
Project Report 2: Bisection Method, Newton's Method,
Complex Numbers in Taylor Series

Ryan Holloway (300570174)

Question 1

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 1.a)

The parameters of the user-defined bisection() function are; f, a, b, tolerance, and nmax. These parameters are defined as; f, is the

function that is to be analysed, a is the starting interval input value, b is the stopping interval input value, tolerance is the value that

determines the degree of error that is acceptable which will terminate the function's process once the current error of approximation

is within the error tolerance threshold, and nmax is the maximum number of iterations that will compute before the bisection

processing loop terminates. If the loop terminates due the the nmax threshold being reached, then the approximation result that is

returned, x, may not be accurate since the error will not be within the error tolerance threshold.

Problem 1.b)

This problem is applying the bisection() function that was generated in 1.a) by implementing the function, f, log(x) + x, in the interval

[0.1, 1.0]; meaning a = 0.1, and b = 1.0. Since f(a) * f(b) < 0, the interval meets the condition of Bolzano's Theorem, so the user-

defined bisection() function can be implemented to solve for the approximation of the roots.

1 0.55
2 0.325
3 0.4375
4 0.38125
5 0.409375
6 0.39531249999999996
7 0.40234375
8 0.398828125
9 0.4005859375
10 0.39970703124999996
11 0.39926757812499997
12 0.3990478515625
13 0.39893798828125
14 0.398992919921875
15 0.3990203857421875
16 0.3990066528320313
17 0.3990135192871094
18 0.39901008605957033
19 0.39901180267333985
20 0.3990126609802246
21 0.399013090133667
22 0.39901287555694576
23 0.3990129828453064
24 0.3990129292011261
25 0.39901295602321624
26 0.39901296943426134
27 0.39901297613978387
28 0.3990129794925451
29 0.3990129778161645
30 0.3990129786543548
31 0.39901297823525966
32 0.3990129784448072
33 0.39901297834003346
34 0.3990129782876466
35 0.3990129782614531
36 0.39901297824835635
37 0.3990129782549047
38 0.39901297825817894
39 0.399012978259816
40 0.39901297826063453
41 0.3990129782602253
42 0.3990129782604299
43 0.3990129782603276
44 0.3990129782602765
45 0.3990129782602509
46 0.3990129782602637
47 0.3990129782602573
48 0.39901297826025406
49 0.3990129782602525
50 0.3990129782602517
tolerance: 1e-15
The approximate solution is: 0.3990129782602517
And the error is: -7.216449660063518e-16

Observations

1.a) The requirement of Bolzano's Theorem requires the user to first find value a and b that will satisfy the requirement, f(a) * f(b) <

0, meaning each value is on opposite side of the x-axis from the other. This means either analytical intuition is required to have

good guesses as to which values a and b should be; or it would be required to graph the function in order for the function to visually

show where f(a) and f(b) are on varying sides of the x-axis.

1.b) Implementing a function into the user-defined bisection() function required creating a user-defined function, f(x) that could be

used as an input value as one of the arguments (input paramaters). The given function log(x) + x seems simple to write in Python

using Numpy; however, np.log(x) is used to compute ln(x), and np.log10(x) is used to compute log(x). My result was not correct at

first, then I realized the need to specify log base 10, and not simply log, since those have different function calls.

Conclusions

When translating a mathematics equation into a function that can compute approximate results, it's vital to first test the code with a

function that you can compute the result so the code can be tested and verified for its accuracy. Additionally, it's important to

understand the details of the pre-built functions you apply, because it's easy to assume simple things like log(x) is written as

np.log(x), when in reality, it is written np.log10(x).

In order to find the proper intervals of a, b to find all the roots of the function using the Bisection Method; it is possible to find the

turning points of the function by solving f'(x) = 0 and identifying if the function is increasing, decreasing, or neither within the

intervals of those roots found by computing f'(x) = 0.

Question 2

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using Newton's Method.

Newton's Method requires finding the derivative of the given function, as well as choosing an arbitrary initial value, x0, to use as the

first input to the function and the derivative function in the context of Newton's Method that continually iterates through the

algorithm, xn+1 = xn - f(xn) / f'(xn), until reaching an approximate solution of the root of the function.

Procedure

Problem 2.a)

For creating and testing this user-defined newtons_method function, I implemnted my own function to test the function before

moving on to 2.b); i.e. f(x) = x^2 - x - 1, where df(x) = 2x - 1. Since there are two roots to this equation, which can be found by

graphing the function, then two separate calls to the function, newtons_method() should be run with the varying intial guesses; -1.0,

and 10.0. The solution for x0 = -1.0 should be -0.618, and the solution for x0 = 10.0 should be 1.618.

Find first root:

iteration: 1
approximate solution: -0.6666666666666667
cuurent output; f(xn): 0.11111111111111116
error: 0.33333333333333326

iteration: 2
approximate solution: -0.6190476190476191
cuurent output; f(xn): 0.0022675736961450532
error: 0.04761904761904767

iteration: 3
approximate solution: -0.6180344478216819
cuurent output; f(xn): 1.0265159331446227e-06
error: 0.0010131712259371373

iteration: 4
approximate solution: -0.6180339887499892
cuurent output; f(xn): 2.1094237467877974e-13
error: 4.590716927710403e-07

iteration: 5
approximate solution: -0.6180339887498948
cuurent output; f(xn): -1.1102230246251565e-16
error: 9.43689570931383e-14

iteration: 6
approximate solution: -0.6180339887498948
cuurent output; f(xn): -1.1102230246251565e-16
error: 0.0

The aproximate solution is: -0.6180339887498948
And the error is: 0.0

Find second root:

iteration: 1
approximate solution: 5.315789473684211
cuurent output; f(xn): 21.94182825484765
error: 4.684210526315789

iteration: 2
approximate solution: 3.037676157607132
cuurent output; f(xn): 5.189800280887697
error: 2.2781133160770786

iteration: 3
approximate solution: 2.015126399764636
cuurent output; f(xn): 1.0456080072637475
error: 1.022549757842496

iteration: 4
approximate solution: 1.67007003765974
cuurent output; f(xn): 0.11906389302906528
error: 0.3450563621048961

iteration: 5
approximate solution: 1.619191077769781
cuurent output; f(xn): 0.002588668559484031
error: 0.05087895988995883

iteration: 6
approximate solution: 1.618034586885024
cuurent output; f(xn): 1.3374711664848604e-06
error: 0.001156490884757

iteration: 7
approximate solution: 1.6180339887500548
cuurent output; f(xn): 3.574918139293004e-13
error: 5.981349693318094e-07

iteration: 8
approximate solution: 1.618033988749895
cuurent output; f(xn): 0.0
error: 1.5987211554602254e-13

iteration: 9
approximate solution: 1.618033988749895
cuurent output; f(xn): 0.0
error: 0.0

The aproximate solution is: 1.618033988749895
And the error is: 0.0

Problem 2.b)

Used provided function, f(x) = log(x) + x, has the derivative function, df(x) = 1/x + 1. After graphing the function, it can be observed

that there is only one root to the function, so only one call to the newtons_method() function should be necessary, assuming x0

does not result in an infinite loop, which is a known error or Newton's Method. When the initial guess is x0 = 0.1 the solution should

be 0.399.

Find root:

iteration: 1
approximate solution: 0.18181818181818182
cuurent output; f(xn): -0.558544507676062
error: 0.08181818181818182

iteration: 2
approximate solution: 0.2677481060760375
cuurent output; f(xn): -0.3045254864037672
error: 0.08592992425785567

iteration: 3
approximate solution: 0.3320638182003216
cuurent output; f(xn): -0.1467146245150302
error: 0.06431571212428411

iteration: 4
approximate solution: 0.36863760523412037
cuurent output; f(xn): -0.06476275863966457
error: 0.036573787033798766

iteration: 5
approximate solution: 0.3860812208135691
cuurent output; f(xn): -0.027240101352557833
error: 0.017443615579448735

iteration: 6
approximate solution: 0.3936687210461369
cuurent output; f(xn): -0.011200369667107246
error: 0.007587500232567823

iteration: 7
approximate solution: 0.3968324823729925
cuurent output; f(xn): -0.00456030389794243
error: 0.0031637613268555853

iteration: 8
approximate solution: 0.3981280398138686
cuurent output; f(xn): -0.001849194539737642
error: 0.0012955574408760606

iteration: 9
approximate solution: 0.39865461261433843
cuurent output; f(xn): -0.0007485939434544453
error: 0.00052657280046986

iteration: 10
approximate solution: 0.39886798225244763
cuurent output; f(xn): -0.00030284152586318447
error: 0.0002133696381091954

iteration: 11
approximate solution: 0.39895433335197655
cuurent output; f(xn): -0.00012248000460340913
error: 8.635109952892517e-05

iteration: 12
approximate solution: 0.39898926224666637
cuurent output; f(xn): -4.952981037281701e-05
error: 3.492889468981186e-05

iteration: 13
approximate solution: 0.39900338806094754
cuurent output; f(xn): -2.0028508126990197e-05
error: 1.4125814281173987e-05

iteration: 14
approximate solution: 0.3990091003005809
cuurent output; f(xn): -8.0988365904755e-06
error: 5.712239633359761e-06

iteration: 15
approximate solution: 0.3990114101565359
cuurent output; f(xn): -3.274865566726959e-06
error: 2.3098559550072117e-06

iteration: 16
approximate solution: 0.3990123441794598
cuurent output; f(xn): -1.3242287899006833e-06
error: 9.340229238929965e-07

iteration: 17
approximate solution: 0.3990127218627847
cuurent output; f(xn): -5.354661872236655e-07
error: 3.776833248925193e-07

iteration: 18
approximate solution: 0.3990128745832121
cuurent output; f(xn): -2.1652142012662523e-07
error: 1.5272042741543146e-07

iteration: 19
approximate solution: 0.3990129363373502
cuurent output; f(xn): -8.75527106924956e-08
error: 6.175413808096053e-08

iteration: 20
approximate solution: 0.3990129613082874
cuurent output; f(xn): -3.54028554250263e-08
error: 2.4970937206880706e-08

iteration: 21
approximate solution: 0.3990129714055478
cuurent output; f(xn): -1.4315514884621905e-08
error: 1.0097260416674914e-08

iteration: 22
approximate solution: 0.39901297548848075
cuurent output; f(xn): -5.788628076874858e-09
error: 4.08293293618911e-09

iteration: 23
approximate solution: 0.3990129771394574
cuurent output; f(xn): -2.3406922511348682e-09
error: 1.6509766331829212e-09

iteration: 24
approximate solution: 0.39901297780704703
cuurent output; f(xn): -9.464833361505498e-10
error: 6.675896502272849e-10

iteration: 25
approximate solution: 0.3990129780769939
cuurent output; f(xn): -3.8272046642973123e-10
error: 2.699468426570206e-10

iteration: 26
approximate solution: 0.3990129781861497
cuurent output; f(xn): -1.5475698500466706e-10
error: 1.0915585102466707e-10

iteration: 27
approximate solution: 0.39901297823028803
cuurent output; f(xn): -6.257755424954325e-11
error: 4.413830412275388e-11

iteration: 28
approximate solution: 0.3990129782481358
cuurent output; f(xn): -2.530387011034918e-11
error: 1.7847778810420323e-11

iteration: 29
approximate solution: 0.39901297825535276
cuurent output; f(xn): -1.0231815394945443e-11
error: 7.216949260424599e-12

iteration: 30
approximate solution: 0.399012978258271
cuurent output; f(xn): -4.137357123568108e-12
error: 2.918221220227224e-12

iteration: 31
approximate solution: 0.399012978259451
cuurent output; f(xn): -1.6729950758076484e-12
error: 1.1800005417228476e-12

iteration: 32
approximate solution: 0.39901297825992815
cuurent output; f(xn): -6.764588889041079e-13
error: 4.771738559838923e-13

iteration: 33
approximate solution: 0.3990129782601211
cuurent output; f(xn): -2.735034421164073e-13
error: 1.929567616798522e-13

iteration: 34
approximate solution: 0.3990129782601991
cuurent output; f(xn): -1.1063372440389685e-13
error: 7.799316747991725e-14

iteration: 35
approximate solution: 0.39901297826023063
cuurent output; f(xn): -4.4797499043625066e-14
error: 3.1530333899354446e-14

iteration: 36
approximate solution: 0.3990129782602434
cuurent output; f(xn): -1.8096635301390052e-14
error: 1.27675647831893e-14

iteration: 37
approximate solution: 0.39901297826024856
cuurent output; f(xn): -7.327471962526033e-15
error: 5.162537064506978e-15

iteration: 38
approximate solution: 0.3990129782602507
cuurent output; f(xn): -2.942091015256665e-15
error: 2.1094237467877974e-15

iteration: 39
approximate solution: 0.3990129782602515
cuurent output; f(xn): -1.1657341758564144e-15
error: 8.326672684688674e-16

The aproximate solution is: 0.3990129782602515
And the error is: 8.326672684688674e-16

Observations

Since Newton's Method is capable of finding a root regardless of the arbitrary initial guess value (x0), any value can be chosen, so

long as it does not cause an infinite loop error; however, if there are multiple roots, then the function must be called for every root

with a value near the root that will result in the approximation of that root. This may require graphing the function and observing

where the roots should be, then using a guess, x0, near that observed root.

Conclusions

Newton's Method is easier to implement than the Bisection Method, in regards to the fact that the intial guess value, x0, can be

arbitrary, so long as it does not cause an infinite loop. This process of finding proper a and b values for the interval of the Bisection

Method can require much more work to verify Bolzano's Theorem before proceeding.

The main difficulty in Newton's Method is the requirement to compute the derivative of f(x) beforehand; however it is possible to

right a function (problem 5) that can compute an aproximation of the derivative at a give location, x.

Question 3

Introduction

The purpose of this problem is to create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 3.a)

The intervals of monotonicity of the function can be observed from the graph and identifying where the function increases and

decreases. A more precise way to find the intervals of monotonicity is to find the turning points of the function by finding the roots of

the derivative of the function, i.e. f'(x) = 0. The roots of f'(x) are located at; 0.691, 1.809, and there is a vertical asymptote at 0.0.

Intervals of Monotonicity: (-inf, 0): increasing

(0.0, 0.691): decreasing

(0.691, 1.809): increasing

(1.809, inf): decreasing

The roots of the given equation are located at within each of these intervals:

The first root is -0.3 which is within the interval (-inf, 0).

The second root is 0.425 which is within the interval (0.0, 0.691).

The third root is 1.0 which is within the interval (0.691, 1.809).

The fourth root is 4.099 which is within the interval (1.809, inf).

[-3.09922871 -3.09709301 -3.09495284 ... -0.78540862 -0.78634838
 -0.78728727]
[<matplotlib.lines.Line2D at 0x1f8bc03a6a0>]

Problem 3.b)

f(x) = arctan(2(x-1)) - ln|x|

f'(x) = (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5))

Find the roots of f'(x) = 0 to find the points of inflection points. To do this find where the numerator of f'(x) equals 0:

-4x^2 + 10x - 5 = 0

The equation is quadratic, so use the quadratic formula to solve.

f'(x) = 0 at x = 0.691 and 1.809

The denominator generates a vertical asymptote; so, we must find where the denominator of f'(x) equals zero, to know where the

vertical asymptote is.

x(4x^2 - 8x + 5) = 0

The denominator of f'(x) equals 0 at x = 0.0

Now Bolzano's Theorem can be implemented to prove the existence of the roots by plugging in these inflection point values (or very

near values for -inf and inf) as the a and b values in the equation f(a) * f(b) < 0 to prove the existence (or non-existence) of each real

root within the respective interval.

Check Bolzano's Theorem for first interval, (-inf, 0.0):

f(-1000000000) = negative

f(-0.00000001) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval (-inf, 0.0).

Check Bolzano's Theorem for second interval, (0.0, 0.691]:

f(0.00000001) = positive

f(0.691) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval (0.0, 0.691].

Check Bolzano's Theorem for third interval, [0.691, 1.809]:

f(0.691) = negative

f(1.809) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

Check Bolzano's Theorem for fourth interval, [1.809, inf):

f(1.809) = positive

f(1000000000) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

This proves that the function, f(x) = arctan(2(x-1)) - ln|x|, has exactly for real roots for its entire domain, (-inf, inf).

Problem 3.c) -> Part 1

For this problem you can simply use the code from problem 1. The main alteration I made was creating a list of inputs for both the a

and b values, which can be iterated through a for loop the to compute each interval's respective outcome.

The implementation of this code with the provided function can be solved resulting in an error of 0.0, when the error tolerance is set

to a very small value. This means when the approximate solution is plugged into f(x) the result is 0.0. This returns a failure warning

that checks Bolzano's Theorem, despite the approximation being accurate. I added an additional statement to the Bolzano's

Theorem check for failure statement to inform the user, when this check fails, the result is still accurate when the error is 0.0.

Error Tolerance: 1e-15

Find root 1
1 -0.325
2 -0.2875
3 -0.30625
4 -0.296875
5 -0.3015625
6 -0.29921875
7 -0.300390625
8 -0.2998046875
9 -0.30009765625
10 -0.299951171875
11 -0.3000244140625
12 -0.30006103515625004
13 -0.300079345703125
14 -0.3000885009765625
15 -0.30009307861328127
16 -0.30009536743164067
17 -0.3000965118408203
18 -0.30009708404541013
19 -0.3000973701477051
20 -0.3000975131988526
21 -0.30009758472442627
22 -0.3000975489616394
23 -0.30009756684303285
24 -0.30009755790233617
25 -0.3000975623726845
26 -0.30009756460785864
27 -0.30009756572544577
28 -0.30009756628423934
29 -0.30009756600484255
30 -0.30009756586514413
31 -0.30009756593499337
32 -0.300097565969918
33 -0.30009756598738024
34 -0.30009756599611137
35 -0.300097566000477
36 -0.3000975659982942
37 -0.3000975659972028
38 -0.30009756599665705
39 -0.30009756599692994
40 -0.3000975659970664
41 -0.30009756599699816
42 -0.3000975659970323
43 -0.30009756599704934
44 -0.30009756599705784
45 -0.3000975659970621
46 -0.30009756599705995
47 -0.30009756599706106
48 -0.3000975659970605
The aproximate solution when a is -0.4 and b is -0.25: -0.3000975659970605
error: 6.661338147750939e-16

Find root 2
1 0.52
2 0.445
3 0.4075
4 0.42625
5 0.416875
6 0.4215625
7 0.42390625000000004
8 0.42507812500000003
9 0.4256640625
10 0.42537109375000004
11 0.425517578125
12 0.42544433593750003
13 0.42540771484375006
14 0.425426025390625
15 0.42541687011718754
16 0.4254122924804688
17 0.42541000366210946
18 0.4254111480712891
19 0.4254117202758789
20 0.425411434173584
21 0.42541157722473144
22 0.42541150569915775
23 0.4254115414619446
24 0.425411559343338
25 0.4254115682840347
26 0.42541157275438307
27 0.4254115749895573
28 0.42541157387197015
29 0.4254115744307637
30 0.42541157415136693
31 0.4254115740116685
32 0.42541157394181933
33 0.42541157390689477
34 0.425411573924357
35 0.4254115739156259
36 0.42541157391999146
37 0.4254115739178087
38 0.42541157391890005
39 0.4254115739183544
40 0.4254115739186272
41 0.4254115739187636
42 0.42541157391869544
43 0.42541157391866136
44 0.42541157391864426
45 0.4254115739186528
46 0.4254115739186571
failure: did not pass Bolzano's Theorem this iteration.
Thus, the bisection process cannot procceed any further.
However, if the error is 0.0, then the solution is accurate.
The aproximate solution when a is 0.37 and b is 0.67: 0.4254115739186549
error: 0.0

Find root 3
1 0.96
2 1.08
3 1.02
4 0.99
5 1.005
6 0.9974999999999999
7 1.00125
8 0.9993749999999999
9 1.0003125
10 0.9998437499999999
11 1.000078125
12 0.9999609374999999
13 1.00001953125
14 0.999990234375
15 1.0000048828125
16 0.9999975585937501
17 1.000001220703125
18 0.9999993896484376
19 1.0000003051757813
20 0.9999998474121095
21 1.0000000762939454
22 0.9999999618530274
23 1.0000000190734863
24 0.9999999904632568
25 1.0000000047683715
26 0.9999999976158142
27 1.0000000011920929
28 0.9999999994039535
29 1.0000000002980232
30 0.9999999998509883
31 1.0000000000745057
32 0.999999999962747
33 1.0000000000186264
34 0.9999999999906868
35 1.0000000000046567
36 0.9999999999976718
37 1.0000000000011642
38 0.999999999999418
39 1.000000000000291
40 0.9999999999998546
41 1.0000000000000728
42 0.9999999999999637
43 1.0000000000000182
44 0.9999999999999909
45 1.0000000000000044
46 0.9999999999999977
47 1.000000000000001
48 0.9999999999999993
49 1.0000000000000002
The aproximate solution when a is 0.72 and b is 1.2: 1.0000000000000002
error: 2.220446049250313e-16

Find root 4
1 4.0
2 4.5
3 4.25
4 4.125
5 4.0625
6 4.09375
7 4.109375
8 4.1015625
9 4.09765625
10 4.099609375
11 4.0986328125
12 4.09912109375
13 4.099365234375
14 4.0994873046875
15 4.09942626953125
16 4.099456787109375
17 4.0994720458984375
18 4.099464416503906
19 4.099460601806641
20 4.099462509155273
21 4.09946346282959
22 4.099462985992432
23 4.0994627475738525
24 4.099462866783142
25 4.099462926387787
26 4.0994628965854645
27 4.099462881684303
28 4.099462889134884
29 4.099462885409594
30 4.099462887272239
31 4.099462888203561
32 4.0994628877379
33 4.099462887505069
34 4.099462887621485
35 4.099462887563277
36 4.099462887592381
37 4.099462887577829
38 4.099462887570553
39 4.099462887574191
40 4.09946288757601
41 4.0994628875751005
42 4.099462887574646
43 4.099462887574418
44 4.099462887574532
45 4.099462887574589
46 4.0994628875745605
47 4.099462887574575
48 4.099462887574568
49 4.099462887574571
50 4.099462887574569
failure: did not pass Bolzano's Theorem this iteration.
Thus, the bisection process cannot procceed any further.
However, if the error is 0.0, then the solution is accurate.
The aproximate solution when a is 3.0 and b is 5.0: 4.09946288757457
error: 0.0

Problem 3.c) -> Part 2

For this problem you can simply use the code from problem 2. The main alteration I made was creating a list of inputs for both the

x0 values (initial guesses), which can be iterated through a for loop the to compute each initial guesses respective outcome.

Find root 1
1 -0.29943791713132906
2 -0.30009687158682735
3 -0.3000975659962917
4 -0.3000975659970607
5 -0.30009756599706067
The aproximate solution when x0 is -0.28: -0.30009756599706067
And the error when x0 is -0.28: 0.0

Find root 2
1 0.38584937885873893
2 0.4219665127718015
3 0.42538302020863666
4 0.4254115719383915
5 0.425411573918655
6 0.425411573918655
The aproximate solution when x0 is 0.28: 0.425411573918655
And the error when x0 is 0.28: 0.0

Find root 3
1 1.0458375932853365
2 1.0004682627967574
3 1.0000001089681934
4 1.000000000000006
5 1.0
6 1.0
The aproximate solution when x0 is 0.85: 1.0
And the error when x0 is 0.85: 0.0

Find root 4
1 4.163775202620497
2 4.099164504212785
3 4.099462881215324
4 4.09946288757457
5 4.09946288757457
The aproximate solution when x0 is 2.5: 4.09946288757457
And the error when x0 is 2.5: 0.0

Problem 3.d -> Part 1 - bisect()

For this problem I simply computed the results using Scipy's bisect method to find the roots within the various intervals of a and b,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.3000975659972027
root 2: 0.42541157391890017
root 3: 0.9999999999994179
root 4: 4.09946288757601

----------runtime test----------
4.757552600000054

Problem 3.d -> Part 2 - optimize()

For this problem I simply computed the results using Scipy's optimize method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756599706067
root 2: 0.42541157391865486
root 3: 1.0
root 4: 4.09946288757457

----------runtime test----------
4.678617400000803

Problem 3.d -> Part 3 - fsolve()

For this problem I simply computed the results using Scipy's fsolve method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756590387787
root 2: 0.4254115739327119
root 3: 1.0
root 4: 4.099462887264225

----------runtime test----------
4.79018250000081

3.e)

For this problem, I applied my newtons_method() function to the provided initial guess input values; x0 = −1, 0.65, 0.7, 1.7, 1.8, 1.9,

5 and 10.

1 0.18625790959771327
2 0.32333174127292197
3 0.40489536009754024
4 0.42444306850401514
5 0.42540930166308594
6 0.42541157390611367
7 0.42541157391865503
The aproximate solution when x0 = -1 is 0.42541157391865503
And the error is: 1.1102230246251565e-16

1 -0.26723601197582225
2 -0.2983058421881353
3 -0.3000924361579916
4 -0.3000975659550975
5 -0.30009756599706067
The aproximate solution when x0 = 0.65 is -0.30009756599706067
And the error is: 0.0

1 5.07312044069807
2 4.026066908607294
3 4.099082932370794
4 4.099462877263223
5 4.099462887574569
The aproximate solution when x0 = 0.7 is 4.099462887574569
And the error is: 2.220446049250313e-16

1 -3.1023416900488945
2 4.2400308953863135
3 4.098022322980367
4 4.099462739376932
5 4.099462887574569
The aproximate solution when x0 = 1.7 is 4.099462887574569
And the error is: 2.220446049250313e-16

1 -66.19053751718572
2 312.0226371469949
3 -992.4283679087605
4 7409.659796581593
5 -46979.513588870584
6 532189.6326290627
7 -5648645.157658825
8 91043286.69233719
9 -1434482522.6664178
10 31063527278.608936
11 -670615079341.7915
12 18644613108407.395
13 -521784078898162.7
14 1.7980194779561138e+16
15 -6.267401612054683e+17
16 2.6041119355702526e+19
17 -1.0972532968874861e+21
18 5.378504506713788e+22
19 -2.676800266836948e+24
20 1.5208899398842158e+26
21 -8.777924536066726e+27
22 5.697999567988671e+29
23 -3.7575051616091404e+31
24 2.753300237332616e+33
25 -2.049207358499665e+35
26 1.6778649119590494e+37
27 -1.3950167238963468e+39
28 1.2653432422633566e+41
29 -1.1650083042413605e+43
30 1.1619173454572426e+45
31 -1.1758092801612648e+47
32 1.2810942103451736e+49
33 -1.4156550654590266e+51
34 1.675431003854235e+53
35 -2.0102203861028106e+55
36 2.5712974366819213e+57
37 -3.3329405397651787e+59
38 4.5870318017464306e+61
39 -6.394786883025636e+63
40 9.431616197429248e+65
41 -1.408529844668014e+68
42 2.2182813861499023e+70
43 -3.536093434072386e+72
44 5.927197890219802e+74
45 -1.0052530711360883e+77
46 1.7880947829882362e+79
47 -3.2170431599100052e+81
48 6.056040367465298e+83
49 -1.1527359292432665e+86
50 2.2908926597558065e+88
The function did not converge for this input value of x0.
The approximation is very likely innacurate. See error value.
The aproximate solution when x0 = 1.8 is 2.2908926597558065e+88
And the error is: 201.8856334060456

1 9.623578977886847
2 1.8946218648712536
3 10.047434805181645
4 1.5741435011056204
5 -0.18801123753099347
6 -0.27677362618235685
7 -0.2992056083077888
8 -0.30009629601948956
9 -0.30009756599448884
10 -0.30009756599706067
The aproximate solution when x0 = 1.9 is -0.30009756599706067
And the error is: 0.0

1 4.036838389810206
2 4.099185732275161
3 4.099462882087958
4 4.09946288757457
The aproximate solution when x0 = 5.0 is 4.09946288757457
And the error is: 0.0

1 1.6108733370629
2 -0.6367071381318539
3 -0.1641496447105832
4 -0.26438493904265614
5 -0.2979738083407931
6 -0.30009035592935795
7 -0.30009756591416337
8 -0.30009756599706067
The aproximate solution when x0 = 10.0 is -0.30009756599706067
And the error is: 0.0

Observations

3.a) a vertical asymptote will generate an inflection point, as well where f'(x) = 0.

3.b) Bolzano's Theorem can be used to prove how many real roots an equation has when using the inflection points to generate

intervals for the corresponding a and b values to test f(a) * f(b) < 0.

3.c) Newton's Method solved the approximation of the roots with many less iterations than the Bisection Method.

3.d) In regards to the speed of Scipy's methods, bisect was the fastest, optimize was the second fastest, and fsolve was the third

fastest. Since the input of the bisect() method is an interval, [a, b], instead of one value, x0, these results may vary depending on

the values of [a, b] and x0; however, optimize and fsolve both use x0 as input, so these runtime speed test results should be

accurate, since I used the same values for x0 in each implementation.

3.e) The initial guess value, x0 = 5.0 did not result in a converging sequence that could find the approximation of one of the roots of

the function f(x).

Conclusions

There are trade-offs between using the Bisection Method versus using Newton's Method. For the bisection method, Bolzano's

Theorem has to first checked and return true, which there are methods to find the proper intervals for each root, such as find the

inflection points of the function. For Newton's Method, the derivative of the function must be found in order to implement the

algorithm. Since the derivative of a function can be found (problem 5), it seems that Newton's Method is a more efficient algorithm

to implement than the Bisection Method, as there are many more steps involved in the bisection method, which adds complexity to

the algorithm. Newton's Method also found the roots of the function with many less iterations than the Bisection Method.

Question 4

Introduction

The purpose of this problem is to combine both methods, the Bisection Method and Newton's Method, to create another algorithm

that can solve for the roots of a given function.

Procedure

Problem 4.a)

The purpose of this problem is to combine the Bisection Method with Newton's Method to generate a more efficient function that

finds the root/s of a given function. In order to test for convergence, I checked if the current error was less than the previous error. If

the error was decreasing, then it was converging; increasing, then it way diverging; and not changing, then it was inconclusive.

Problem 4.b)

The purpose of this problem is to implement the findzero() function created in problem 4.a) by using the given function arctan(2(x-

1)) - ln|x| as the f(x). The function requires finding the derivative function of f(x), which is (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5)).

Find root 1
real root is between interval [a, b]
1 -0.30009755081591794
2 -0.3000975659970603
3 -0.30009756599706067
converges
The root approximation when a is -0.4 and b is -0.2 : -0.30009756599706067
error: 3.885780586188048e-16
iteration count: 3

Find root 2
real root is between interval [a, b]
1 0.407749017162497
2 0.42468862350772174
3 0.4254103069422888
4 0.4254115739147558
5 0.425411573918655
6 0.425411573918655
converges
The root approximation when a is 0.4 and b is 0.6 : 0.425411573918655
error: 0.0
iteration count: 6

Find root 3
real root is between interval [a, b]
1 1.0
not enough iterations to test for convergence or divergence
The root approximation when a is 0.6 and b is 2.2 : 1.0
error: 0.0
iteration count: 1

Find root 4
real root is between interval [a, b]
1 4.077791560995681
2 4.099429460813845
3 4.099462887494759
4 4.09946288757457
5 4.09946288757457
converges
The root approximation when a is 2.0 and b is 5.0 : 4.09946288757457
error: 0.0
iteration count: 5

Observations

The findzero() function solves the approximation of a root of a function in many less iterations than the Bisection Method or

Newton's Method. Additionally, the findzero() function's algorithm that utilises both the Bisection Method and Newton's Method

generates an extremely accurate result, i.e. notice the error values are very low or 0.0.

Conclusions

It is possible to combine different aspects of various methods in order to create a more efficient algorithm that is potentially capable

of also being more accurate.

Question 5

Introduction

The purpose of this problem is...

Procedure

Problem 5.a)

The purpose of this problem is to use Taylor expansion to demonstrate how imaginary numbers in combination with a very small

value of h can solve the derivative of a function at a given input value, x0.

f(x) = f(x0) + f'(x0)/1! (x-x0)^1 + f''(x0)/2! (x-x0)^2 + f'''(x0)/3! (x-x0)^3 + f''''(x0)/4! (x-x0)^4 + ...

x-x0 = ih x = x0 + ih

f(x0 + ih) = f(x0) + f'(x0)/1! (ih)^1 + f''(x0)/2! (ih)^2 + f'''(x0)/3! (ih)^3 + f''''(x0)/4! (ih)^4 + ...

i = i i^2 = -1 i^3 = i i^2 = -i i^4 = i^2 i^2 = 1 i^5 = i * i^4 = i ...

f(x0 + ih) = f(x0) + f'(x0)/1! i h + f''(x0)/2! -1 h^2 + f'''(x0)/3! -i h^3 + f''''(x0)/4! 1 h^4 + ...

Now, separate imaginary and real parts:

f(x0 + ih) = [f(x0) + f''(x0)/2! -1 h^2 + f''''(x0)/4! 1 h^4] + [f'(x0)/1! i h + f'''(x0)/3! -i h^3]

Factor out the i from the imaginary part and simplify:

f(x0 + ih) = [f(x0) + f''(x0)/2! -h^2 + f''''(x0)/4! h^4] + i[f'(x0) h + f'''(x0)/3! -h^3]

Im[f(x0 + ih)] = hf'(x0) - h^3/3! f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + h^2/3! * f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + O(h^2)

Problem 5.b)

The purpose of this problem is to implement the same code form problem 4, with the addition of altering the df(x) function to find the

derivative with the provided formula; instead of explicitly writing the specific derivative function for the corresponding f(x) function.

This enables the code to be much easier to modify, since the user won't have to solve the derivative and input it into the df(x)

function before running the program.

Find root 1
real root is between interval [a, b]
1 -0.30009755081591794
2 -0.3000975659970603
3 -0.30009756599706067
The root approximation when a is -0.4 and b is-0.2: -0.30009756599706067
error: 3.885780586188048e-16
iteration count: 3

Find root 2
real root is between interval [a, b]
1 0.407749017162497
2 0.42468862350772174
3 0.4254103069422888
4 0.4254115739147558
5 0.425411573918655
6 0.425411573918655
The root approximation when a is 0.4 and b is0.6: 0.425411573918655
error: 0.0
iteration count: 6

Find root 3
real root is between interval [a, b]
1 1.0
The root approximation when a is 0.7 and b is1.9: 1.0
error: 0.0
iteration count: 1

Find root 4
real root is between interval [a, b]
1 4.099462866966103
2 4.09946288757457
3 4.09946288757457
The root approximation when a is 3.9 and b is4.3: 4.09946288757457
error: 0.0
iteration count: 3

Problem 5.c)

The purpose of this problem is to calculate the rate of convergence of the newtons_method() function created in problem 3, as it

attempts to find the root/s of the given function, x(e^(x/2) + 1). If r is greater than 1, then the algorithm is converging. If r is less than

1, then the algorithm is diverging. I utilised the df(x) function from 5.b) as opposed to computing the derivative of f(x). I also added h

as a parameter to newtons_method() function as well as df(), so that I could generate varying outputs of the convergence rate,

based on varying values of h.

Find root 1
real root is between interval [a, b]
convergence rate: inf
4 -0.30009756599706067
The root approximation when a is -0.4 and b is -0.2 : -0.30009756599706067
error: 0.0
iteration count: 4

Find root 2
real root is between interval [a, b]
convergence rate: inf
6 0.425411573918655
The root approximation when a is 0.4 and b is 0.6 : 0.425411573918655
error: 0.0
iteration count: 6

Find root 3
real root is between interval [a, b]
The algorithm requires at least 3 iterations to compute the convergence rate.
The root approximation when a is 0.7 and b is 1.9 : 1.0
error: 0.0
iteration count: 1

Find root 4
real root is between interval [a, b]
convergence rate: inf
3 4.09946288757457
The root approximation when a is 3.9 and b is 4.3 : 4.09946288757457
error: 0.0
iteration count: 3

C:\Users\User\AppData\Local\Temp\ipykernel_26388\3135666090.py:51: RuntimeWarning: divide by zero encounter
ed in log10
 r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1))))

Observations

5.a) If the exponent of the ih term is odd, then it will become a part of the imaginary section of the equation, and if the exponent of ih

is even, the it will become a part of the real section of the equation.

5.b) The results are exactly the same as 4.b), when h is an extremely small value, i.e. 1.e-32; however the accuracy for computing

the derivative deminishes the larger the value of h is; in addition to requiring more iterations to solve the for the root of the given

function.

5.c) Newton's Method is known to have a convergence rate of 2, so I first tested the convergence rate algorithm on

newtons_method() and it worked properly. So, I then implemented the same code into the findzero() function that combines both the

Bisection Method with Newton's Method.

When the values of h increase the convergence rate decreases. Once the convergence rate goes below 1, the algorithm is

incapable of finding the root, even with an infinite nmax value, due to the algorithm diverging.

The convergence rate for the findzero() method returned an infinity value due to the fact that the algorithm returned a final error of

0.0. This likely means the algorithm converges exponentially with every iteration, making it far more accurate and efficient than

either the Bisection Method or Newton's Method on their own.

Conclusions

Utilising the formula to solve for the derivative of f(x) at give x input is a very useful way of simplifying the amount of work a user

must do to use a function, preventing them from solving a derivative on their own. However, the value of h is intended to reach the

limit of 0, but using the value 0.0 exactly would create a division by zero error. This means we must use a positive value that is

extremely close to 0, but not quite zero, if we intend to have the most accurate results. Hence, 1.e-32 generating the most accurate

outcome in problem 5.c). The ability to combine various methods to create a more efficient algorithm has proven to be exponentially

faster to compute.

In [30]: import numpy as np

def bisection(f, a, b, tolerance, nmax = 100):
 iteration = 0; # this is a counter
 if (f(a) * f(b) < 0.0): # check Bolzano's Theorem; outputs are opposite sign values
 while (abs(b-a) > tolerance and iteration < nmax): # loop while interval is greater than
 iteration = iteration + 1 #increment iteration #tolerance and within iteration limit
 x = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 print("x: ", x)
 if (f(a) * f(x) < 0.0): # check if f(a) is on same side of x-axis as f(x)
 b = x # assign b to x if a is on the same side of x-axis as f(x)
 print("set b = x")
 elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)
 a = x # assign a to x if b is on the same side of x-axis as f(x)
 print("set a = x")
 else: # bisection method only works when Bolzaono's Theorem returns true
 print ("failure: did not pass Bolzaon's Theorem this iteration")
 print("Thus, the bisection process cannot proceed any further.")
 break
 print(iteration, x) # prints the iteration number and it's corresponding x value
 # the last iteration will be the final result that is returned
 if (iteration >= nmax):
 print("Failure: Maximum iterations reached before solving within the error tolerance thresh
 print('''Approximation may not be accurate. Try increasing the max iterations value, or
 possibly increasing the error tolerance value.''')
 return x # returns the midpoint of the final interval as an approximation of the root
 else:
 print("failure: Does not meet Bolzano's Theorem requirement")

In [33]: import numpy as np

def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6
 iteration = 0; # this is a counter
 if (f(a) * f(b) < 0.0): # check Bolzano's Theorem; outputs are opposite sign values
 while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than
 iteration = iteration + 1 #increment iteration #tolerance and within iteration limit
 x = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 if (f(a) * f(x) < 0.0): # check if f(a) is on same side of x-axis as f(x)
 b = x # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)
 a = x # assign a to x if b is on the same side of x-axis as f(x)
 else: # bisection method only works when Bolzaono's Theorem returns true
 print ("failure: did not pass Bolzaon's Theorem this iteration")
 print("Thus, the bisection process cannot proceed any further.")
 break
 print(iteration, x) # prints the iteration number and it's corresponding x value
 # the last iteration will be the final result that is returned
 if (iteration >= nmax):
 print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
 print('''Approximation may not be accurate. Try increasing the max iterations value, or
 possibly increasing the error tolerance value.''')
 return x # returns the midpoint of the final interval as an approximation of the root
 else:
 print("failure: Does not meet Bolzano's Theorem requirement")
#test function with given equation log(x) + x = 0 in the interval [0.1, 1]
def f(x): # create function log(x) + x
 return np.log10(x) + x

a = 0.1
b = 1.0
tol = 1.e-15
max_iterations = 100
x = bisection(f, a, b, tol, max_iterations) # assign return value of bisection() to x
print("tolerance: ", tol)
print("The approximate solution is: ", x)
print("And the error is: ", f(x))

In [63]: # use test function: f(x) = x^2 - x - 1
initial guesses; -1.0, 10.0
def newtons_method(g, x0, tol = 1.e-15, nmax = 100):
 err = 1.0
 iteration = 0

 xk = x0
 while (err > tol and iteration < nmax):
 iteration = iteration + 1
 err = xk
 xk = g(xk)
 err = abs(err - xk)
 print("iteration:",iteration)
 print("approximate solution:", xk)
 print("cuurent output; f(xn):", f(xk))
 print("error:", err)
 print()
 if (iteration >= nmax):
 print("Failure: Maximum iterations reached before solving within the error tolerance threshold.")
 print('''Approximation may not be accurate. Try increasing the max iterations value, or
 possibly increasing the error tolerance value.''')
 return xk, err

def f(x): # implement whatever f(x) function here
 return x**2-x-1.0

def df(x): # implement the derivative of the f(x) function here
 return 2*x - 1

def g(x): # Newton's Method
 return x - (f(x) / df(x))

tol = 1.e-15 # tolerance determines the accuracy of the approximation
max_iterations = 100

print("Find first root:\n")
x0 = -1.0 # initial guess
x = newtons_method(g, x0, tol, max_iterations)
print('The aproximate solution is: ', x[0])
print('And the error is: ', x[1])
print()
print("---------------------------")
print()
print()

print("Find second root:\n")
x0 = 10.0 # initial guess
x = newtons_method(g, x0, tol, max_iterations)
print('The aproximate solution is: ', x[0])
print('And the error is: ', x[1])
print()
print("---------------------------")
print()
print()

In [35]: # use given f(x) = log(x) + x
initial guess is 0.1
def newtons_method(g, x0, tol = 1.e-15, nmax = 100):
 err = 1.0
 iteration = 0

 xk = x0
 while (err > tol and iteration < nmax):
 iteration = iteration + 1
 err = xk
 xk = g(xk)
 err = abs(err - xk)
 print("iteration:",iteration)
 print("approximate solution:", xk)
 print("cuurent output; f(xn):", f(xk))
 print("error:", err)
 print()
 if (iteration >= nmax):
 print("Failure: Maximum iterations reached before solving within the error tolerance threshold.")
 print('''Approximation may not be accurate. Try increasing the max iterations value, or
 possibly increasing the error tolerance value.''')
 return xk, err

def f(x):
 return np.log10(x) + x

def df(x):
 return 1.0/x + 1

def g(x): # Newton's Method
 return x - (f(x) / df(x))

tol = 1.e-15 # tolerance determines the accuracy of the approximation
max_iterations = 100

print("Find root:\n")
x0 = 0.1 # initial guess
x = newtons_method(g, x0, tol, max_iterations)
print('The aproximate solution is: ', x[0])
print('And the error is: ', x[1])
print()
print("---------------------------")
print()
print()

In [31]: import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-5.01, 10.01, 0.01)
y = np.arange(-5.01, 10.01, 0.01)

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

for i in range(len(x)):
 y[i] = f(x[i])

print(y)

plt.figure(num = 0, dpi = 120)
plt.plot(x, y)

Out[31]:

In [36]: import numpy as np

def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6
 iteration = 0; # this is a counter
 if (f(a) * f(b) < 0.0): # check Bolzano's Theorem; outputs are opposite sign values
 while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than
 iteration = iteration + 1 #increment iteration #tolerance and within iteration limit
 x = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 if (f(a) * f(x) < 0.0): # check if f(a) is on same side of x-axis as f(x)
 b = x # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x)
 a = x # assign a to x if b is on the same side of x-axis as f(x)
 else:
 print ("failure: did not pass Bolzano's Theorem this iteration.") # bisection method only w
 print("Thus, the bisection process cannot procceed any further.")
 print("However, if the error is 0.0, then the solution is accurate.")
 break
 print(iteration, x) # prints the iteration number and it's corresponding x value
 # the last iteration will be the final result that is returned
 if (iteration >= nmax):
 print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
 print('''Approximation may not be accurate. Try increasing the max iterations value, or
 possibly increasing the error tolerance value.''')
 return x # returns the midpoint of the final interval as an approximation of the root
 else:
 print("failure: Does not meet Bolzano's Theorem requirement")
#test function with given equation log(x) + x = 0 in the interval [0.1, 1]
def f(x): # create function log(x) + x
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

list_a = [-0.4, 0.37, 0.72, 3.0]
list_b = [-0.25, 0.67, 1.2, 5.0]

tol = 1.e-15
max_iterations = 100

print("Error Tolerance: ", tol)
print()
for i in range(len(list_a)):
 print("Find root " + str(i+1))
 x = bisection(f, list_a[i], list_b[i], tol, max_iterations) # assign return value of bisection() to x
 print("The aproximate solution when a is", list_a[i], "and b is " + str(list_b[i]) +": "+str(x))
 print("error: "+str(f(x)))
 print()

In [42]: # the guess can't be 0.0 since df is 1/x
def newtons_method(g, x0, tol = 1.e-6, nmax = 100):
 err = 1.0
 iteration = 0

 xk = x0
 while (err > tol and iteration < nmax):
 iteration = iteration + 1
 err = xk
 xk = g(xk)
 err = abs(err - xk)
 print(iteration, xk)
 return xk

def f(x):
 return np.arctan(2*(x-1)) - np.log(abs(x))

def df(x):
 return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))

def g(x):
 return x - (f(x) / df(x))

tolerance = 1.e-15 # tolerance determines the accuracy of the approximation
max_iterations = 100
x0 = -0.28 # initial guess
x0 = [-0.28, 0.28, 0.85, 2.5]

for i in range(len(x0)):
 print("Find root " + str(i+1))
 x = newtons_method(g, x0[i], tolerance, max_iterations)
 print("The aproximate solution when x0 is " + str(x0[i]) + ": "+str(x))
 print("And the error when x0 is " + str(x0[i]) + ": "+str(f(x)))
 print()

In [48]: # applied scipy.optimize.bisect -> arctan(2(x − 1)) − ln |x|.
import numpy as np
from scipy import optimize

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

list_a = [-0.4, 0.37, 0.72, 3.0]
list_b = [-0.25, 0.67, 1.2, 5.0]

i = 0
while (i < len(list_a)):
 root = optimize.bisect(f, list_a[i], list_b[i])
 print("root " + str(i+1) + ": " + str(root))
 i+=1

print("\n----------runtime test----------")

#---

#test runtime
import timeit

code snippet to be executed only once
mysetup = '''import numpy as np
from scipy import optimize'''

code snippet whose execution time is to be measured
mycode = '''
def function1():
 def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

 list_a = [-0.4, 0.37, 0.72, 3.0]
 list_b = [-0.25, 0.67, 1.2, 5.0]

 i = 0
 while (i < len(list_a)):
 root = optimize.bisect(f, list_a[i], list_b[i])
 print("root " + str(i+1) + ": " + str(root))
 i+=1
 '''

timeit statement
print (timeit.timeit(setup = mysetup,
 stmt = mycode,
 number = 100000000))

In [52]: # example for scipy.optimize.newton
import numpy as np
from scipy import optimize

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x)) # only one real root at x = 1

root = optimize.newton(f, [-0.5, 0.1, 1, 2])

i = 0
while (i < len(root)):
 print("root " + str(i+1) + ": " + str(root[i]))
 i+=1

print("\n----------runtime test----------")

#---

#test runtime
import timeit

code snippet to be executed only once
mysetup = '''import numpy as np
from scipy import optimize'''

code snippet whose execution time is to be measured
mycode = '''
def function1():
 def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x)) # only one real root at x = 1

 root = optimize.newton(f, [-0.5, 0.1, 1, 2])

 i = 0
 while (i < len(root)):
 print("root " + str(i+1) + ": " + str(root[i]))
 i+=1

 '''

timeit statement
print (timeit.timeit(setup = mysetup,
 stmt = mycode,
 number = 100000000))

In [51]: # example scipy.optimize.fsolve
import numpy as np
from scipy.optimize import fsolve

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))
root = fsolve(f, [-0.5, 0.1, 1, 2])

i = 0
while (i < len(root)):
 print("root " + str(i+1) + ": " + str(root[i]))
 i+=1

print("\n----------runtime test----------")

#---

#test runtime
import timeit

code snippet to be executed only once
mysetup = '''import numpy as np
from scipy.optimize import fsolve'''

code snippet whose execution time is to be measured
mycode = '''
def function1():
 def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))
 root = fsolve(f, [-0.5, 0.1, 1, 2])

 i = 0
 while (i < len(root)):
 print("root " + str(i+1) + ": " + str(root[i]))
 i+=1
 '''

timeit statement
print (timeit.timeit(setup = mysetup,
 stmt = mycode,
 number = 100000000))

In [60]: # the guess value, x0, can't be 0.0 since there is a vertical asymptote as x = 0.0
import numpy as np

def newtons_method(g, x0, tol = 1.e-6, nmax = 50):
 err = 1.0
 iteration = 0

 xk = x0
 while (err > tol and iteration < nmax):
 iteration = iteration + 1
 err = xk
 xk = g(xk)
 err = abs(err - xk)
 print(iteration, xk)
 if (iteration >= nmax):
 print("The function did not converge for this input value of x0.")
 print("The approximation is very likely innacurate. See error value.")
 return xk

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

def df(x):
 return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))

def g(x):
 return x - (f(x) / df(x))

tolerance = 1.e-6 # tolerance determines the accuracy of the approximation
max_iterations = 50
x0 = [-1, 0.65, 0.7, 1.7, 1.8, 1.9, 5.0, 10.0]

for i in range(len(x0)):
 x = newtons_method(g, x0[i], tolerance, max_iterations)
 print("The aproximate solution when x0 = " + str(x0[i]) + " is " + str(x))
 print("And the error is: ", abs(f(x)))
 print()
 print("----------------------")
 print()

In [32]: import numpy as np

def findzero (a, b, tol, maxit, f, df):

 if (f(a) * f(b) < 0): # check Bolzano's Theorem
 xstar = float("NAN")
 niter = 0
 err = 1.0 # initialise error to value greater than tolerance
 prev_err = 0.0
 conv_div_test = 0

 print("real root is between interval [a, b]")
 x0 = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 xi = 1.0 # initial arbitrary guess for Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = x0 # then set xi to Bisection Method value x0

 if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan
 ierr = 1
 return xstar, niter, ierr

 while (err > tol and niter < maxit):
 niter += 1
 err = xi
 xi = xi - (f(xi) / df(xi)) # Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = (a + b) / 2.0 # then set xi to Bisection Method value x0

 if (f(a) * f(xi) < 0.0): # check if f(a) is on different side of x-axis as f(xi)
 b = xi # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)
 a = xi # assign a to x if b is on the same side of x-axis as f(x)
 else:
 print ("failure") # bisection method only works when Bolzaono's Theorem returns true
 break
 err = abs(err - xi)

 converge_test = 0.0
 if (niter > 1):
 if (err < prev_err):
 conv_div_test = 1
 elif (err > prev_err):
 conv_div_test = 2
 else:
 conv_div_test = 3

 prev_err = err

 print(niter, xi)

 if (niter == maxit):
 ierr = 2
 ierr = 0 # function converged successfully
 xstar = xi # approximation of the root

 if (niter > 1):
 if (conv_div_test == 1):
 print("converges")
 elif (conv_div_test == 2):
 print("diverges")
 elif (conv_div_test == 3):
 print("convergence/divergence test inconclusive since error value did not change between it
 else:
 print("not enough iterations to test for convergence or divergence")
 else:
 print("failure: no real root between interval [a, b] try different a, b values")
 return xstar, niter, ierr, err

def f(x): # implement any function here
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

def df(x): # implement the derivative of f(x) here
 return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))

In [7]: import numpy as np

def findzero (a, b, tol, maxit, f, df):

 if (f(a) * f(b) < 0): # check Bolzano's Theorem
 xstar = float("NAN")
 niter = 0
 err = 1.0 # initialise error to value greater than tolerance
 prev_err = 0.0
 conv_div_test = 0

 print("real root is between interval [a, b]")
 x0 = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 xi = 1.0 # initial arbitrary guess for Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = x0 # then set xi to Bisection Method value x0

 if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan
 ierr = 1
 return xstar, niter, ierr

 while (err > tol and niter < maxit):
 niter += 1
 err = xi
 xi = xi - (f(xi) / df(xi)) # Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = (a + b) / 2.0 # then set xi to Bisection Method value x0

 if (f(a) * f(xi) < 0.0): # check if f(a) is on different side of x-axis as f(xi)
 b = xi # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)
 a = xi # assign a to x if b is on the same side of x-axis as f(x)
 else:
 print ("failure") # bisection method only works when Bolzaono's Theorem returns true
 break
 err = abs(err - xi)

 converge_test = 0.0
 if (niter > 1):
 if (err < prev_err):
 conv_div_test = 1
 elif (err > prev_err):
 conv_div_test = 2
 else:
 conv_div_test = 3

 prev_err = err

 print(niter, xi)

 if (niter == maxit):
 ierr = 2
 ierr = 0 # function converged successfully
 xstar = xi # approximation of the root

 if (niter > 1):
 if (conv_div_test == 1):
 print("converges")
 elif (conv_div_test == 2):
 print("diverges")
 elif (conv_div_test == 3):
 print("convergence/divergence test inconclusive since error value did not change between it
 else:
 print("not enough iterations to test for convergence or divergence")
 else:
 print("failure: no real root between interval [a, b] try different a, b values")
 return xstar, niter, ierr, err

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(abs(x))

def df(x):
 return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))

list_a = [-0.4, 0.4, 0.6, 2.0]
list_b = [-0.2, 0.6, 2.2, 5.0]
tol = 1.e-12
maxit = 50

for i in range(len(list_a)):
 if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation
 print("failure: asymptote at 0.0, so neither a or b can be 0.0")
 break

 print("Find root ", i+1)
 result = []
 result = findzero(list_a[i], list_b[i], tol, maxit, f, df)

 print("The root approximation when a is ", list_a[i],
 "and b is ", list_b[i], ": ", result[0])
 print("error:", result[3])
 print("iteration count: ", result[1])
 if (result[2] == 0):
 "the method converged"
 elif (result[2] == 1):
 "df(xi) was zero or undefined"
 elif (result[2] == 2):
 "maximum number of iterations has been reached"
 print()

In [64]: import numpy as np

def findzero (a, b, tol, maxit, f, df):

 if (f(a) * f(b) < 0): # check Bolzano's Theorem
 xstar = float("NAN")
 niter = 0
 err = 1.0 # initialise error to value greater than tolerance

 print("real root is between interval [a, b]")
 x0 = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 xi = 1.0 # initial arbitrary guess for Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = x0 # then set xi to Bisection Method value x0

 if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan
 ierr = 1
 return xstar, niter, ierr

 while (err > tol and niter < maxit):
 niter += 1
 err = xi
 xi = xi - (f(xi) / df(xi)) # Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = (a + b) / 2.0 # then set xi to Bisection Method value x0

 #check for convergence
 if (f(a) * f(xi) < 0.0): # check if f(a) is on different side of x-axis as f(xi)
 b = xi # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)
 a = xi # assign a to x if b is on the same side of x-axis as f(x)
 else:
 print ("failure") # bisection method only works when Bolzaono's Theorem returns true
 break
 err = abs(err - xi)
 print(niter, xi)

 if (niter == maxit):
 ierr = 2
 ierr = 0 # function converged successfully
 xstar = xi # approximation of the root
 else:
 print("failure: no real root between interval [a, b] try different a, b values")
 return xstar, niter, ierr, err

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2))

def df(x):
 h = 1.e-32
 return np.imag(f(x + (1j*h)) / h)

list_a = [-0.4, 0.4, 0.7, 3.9]
list_b = [-0.2, 0.6, 1.9, 4.3]
tol = 1.e-12
maxit = 50

for i in range(len(list_a)):
 if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation
 print("failure: asymptote at 0.0, so neither a or b can be 0.0")
 break

 print("Find root ", i+1)
 result = []
 result = findzero(list_a[i], list_b[i], tol, maxit, f, df)

 print("The root approximation when a is", list_a[i],
 "and b is" + str(list_b[i]) + ":", result[0])
 print("error:",result[3])
 print("iteration count:", result[1])
 if (result[2] == 0):
 "the method converged"
 elif (result[2] == 1):
 "df(xi) was zero or undefined"
 elif (result[2] == 2):
 "maximum number of iterations has been reached"
 print()

In [62]: import numpy as np

def findzero (a, b, tol, maxit, f, df):

 if (f(a) * f(b) < 0): # check Bolzano's Theorem
 xstar = float("NAN")
 niter = 0
 err = 1.0 # initialise error to value greater than tolerance

 print("real root is between interval [a, b]")
 x0 = (a + b) / 2.0 # set x to be midpoint of current interval [a,b]
 xi = 1.0 # initial arbitrary guess for Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = x0 # then set xi to Bisection Method value x0

 if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan
 ierr = 1
 return xstar, niter, ierr

 e1 = 0.0
 e2 = 0.0
 e3 = 0.0

 while (err > tol and niter < maxit):
 niter += 1
 err = xi
 xi = xi - (f(xi) / df(xi)) # Newton's Method

 if (xi < a or xi > b): # if xi is outside [a, b]
 xi = (a + b) / 2.0 # then set xi to Bisection Method value x0

 #check for convergence
 if (f(a) * f(xi) < 0.0): # check if f(a) is on different side of x-axis as f(xi)
 b = xi # assign b to x if a is on the same side of x-axis as f(x)
 elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x)
 a = xi # assign a to x if b is on the same side of x-axis as f(x)
 else:
 print ("failure") # bisection method only works when Bolzaono's Theorem returns true
 break
 err = abs(err - xi)

 e1 = e2
 e2 = e3
 e3 = err

 if (niter > 3 and (e2 == 0.0 or e1 == 0.0)):
 print("failure: e1 or e2 equal 0.0, so can't compute convergence rate;")
 print("due to division by zero.")
 elif (niter >= 3): # compute convergence rate
 r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1))))
 print("convergence rate: ", r)

 print(niter, xi)

 if (niter == maxit):
 ierr = 2
 ierr = 0 # function converged successfully
 xstar = xi # approximation of the root
 else:
 print("failure: no real root between interval [a, b] try different a, b values")
 if (niter < 3):
 print("The algorithm requires at least 3 iterations to compute the convergence rate.")
 return xstar, niter, ierr, err

def f(x):
 return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2))

def df(x):
 h = 1.e-32
 return np.imag(f(x + (1j*h)) / h)

list_a = [-0.4, 0.4, 0.7, 3.9]
list_b = [-0.2, 0.6, 1.9, 4.3]
tol = 1.e-16
maxit = 50

for i in range(len(list_a)):
 if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation
 print("failure: asymptote at 0.0, so neither a or b can be 0.0")
 break

 print("Find root ", i+1)
 result = []
 result = findzero(list_a[i], list_b[i], tol, maxit, f, df)

 print("The root approximation when a is", list_a[i],
 "and b is", list_b[i], ":", result[0])
 print("error:",result[3])
 print("iteration count: ", result[1])
 if (result[2] == 0):
 "the method converged"
 elif (result[2] == 1):
 "df(xi) was zero or undefined"
 elif (result[2] == 2):
 "maximum number of iterations has been reached"
 print()

