: 0.4254115739186549

error: 0.0

Find root 3

1 0.96

2 1.08

3 1.02

4 0.99

5 1.005

6 0.9974999999999999

7 1.00125

8 0.9993749999999999

9 1.0003125

10 0.9998437499999999

11 1.000078125

12 0.9999609374999999

13 1.00001953125

14 0.999990234375

15 1.0000048828125

16 0.9999975585937501

17 1.000001220703125

18 0.9999993896484376

19 1.0000003051757813

20 0.9999998474121095

21 1.0000000762939454

22 0.9999999618530274

23 1.0000000190734863

24 0.9999999904632568

25 1.0000000047683715

26 0.9999999976158142

27 1.0000000011920929

28 0.9999999994039535

29 1.0000000002980232

30 0.9999999998509883

31 1.0000000000745057

32 0.999999999962747

33 1.0000000000186264

34 0.9999999999906868

35 1.0000000000046567

36 0.9999999999976718

37 1.0000000000011642

38 0.999999999999418

39 1.000000000000291

40 0.9999999999998546

41 1.0000000000000728

42 0.9999999999999637

43 1.0000000000000182

44 0.9999999999999909

45 1.0000000000000044

46 0.9999999999999977

47 1.000000000000001

48 0.9999999999999993

49 1.0000000000000002

The aproximate solution when a is 0.72 and b is 1.2: 1.0000000000000002

error: 2.220446049250313e-16


Find root 4

1 4.0
2 4.5
3 4.25

4 4.125

5 4.0625

6 4.09375

7 4.109375
8 4.1015625

9 4.09765625

10 4.099609375

11 4.0986328125

12 4.09912109375

13 4.099365234375

14 4.0994873046875

15 4.09942626953125

16 4.099456787109375

17 4.0994720458984375

18 4.099464416503906

19 4.099460601806641

20 4.099462509155273

21 4.09946346282959

22 4.099462985992432

23 4.0994627475738525

24 4.099462866783142

25 4.099462926387787

26 4.0994628965854645

27 4.099462881684303

28 4.099462889134884

29 4.099462885409594

30 4.099462887272239

31 4.099462888203561

32 4.0994628877379

33 4.099462887505069

34 4.099462887621485

35 4.099462887563277

36 4.099462887592381

37 4.099462887577829

38 4.099462887570553

39 4.099462887574191

40 4.09946288757601

41 4.0994628875751005

42 4.099462887574646

43 4.099462887574418

44 4.099462887574532

45 4.099462887574589

46 4.0994628875745605

47 4.099462887574575

48 4.099462887574568

49 4.099462887574571

50 4.099462887574569

failure: did not pass Bolzano's Theorem this iteration.

Thus, the bisection process cannot procceed any further.

However, if the error is 0.0, then the solution is accurate.

The aproximate solution when a is 3.0 and b is 5.0: 4.09946288757457

error: 0.0

Problem 3.c) -> Part 2

For this problem you can simply use the code from problem 2. The main alteration I made was creating a list of inputs for both the

x0 values (initial guesses), which can be iterated through a for loop the to compute each initial guesses respective outcome.

Find root 1

1 -0.29943791713132906

2 -0.30009687158682735

3 -0.3000975659962917

4 -0.3000975659970607

5 -0.30009756599706067

The aproximate solution when x0 is -0.28: -0.30009756599706067

And the error when x0 is -0.28: 0.0


Find root 2

1 0.38584937885873893

2 0.4219665127718015

3 0.42538302020863666

4 0.4254115719383915

5 0.425411573918655

6 0.425411573918655

The aproximate solution when x0 is 0.28: 0.425411573918655

And the error when x0 is 0.28: 0.0


Find root 3

1 1.0458375932853365

2 1.0004682627967574

3 1.0000001089681934

4 1.000000000000006

5 1.0
6 1.0
The aproximate solution when x0 is 0.85: 1.0

And the error when x0 is 0.85: 0.0


Find root 4

1 4.163775202620497

2 4.099164504212785

3 4.099462881215324

4 4.09946288757457

5 4.09946288757457

The aproximate solution when x0 is 2.5: 4.09946288757457

And the error when x0 is 2.5: 0.0


Problem 3.d -> Part 1 - bisect()

For this problem I simply computed the results using Scipy's bisect method to find the roots within the various intervals of a and b,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.3000975659972027

root 2: 0.42541157391890017

root 3: 0.9999999999994179

root 4: 4.09946288757601


----------runtime test----------

4.757552600000054


Problem 3.d -> Part 2 - optimize()

For this problem I simply computed the results using Scipy's optimize method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756599706067

root 2: 0.42541157391865486

root 3: 1.0

root 4: 4.09946288757457


----------runtime test----------

4.678617400000803


Problem 3.d -> Part 3 - fsolve()

For this problem I simply computed the results using Scipy's fsolve method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756590387787

root 2: 0.4254115739327119

root 3: 1.0

root 4: 4.099462887264225


----------runtime test----------

4.79018250000081


3.e)

For this problem, I applied my newtons_method() function to the provided initial guess input values; x0 = −1, 0.65, 0.7, 1.7, 1.8, 1.9,

5 and 10.

1 0.18625790959771327

2 0.32333174127292197

3 0.40489536009754024

4 0.42444306850401514

5 0.42540930166308594

6 0.42541157390611367

7 0.42541157391865503

The aproximate solution when x0 = -1 is 0.42541157391865503

And the error is:  1.1102230246251565e-16


----------------------


1 -0.26723601197582225

2 -0.2983058421881353

3 -0.3000924361579916

4 -0.3000975659550975

5 -0.30009756599706067

The aproximate solution when x0 = 0.65 is -0.30009756599706067

And the error is:  0.0


----------------------


1 5.07312044069807

2 4.026066908607294

3 4.099082932370794

4 4.099462877263223

5 4.099462887574569

The aproximate solution when x0 = 0.7 is 4.099462887574569

And the error is:  2.220446049250313e-16


----------------------


1 -3.1023416900488945

2 4.2400308953863135

3 4.098022322980367

4 4.099462739376932

5 4.099462887574569

The aproximate solution when x0 = 1.7 is 4.099462887574569

And the error is:  2.220446049250313e-16


----------------------


1 -66.19053751718572

2 312.0226371469949

3 -992.4283679087605

4 7409.659796581593

5 -46979.513588870584

6 532189.6326290627

7 -5648645.157658825

8 91043286.69233719

9 -1434482522.6664178

10 31063527278.608936

11 -670615079341.7915

12 18644613108407.395

13 -521784078898162.7

14 1.7980194779561138e+16

15 -6.267401612054683e+17

16 2.6041119355702526e+19

17 -1.0972532968874861e+21

18 5.378504506713788e+22

19 -2.676800266836948e+24

20 1.5208899398842158e+26

21 -8.777924536066726e+27

22 5.697999567988671e+29

23 -3.7575051616091404e+31

24 2.753300237332616e+33

25 -2.049207358499665e+35

26 1.6778649119590494e+37

27 -1.3950167238963468e+39

28 1.2653432422633566e+41

29 -1.1650083042413605e+43

30 1.1619173454572426e+45

31 -1.1758092801612648e+47

32 1.2810942103451736e+49

33 -1.4156550654590266e+51

34 1.675431003854235e+53

35 -2.0102203861028106e+55

36 2.5712974366819213e+57

37 -3.3329405397651787e+59

38 4.5870318017464306e+61

39 -6.394786883025636e+63

40 9.431616197429248e+65

41 -1.408529844668014e+68

42 2.2182813861499023e+70

43 -3.536093434072386e+72

44 5.927197890219802e+74

45 -1.0052530711360883e+77

46 1.7880947829882362e+79

47 -3.2170431599100052e+81

48 6.056040367465298e+83

49 -1.1527359292432665e+86

50 2.2908926597558065e+88

The function did not converge for this input value of x0.

The approximation is very likely innacurate. See error value.

The aproximate solution when x0 = 1.8 is 2.2908926597558065e+88

And the error is:  201.8856334060456


----------------------


1 9.623578977886847

2 1.8946218648712536

3 10.047434805181645

4 1.5741435011056204

5 -0.18801123753099347

6 -0.27677362618235685

7 -0.2992056083077888

8 -0.30009629601948956

9 -0.30009756599448884

10 -0.30009756599706067

The aproximate solution when x0 = 1.9 is -0.30009756599706067

And the error is:  0.0


----------------------


1 4.036838389810206

2 4.099185732275161

3 4.099462882087958

4 4.09946288757457

The aproximate solution when x0 = 5.0 is 4.09946288757457

And the error is:  0.0


----------------------


1 1.6108733370629

2 -0.6367071381318539

3 -0.1641496447105832

4 -0.26438493904265614

5 -0.2979738083407931

6 -0.30009035592935795

7 -0.30009756591416337

8 -0.30009756599706067

The aproximate solution when x0 = 10.0 is -0.30009756599706067

And the error is:  0.0


----------------------


Observations

3.a) a vertical asymptote will generate an inflection point, as well where f'(x) = 0.

3.b) Bolzano's Theorem can be used to prove how many real roots an equation has when using the inflection points to generate

intervals for the corresponding a and b values to test f(a) * f(b) < 0.

3.c) Newton's Method solved the approximation of the roots with many less iterations than the Bisection Method.

3.d) In regards to the speed of Scipy's methods, bisect was the fastest, optimize was the second fastest, and fsolve was the third

fastest. Since the input of the bisect() method is an interval, [a, b], instead of one value, x0, these results may vary depending on

the values of [a, b] and x0; however, optimize and fsolve both use x0 as input, so these runtime speed test results should be

accurate, since I used the same values for x0 in each implementation.

3.e) The initial guess value, x0 = 5.0 did not result in a converging sequence that could find the approximation of one of the roots of

the function f(x).

Conclusions

There are trade-offs between using the Bisection Method versus using Newton's Method. For the bisection method, Bolzano's

Theorem has to first checked and return true, which there are methods to find the proper intervals for each root, such as find the

inflection points of the function. For Newton's Method, the derivative of the function must be found in order to implement the

algorithm. Since the derivative of a function can be found (problem 5), it seems that Newton's Method is a more efficient algorithm

to implement than the Bisection Method, as there are many more steps involved in the bisection method, which adds complexity to

the algorithm. Newton's Method also found the roots of the function with many less iterations than the Bisection Method.

Question 4

Introduction

The purpose of this problem is to combine both methods, the Bisection Method and Newton's Method, to create another algorithm

that can solve for the roots of a given function.

Procedure

Problem 4.a)

The purpose of this problem is to combine the Bisection Method with Newton's Method to generate a more efficient function that

finds the root/s of a given function. In order to test for convergence, I checked if the current error was less than the previous error. If

the error was decreasing, then it was converging; increasing, then it way diverging; and not changing, then it was inconclusive.

Problem 4.b)

The purpose of this problem is to implement the findzero() function created in problem 4.a) by using the given function arctan(2(x-

1)) - ln|x| as the f(x). The function requires finding the derivative function of f(x), which is (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5)).

Find root  1

real root is between interval [a, b]

1 -0.30009755081591794

2 -0.3000975659970603

3 -0.30009756599706067

converges

The root approximation when a is  -0.4 and b is  -0.2 :  -0.30009756599706067

error: 3.885780586188048e-16

iteration count:  3


Find root  2

real root is between interval [a, b]

1 0.407749017162497

2 0.42468862350772174

3 0.4254103069422888

4 0.4254115739147558

5 0.425411573918655

6 0.425411573918655

converges

The root approximation when a is  0.4 and b is  0.6 :  0.425411573918655

error: 0.0
iteration count:  6


Find root  3

real root is between interval [a, b]

1 1.0
not enough iterations to test for convergence or divergence

The root approximation when a is  0.6 and b is  2.2 :  1.0

error: 0.0
iteration count:  1


Find root  4

real root is between interval [a, b]

1 4.077791560995681

2 4.099429460813845

3 4.099462887494759

4 4.09946288757457

5 4.09946288757457

converges

The root approximation when a is  2.0 and b is  5.0 :  4.09946288757457

error: 0.0
iteration count:  5


Observations

The findzero() function solves the approximation of a root of a function in many less iterations than the Bisection Method or

Newton's Method. Additionally, the findzero() function's algorithm that utilises both the Bisection Method and Newton's Method

generates an extremely accurate result, i.e. notice the error values are very low or 0.0.

Conclusions

It is possible to combine different aspects of various methods in order to create a more efficient algorithm that is potentially capable

of also being more accurate.

Question 5

Introduction

The purpose of this problem is...

Procedure

Problem 5.a)

The purpose of this problem is to use Taylor expansion to demonstrate how imaginary numbers in combination with a very small

value of h can solve the derivative of a function at a given input value, x0.

f(x) = f(x0) + f'(x0)/1! (x-x0)^1 +
f''(x0)/2! (x-x0)^2 +
f'''(x0)/3! (x-x0)^3 +
f''''(x0)/4! (x-x0)^4 + ...

x-x0 = ih
x = x0 + ih

f(x0 + ih) = f(x0) + f'(x0)/1! (ih)^1 +
f''(x0)/2! (ih)^2 +
f'''(x0)/3! (ih)^3 +
f''''(x0)/4! (ih)^4 + ...

i = i
i^2 = -1
i^3 = i i^2 = -i
i^4 = i^2 i^2 = 1
i^5 = i * i^4 = i
...

f(x0 + ih) = f(x0) + f'(x0)/1! i h +
f''(x0)/2! -1 h^2 +
f'''(x0)/3! -i h^3 +
f''''(x0)/4! 1 h^4 + ...

Now, separate imaginary and real parts:

f(x0 + ih) = [f(x0) + f''(x0)/2! -1 h^2 +
f''''(x0)/4! 1 h^4] + [f'(x0)/1! i h + f'''(x0)/3! -i h^3]

Factor out the i from the imaginary part and simplify:

f(x0 + ih) = [f(x0) + f''(x0)/2! -h^2 +
f''''(x0)/4! h^4] + i[f'(x0) h + f'''(x0)/3! -h^3]

Im[f(x0 + ih)] = hf'(x0) - h^3/3! f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + h^2/3! * f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + O(h^2)

Problem 5.b)

The purpose of this problem is to implement the same code form problem 4, with the addition of altering the df(x) function to find the

derivative with the provided formula; instead of explicitly writing the specific derivative function for the corresponding f(x) function.

This enables the code to be much easier to modify, since the user won't have to solve the derivative and input it into the df(x)

function before running the program.

Find root  1

real root is between interval [a, b]

1 -0.30009755081591794

2 -0.3000975659970603

3 -0.30009756599706067

The root approximation when a is -0.4 and b is-0.2: -0.30009756599706067

error: 3.885780586188048e-16

iteration count: 3


Find root  2

real root is between interval [a, b]

1 0.407749017162497

2 0.42468862350772174

3 0.4254103069422888

4 0.4254115739147558

5 0.425411573918655

6 0.425411573918655

The root approximation when a is 0.4 and b is0.6: 0.425411573918655

error: 0.0
iteration count: 6


Find root  3

real root is between interval [a, b]

1 1.0
The root approximation when a is 0.7 and b is1.9: 1.0

error: 0.0
iteration count: 1


Find root  4

real root is between interval [a, b]

1 4.099462866966103

2 4.09946288757457

3 4.09946288757457

The root approximation when a is 3.9 and b is4.3: 4.09946288757457

error: 0.0
iteration count: 3


Problem 5.c)

The purpose of this problem is to calculate the rate of convergence of the newtons_method() function created in problem 3, as it

attempts to find the root/s of the given function, x(e^(x/2) + 1). If r is greater than 1, then the algorithm is converging. If r is less than

1, then the algorithm is diverging. I utilised the df(x) function from 5.b) as opposed to computing the derivative of f(x). I also added h

as a parameter to newtons_method() function as well as df(), so that I could generate varying outputs of the convergence rate,

based on varying values of h.

Find root  1

real root is between interval [a, b]

convergence rate:  inf

4 -0.30009756599706067

The root approximation when a is -0.4 and b is -0.2 : -0.30009756599706067

error: 0.0
iteration count:  4


Find root  2

real root is between interval [a, b]

convergence rate:  inf

6 0.425411573918655

The root approximation when a is 0.4 and b is 0.6 : 0.425411573918655

error: 0.0
iteration count:  6


Find root  3

real root is between interval [a, b]

The algorithm requires at least 3 iterations to compute the convergence rate.

The root approximation when a is 0.7 and b is 1.9 : 1.0

error: 0.0
iteration count:  1


Find root  4

real root is between interval [a, b]

convergence rate:  inf

3 4.09946288757457

The root approximation when a is 3.9 and b is 4.3 : 4.09946288757457

error: 0.0
iteration count:  3


C:\Users\User\AppData\Local\Temp\ipykernel_26388\3135666090.py:51: RuntimeWarning: divide by zero encounter
ed in log10

  r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1))))


Observations

5.a) If the exponent of the ih term is odd, then it will become a part of the imaginary section of the equation, and if the exponent of ih

is even, the it will become a part of the real section of the equation.

5.b) The results are exactly the same as 4.b), when h is an extremely small value, i.e. 1.e-32; however the accuracy for computing

the derivative deminishes the larger the value of h is; in addition to requiring more iterations to solve the for the root of the given

function.

5.c) Newton's Method is known to have a convergence rate of 2, so I first tested the convergence rate algorithm on

newtons_method() and it worked properly. So, I then implemented the same code into the findzero() function that combines both the

Bisection Method with Newton's Method.

When the values of h increase the convergence rate decreases. Once the convergence rate goes below 1, the algorithm is

incapable of finding the root, even with an infinite nmax value, due to the algorithm diverging.

The convergence rate for the findzero() method returned an infinity value due to the fact that the algorithm returned a final error of

0.0. This likely means the algorithm converges exponentially with every iteration, making it far more accurate and efficient than

either the Bisection Method or Newton's Method on their own.

Conclusions

Utilising the formula to solve for the derivative of f(x) at give x input is a very useful way of simplifying the amount of work a user

must do to use a function, preventing them from solving a derivative on their own. However, the value of h is intended to reach the

limit of 0, but using the value 0.0 exactly would create a division by zero error. This means we must use a positive value that is

extremely close to 0, but not quite zero, if we intend to have the most accurate results. Hence, 1.e-32 generating the most accurate

outcome in problem 5.c). The ability to combine various methods to create a more efficient algorithm has proven to be exponentially

faster to compute.

In [30]: import numpy as np



def bisection(f, a, b, tolerance, nmax = 100):

    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values

        while (abs(b-a) > tolerance and iteration < nmax): # loop while interval is greater than 

            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b] 

            print("x: ", x)

            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x)

                b = x  # assign b to x if a is on the same side of x-axis as f(x)

                print("set b = x")

            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)

                a = x  # assign a to x if b is on the same side of x-axis as f(x)

                print("set a = x")

            else:   # bisection method only works when Bolzaono's Theorem returns true

                print ("failure: did not pass Bolzaon's Theorem this iteration") 

                print("Thus, the bisection process cannot proceed any further.")

                break
            print(iteration, x) # prints the iteration number and it's corresponding x value

                                # the last iteration will be the final result that is returned

            if (iteration >= nmax):

                print("Failure: Maximum iterations reached before solving within the error tolerance thresh
                print('''Approximation may not be accurate. Try increasing the max iterations value, or 

                  possibly increasing the error tolerance value.''')

            return x   # returns the midpoint of the final interval as an approximation of the root

    else:

        print("failure: Does not meet Bolzano's Theorem requirement")


In [33]: import numpy as np



def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6

    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values

        while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than 

            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b] 

            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x)

                b = x  # assign b to x if a is on the same side of x-axis as f(x)

            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)

                a = x  # assign a to x if b is on the same side of x-axis as f(x)

            else:  # bisection method only works when Bolzaono's Theorem returns true

                print ("failure: did not pass Bolzaon's Theorem this iteration") 

                print("Thus, the bisection process cannot proceed any further.")

                break
            print(iteration, x) # prints the iteration number and it's corresponding x value

                                # the last iteration will be the final result that is returned

        if (iteration >= nmax):

            print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
            print('''Approximation may not be accurate. Try increasing the max iterations value, or 

                  possibly increasing the error tolerance value.''')

        return x   # returns the midpoint of the final interval as an approximation of the root

    else:

        print("failure: Does not meet Bolzano's Theorem requirement")

#test function with given equation log(x) + x = 0 in the interval [0.1, 1]

def f(x):    # create function log(x) + x

    return np.log10(x) + x

    



a = 0.1

b = 1.0

tol = 1.e-15

max_iterations = 100

x = bisection(f, a, b, tol, max_iterations) # assign return value of bisection() to x

print("tolerance: ", tol)

print("The approximate solution is: ", x)
print("And the error is: ", f(x))


In [63]: # use test function: f(x) = x^2 - x - 1

# initial guesses; -1.0, 10.0

def newtons_method(g, x0, tol = 1.e-15, nmax = 100):

    err = 1.0

    iteration = 0

    

    xk = x0

    while (err > tol and iteration < nmax):

        iteration = iteration + 1

        err = xk

        xk = g(xk)

        err = abs(err - xk)

        print("iteration:",iteration)

        print("approximate solution:", xk)

        print("cuurent output; f(xn):", f(xk))

        print("error:", err)

        print()

    if (iteration >= nmax):

        print("Failure: Maximum iterations reached before solving within the error tolerance threshold.")

        print('''Approximation may not be accurate. Try increasing the max iterations value, or 

                  possibly increasing the error tolerance value.''')

    return xk, err



def f(x):  # implement whatever f(x) function here

    return x**2-x-1.0 



def df(x):  # implement the derivative of the f(x) function here

    return 2*x - 1

    

def g(x):   # Newton's Method

    return x - (f(x) / df(x))

    



tol = 1.e-15  # tolerance determines the accuracy of the approximation

max_iterations = 100



print("Find first root:\n")

x0 = -1.0    # initial guess

x = newtons_method(g, x0, tol, max_iterations)

print('The aproximate solution is: ', x[0])

print('And the error is: ', x[1])

print()

print("---------------------------")

print()

print()



print("Find second root:\n")

x0 = 10.0    # initial guess

x = newtons_method(g, x0, tol, max_iterations)

print('The aproximate solution is: ', x[0])

print('And the error is: ', x[1])

print()

print("---------------------------")

print()

print()


In [35]: # use given f(x) = log(x) + x

# initial guess is 0.1

def newtons_method(g, x0, tol = 1.e-15, nmax = 100):

    err = 1.0

    iteration = 0

    

    xk = x0

    while (err > tol and iteration < nmax):

        iteration = iteration + 1

        err = xk

        xk = g(xk)

        err = abs(err - xk)

        print("iteration:",iteration)

        print("approximate solution:", xk)

        print("cuurent output; f(xn):", f(xk))

        print("error:", err)

        print()

    if (iteration >= nmax):

        print("Failure: Maximum iterations reached before solving within the error tolerance threshold.")

        print('''Approximation may not be accurate. Try increasing the max iterations value, or 

                  possibly increasing the error tolerance value.''')

    return xk, err



def f(x):

    return np.log10(x) + x



def df(x):

    return 1.0/x + 1

    



def g(x): # Newton's Method

    return x - (f(x) / df(x))

    



tol = 1.e-15  # tolerance determines the accuracy of the approximation

max_iterations = 100



print("Find root:\n")

x0 = 0.1    # initial guess

x = newtons_method(g, x0, tol, max_iterations)

print('The aproximate solution is: ', x[0])

print('And the error is: ', x[1])

print()

print("---------------------------")

print()

print()


In [31]: import numpy as np

import matplotlib.pyplot as plt



x = np.arange(-5.01, 10.01, 0.01)

y = np.arange(-5.01, 10.01, 0.01)



def f(x):

    return np.arctan(2 * (x - 1)) - np.log(abs(x))  



for i in range(len(x)):

    y[i] = f(x[i])



print(y)



plt.figure(num = 0, dpi = 120)

plt.plot(x, y)


Out[31]:

In [36]: import numpy as np



def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6

    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values

        while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than 

            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b] 

            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x)

                b = x  # assign b to x if a is on the same side of x-axis as f(x)

            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)

                a = x  # assign a to x if b is on the same side of x-axis as f(x)

            else:

                print ("failure: did not pass Bolzano's Theorem this iteration.") # bisection method only w
                print("Thus, the bisection process cannot procceed any further.")

                print("However, if the error is 0.0, then the solution is accurate.")

                break
            print(iteration, x) # prints the iteration number and it's corresponding x value

                                # the last iteration will be the final result that is returned

        if (iteration >= nmax):

            print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
            print('''Approximation may not be accurate. Try increasing the max iterations value, or 

                  possibly increasing the error tolerance value.''')

        return x   # returns the midpoint of the final interval as an approximation of the root

    else:

        print("failure: Does not meet Bolzano's Theorem requirement")

#test function with given equation log(x) + x = 0 in the interval [0.1, 1]

def f(x):    # create function log(x) + x

    return np.arctan(2 * (x - 1)) - np.log(abs(x))  

    



list_a = [-0.4, 0.37, 0.72, 3.0]

list_b = [-0.25, 0.67, 1.2, 5.0]



tol = 1.e-15

max_iterations = 100



print("Error Tolerance: ", tol)

print()

for i in range(len(list_a)):

    print("Find root " + str(i+1))

    x = bisection(f, list_a[i], list_b[i], tol, max_iterations) # assign return value of bisection() to x

    print("The aproximate solution when a is", list_a[i], "and b is " + str(list_b[i]) +": "+str(x))

    print("error: "+str(f(x)))

    print()


In [42]: # the guess can't be 0.0 since df is 1/x

def newtons_method(g, x0, tol = 1.e-6, nmax = 100):

    err = 1.0

    iteration = 0



    

    xk = x0

    while (err > tol and iteration < nmax):

        iteration = iteration + 1

        err = xk

        xk = g(xk)

        err = abs(err - xk)

        print(iteration, xk)

    return xk







def f(x):

    return np.arctan(2*(x-1)) - np.log(abs(x))



def df(x):

    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5)) 

    



def g(x):

    return x - (f(x) / df(x))

    



tolerance = 1.e-15  # tolerance determines the accuracy of the approximation

max_iterations = 100

# x0 = -0.28    # initial guess

x0 = [-0.28, 0.28, 0.85, 2.5]



for i in range(len(x0)):

    print("Find root " + str(i+1))

    x = newtons_method(g, x0[i], tolerance, max_iterations)

    print("The aproximate solution when x0 is " + str(x0[i]) + ": "+str(x))

    print("And the error when x0 is " + str(x0[i]) + ": "+str(f(x)))

    print()


In [48]: # applied scipy.optimize.bisect -> arctan(2(x − 1)) − ln |x|.

import numpy as np

from scipy import optimize



def f(x):

    return np.arctan(2 * (x - 1)) - np.log(abs(x))



list_a = [-0.4, 0.37, 0.72, 3.0]

list_b = [-0.25, 0.67, 1.2, 5.0]



i = 0

while (i < len(list_a)):  

    root = optimize.bisect(f, list_a[i], list_b[i])

    print("root " + str(i+1) + ": " + str(root))

    i+=1

    

print("\n----------runtime test----------")

    

#-------------------------------------------------------



#test runtime

import timeit

 

# code snippet to be executed only once

mysetup = '''import numpy as np

from scipy import optimize'''

 

# code snippet whose execution time is to be measured

mycode = '''

def function1():
    def f(x):

        return np.arctan(2 * (x - 1)) - np.log(abs(x))



    list_a = [-0.4, 0.37, 0.72, 3.0]

    list_b = [-0.25, 0.67, 1.2, 5.0]



    i = 0

    while (i < len(list_a)):  

        root = optimize.bisect(f, list_a[i], list_b[i])

        print("root " + str(i+1) + ": " + str(root))

        i+=1

    '''

 

# timeit statement

print (timeit.timeit(setup = mysetup,

                     stmt = mycode,

                     number = 100000000))


In [52]: # example for scipy.optimize.newton

import numpy as np

from scipy import optimize





def f(x):

    return np.arctan(2 * (x - 1)) - np.log(abs(x))  # only one real root at x = 1



root = optimize.newton(f, [-0.5, 0.1, 1, 2] )



i = 0

while (i < len(root)):  

    print("root " + str(i+1) + ": " + str(root[i]))

    i+=1

    

print("\n----------runtime test----------")

    

#-------------------------------------------------------



#test runtime

import timeit

 

# code snippet to be executed only once

mysetup = '''import numpy as np

from scipy import optimize'''

 

# code snippet whose execution time is to be measured

mycode = '''

def function1():
    def f(x):

        return np.arctan(2 * (x - 1)) - np.log(abs(x))  # only one real root at x = 1



    root = optimize.newton(f, [-0.5, 0.1, 1, 2] )



    i = 0

    while (i < len(root)):  

        print("root " + str(i+1) + ": " + str(root[i]))

        i+=1

    

    '''

 

# timeit statement

print (timeit.timeit(setup = mysetup,

                     stmt = mycode,

                     number = 100000000))


In [51]: # example scipy.optimize.fsolve

import numpy as np

from scipy.optimize import fsolve



def f(x):

    return np.arctan(2 * (x - 1)) - np.log(abs(x))

root = fsolve(f, [-0.5, 0.1, 1, 2])



i = 0

while (i < len(root)):  

    print("root " + str(i+1) + ": " + str(root[i]))

    i+=1

    

print("\n----------runtime test----------")



#-------------------------------------------------------



#test runtime

import timeit

 

# code snippet to be executed only once

mysetup = '''import numpy as np

from scipy.optimize import fsolve'''

 

# code snippet whose execution time is to be measured

mycode = '''

def function1():
    def f(x):

        return np.arctan(2 * (x - 1)) - np.log(abs(x))

    root = fsolve(f, [-0.5, 0.1, 1, 2])



    i = 0

    while (i < len(root)):  

        print("root " + str(i+1) + ": " + str(root[i]))

        i+=1

    '''

 

# timeit statement

print (timeit.timeit(setup = mysetup,

                     stmt = mycode,

                     number = 100000000))


In [60]: # the guess value, x0, can't be 0.0 since there is a vertical asymptote as x = 0.0

import numpy as np



def newtons_method(g, x0, tol = 1.e-6, nmax = 50):

    err = 1.0

    iteration = 0



    xk = x0

    while (err > tol and iteration < nmax):

        iteration = iteration + 1

        err = xk

        xk = g(xk)

        err = abs(err - xk)

        print(iteration, xk)

    if (iteration >= nmax):

        print("The function did not converge for this input value of x0.")

        print("The approximation is very likely innacurate. See error value.")

    return xk





def f(x):

    return np.arctan(2 * (x - 1)) - np.log(abs(x))



def df(x):

    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5)) 

    



def g(x):

    return x - (f(x) / df(x))

    



tolerance = 1.e-6  # tolerance determines the accuracy of the approximation

max_iterations = 50

x0 = [-1, 0.65, 0.7, 1.7, 1.8, 1.9, 5.0, 10.0]



for i in range(len(x0)):

    x = newtons_method(g, x0[i], tolerance, max_iterations)

    print("The aproximate solution when x0 = " + str(x0[i])  + " is " + str(x))

    print("And the error is: ", abs(f(x)))

    print()

    print("----------------------")

    print()


In [32]: import numpy as np



def findzero (a, b, tol, maxit, f, df):



    if (f(a) * f(b) < 0):  # check Bolzano's Theorem

        xstar = float("NAN")

        niter = 0

        err = 1.0 # initialise error to value greater than tolerance

        prev_err = 0.0

        conv_div_test = 0

        

        print("real root is between interval [a, b]")  

        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b] 

        xi = 1.0 # initial arbitrary guess for Newton's Method

        

        if (xi < a or xi > b): # if xi is outside [a, b] 

            xi = x0  # then set xi to Bisection Method value x0

        

        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan

            ierr = 1

            return xstar, niter, ierr

        

        while (err > tol and niter < maxit):

            niter += 1

            err = xi

            xi = xi - (f(xi) / df(xi))   # Newton's Method

            

            if (xi < a or xi > b): # if xi is outside [a, b] 

                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0               

                
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi)

                    b = xi  # assign b to x if a is on the same side of x-axis as f(x)

                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)

                    a = xi  # assign a to x if b is on the same side of x-axis as f(x)

                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true

                    break

            err = abs(err - xi)



            converge_test = 0.0

            if (niter > 1):

                if (err < prev_err):

                    conv_div_test = 1

                elif (err > prev_err):

                    conv_div_test = 2

                else:
                    conv_div_test = 3



            prev_err = err

            



            print(niter, xi)

            

            if (niter == maxit):

                ierr = 2

        ierr = 0 # function converged successfully

        xstar =  xi # approximation of the root

        

        if (niter > 1):

            if (conv_div_test == 1):

                print("converges")

            elif (conv_div_test == 2):

                print("diverges")

            elif (conv_div_test == 3):

                print("convergence/divergence test inconclusive since error value did not change between it
        else:

            print("not enough iterations to test for convergence or divergence")

    else:

        print("failure: no real root between interval [a, b] try different a, b values")

    return xstar, niter, ierr, err



def f(x):   # implement any function here

    return np.arctan(2 * (x - 1)) - np.log(abs(x))



def df(x):  # implement the derivative of f(x) here

    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))


In [7]: import numpy as np



def findzero (a, b, tol, maxit, f, df):



    if (f(a) * f(b) < 0):  # check Bolzano's Theorem

        xstar = float("NAN")

        niter = 0

        err = 1.0 # initialise error to value greater than tolerance

        prev_err = 0.0

        conv_div_test = 0

        

        print("real root is between interval [a, b]")  

        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b] 

        xi = 1.0 # initial arbitrary guess for Newton's Method

        

        if (xi < a or xi > b): # if xi is outside [a, b] 

            xi = x0  # then set xi to Bisection Method value x0

        

        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan

            ierr = 1

            return xstar, niter, ierr

        

        while (err > tol and niter < maxit):

            niter += 1

            err = xi

            xi = xi - (f(xi) / df(xi))   # Newton's Method

            

            if (xi < a or xi > b): # if xi is outside [a, b] 

                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0               

                
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi)

                    b = xi  # assign b to x if a is on the same side of x-axis as f(x)

                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)

                    a = xi  # assign a to x if b is on the same side of x-axis as f(x)

                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true

                    break

            err = abs(err - xi)



            converge_test = 0.0

            if (niter > 1):

                if (err < prev_err):

                    conv_div_test = 1

                elif (err > prev_err):

                    conv_div_test = 2

                else:
                    conv_div_test = 3



            prev_err = err

            



            print(niter, xi)

            

            if (niter == maxit):

                ierr = 2

        ierr = 0 # function converged successfully

        xstar =  xi # approximation of the root

        

        if (niter > 1):

            if (conv_div_test == 1):

                print("converges")

            elif (conv_div_test == 2):

                print("diverges")

            elif (conv_div_test == 3):

                print("convergence/divergence test inconclusive since error value did not change between it
        else:

            print("not enough iterations to test for convergence or divergence")

    else:

        print("failure: no real root between interval [a, b] try different a, b values")

    return xstar, niter, ierr, err



def f(x):   

    return np.arctan(2 * (x - 1)) - np.log(abs(x))



def df(x):

    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))





list_a = [-0.4, 0.4, 0.6, 2.0]

list_b = [-0.2, 0.6, 2.2, 5.0]

tol = 1.e-12

maxit = 50





for i in range(len(list_a)):

    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation

        print("failure: asymptote at 0.0, so neither a or b can be 0.0")

        break

        

    print("Find root ", i+1)

    result = []

    result = findzero(list_a[i], list_b[i], tol, maxit, f, df) 

    

    print("The root approximation when a is ", list_a[i], 

          "and b is ", list_b[i], ": ", result[0])

    print("error:", result[3])

    print("iteration count: ", result[1])

    if (result[2] == 0):

        "the method converged"

    elif (result[2] == 1):

        "df(xi) was zero or undefined"

    elif (result[2] == 2):

        "maximum number of iterations has been reached"

    print()


In [64]: import numpy as np



def findzero (a, b, tol, maxit, f, df):



    if (f(a) * f(b) < 0):  # check Bolzano's Theorem

        xstar = float("NAN")

        niter = 0

        err = 1.0 # initialise error to value greater than tolerance

        

        print("real root is between interval [a, b]")  

        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b] 

        xi = 1.0 # initial arbitrary guess for Newton's Method

        

        if (xi < a or xi > b): # if xi is outside [a, b] 

            xi = x0  # then set xi to Bisection Method value x0

        

        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan

            ierr = 1

            return xstar, niter, ierr

        

        while (err > tol and niter < maxit):

            niter += 1

            err = xi

            xi = xi - (f(xi) / df(xi))   # Newton's Method

            

            if (xi < a or xi > b): # if xi is outside [a, b] 

                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0

            

                #check for convergence

                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi)

                    b = xi  # assign b to x if a is on the same side of x-axis as f(x)

                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)

                    a = xi  # assign a to x if b is on the same side of x-axis as f(x)

                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true

                    break

            err = abs(err - xi)

            print(niter, xi)

            

            if (niter == maxit):

                ierr = 2

        ierr = 0 # function converged successfully

        xstar =  xi # approximation of the root

    else:

        print("failure: no real root between interval [a, b] try different a, b values")

    return xstar, niter, ierr, err





def f(x):   

    return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2))



def df(x):

    h = 1.e-32

    return np.imag(f(x + (1j*h)) / h)





list_a = [-0.4, 0.4, 0.7, 3.9]

list_b = [-0.2, 0.6, 1.9, 4.3]

tol = 1.e-12

maxit = 50





for i in range(len(list_a)):

    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation

        print("failure: asymptote at 0.0, so neither a or b can be 0.0")

        break

        

    print("Find root ", i+1)

    result = []

    result = findzero(list_a[i], list_b[i], tol, maxit, f, df) 

    

    print("The root approximation when a is", list_a[i], 

          "and b is" + str(list_b[i]) + ":", result[0])

    print("error:",result[3])

    print("iteration count:", result[1])

    if (result[2] == 0):

        "the method converged"

    elif (result[2] == 1):

        "df(xi) was zero or undefined"

    elif (result[2] == 2):

        "maximum number of iterations has been reached"

    print()


In [62]: import numpy as np



def findzero (a, b, tol, maxit, f, df):



    if (f(a) * f(b) < 0):  # check Bolzano's Theorem

        xstar = float("NAN")

        niter = 0

        err = 1.0 # initialise error to value greater than tolerance

        

        print("real root is between interval [a, b]")  

        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b] 

        xi = 1.0 # initial arbitrary guess for Newton's Method

        

        if (xi < a or xi > b): # if xi is outside [a, b] 

            xi = x0  # then set xi to Bisection Method value x0

        

        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan

            ierr = 1

            return xstar, niter, ierr

        

        e1 = 0.0

        e2 = 0.0

        e3 = 0.0

        

        while (err > tol and niter < maxit):

            niter += 1

            err = xi

            xi = xi - (f(xi) / df(xi))   # Newton's Method

            

            if (xi < a or xi > b): # if xi is outside [a, b] 

                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0

            

                #check for convergence

                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi)

                    b = xi  # assign b to x if a is on the same side of x-axis as f(x)

                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)

                    a = xi  # assign a to x if b is on the same side of x-axis as f(x)

                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true

                    break

            err = abs(err - xi)

            

            e1 = e2

            e2 = e3

            e3 = err

        

        if (niter > 3 and (e2 == 0.0 or e1 == 0.0)):

            print("failure: e1 or e2 equal 0.0, so can't compute convergence rate;")

            print("due to division by zero.")

        elif (niter >= 3):    # compute convergence rate
            r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1))))

            print("convergence rate: ", r)  

            

            print(niter, xi)

            

            if (niter == maxit):

                ierr = 2

        ierr = 0 # function converged successfully

        xstar =  xi # approximation of the root

    else:

        print("failure: no real root between interval [a, b] try different a, b values")

    if (niter < 3):

        print("The algorithm requires at least 3 iterations to compute the convergence rate.")

    return xstar, niter, ierr, err





def f(x):   

    return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2))



def df(x):

    h = 1.e-32

    return np.imag(f(x + (1j*h)) / h)





list_a = [-0.4, 0.4, 0.7, 3.9]

list_b = [-0.2, 0.6, 1.9, 4.3]

tol = 1.e-16

maxit = 50





for i in range(len(list_a)):

    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation

        print("failure: asymptote at 0.0, so neither a or b can be 0.0")

        break

        

    print("Find root ", i+1)

    result = []

    result = findzero(list_a[i], list_b[i], tol, maxit, f, df) 

    

    print("The root approximation when a is", list_a[i], 

          "and b is", list_b[i], ":", result[0])

    print("error:",result[3])

    print("iteration count: ", result[1])

    if (result[2] == 0):

        "the method converged"

    elif (result[2] == 1):

        "df(xi) was zero or undefined"

    elif (result[2] == 2):

        "maximum number of iterations has been reached"

    print()



