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Question 1

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 1.a)

The parameters of the user-defined bisection() function are; f, a, b, tolerance, and nmax. These parameters are defined as; f, is the

function that is to be analysed, a is the starting interval input value, b is the stopping interval input value, tolerance is the value that

determines the degree of error that is acceptable which will terminate the function's process once the current error of approximation

is within the error tolerance threshold, and nmax is the maximum number of iterations that will compute before the bisection

processing loop terminates. If the loop terminates due the the nmax threshold being reached, then the approximation result that is

returned, x, may not be accurate since the error will not be within the error tolerance threshold.

Problem 1.b)

This problem is applying the bisection() function that was generated in 1.a) by implementing the function, f, log(x) + x, in the interval

[0.1, 1.0]; meaning a = 0.1, and b = 1.0. Since f(a) * f(b) < 0, the interval meets the condition of Bolzano's Theorem, so the user-

defined bisection() function can be implemented to solve for the approximation of the roots.

1 0.55 
2 0.325 
3 0.4375 
4 0.38125 
5 0.409375
6 0.39531249999999996 
7 0.40234375 
8 0.398828125 
9 0.4005859375 
10 0.39970703124999996 
11 0.39926757812499997 
12 0.3990478515625 
13 0.39893798828125 
14 0.398992919921875 
15 0.3990203857421875 
16 0.3990066528320313 
17 0.3990135192871094 
18 0.39901008605957033 
19 0.39901180267333985 
20 0.3990126609802246 
21 0.399013090133667 
22 0.39901287555694576 
23 0.3990129828453064 
24 0.3990129292011261 
25 0.39901295602321624 
26 0.39901296943426134 
27 0.39901297613978387 
28 0.3990129794925451 
29 0.3990129778161645 
30 0.3990129786543548 
31 0.39901297823525966 
32 0.3990129784448072 
33 0.39901297834003346 
34 0.3990129782876466 
35 0.3990129782614531 
36 0.39901297824835635 
37 0.3990129782549047 
38 0.39901297825817894 
39 0.399012978259816 
40 0.39901297826063453 
41 0.3990129782602253 
42 0.3990129782604299 
43 0.3990129782603276 
44 0.3990129782602765 
45 0.3990129782602509 
46 0.3990129782602637 
47 0.3990129782602573 
48 0.39901297826025406 
49 0.3990129782602525 
50 0.3990129782602517 
tolerance:  1e-15 
The approximate solution is:  0.3990129782602517 
And the error is:  -7.216449660063518e-16 

Observations

1.a) The requirement of Bolzano's Theorem requires the user to first find value a and b that will satisfy the requirement, f(a) * f(b) <

0, meaning each value is on opposite side of the x-axis from the other. This means either analytical intuition is required to have

good guesses as to which values a and b should be; or it would be required to graph the function in order for the function to visually

show where f(a) and f(b) are on varying sides of the x-axis.

1.b) Implementing a function into the user-defined bisection() function required creating a user-defined function, f(x) that could be

used as an input value as one of the arguments (input paramaters). The given function log(x) + x seems simple to write in Python

using Numpy; however, np.log(x) is used to compute ln(x), and np.log10(x) is used to compute log(x). My result was not correct at

first, then I realized the need to specify log base 10, and not simply log, since those have different function calls.

Conclusions

When translating a mathematics equation into a function that can compute approximate results, it's vital to first test the code with a

function that you can compute the result so the code can be tested and verified for its accuracy. Additionally, it's important to

understand the details of the pre-built functions you apply, because it's easy to assume simple things like log(x) is written as

np.log(x), when in reality, it is written np.log10(x).

In order to find the proper intervals of a, b to find all the roots of the function using the Bisection Method; it is possible to find the

turning points of the function by solving f'(x) = 0 and identifying if the function is increasing, decreasing, or neither within the

intervals of those roots found by computing f'(x) = 0.

Question 2

Introduction

The purpose of this problem is create a function that can approximate the roots of a given function by using Newton's Method.

Newton's Method requires finding the derivative of the given function, as well as choosing an arbitrary initial value, x0, to use as the

first input to the function and the derivative function in the context of Newton's Method that continually iterates through the

algorithm, xn+1 = xn - f(xn) / f'(xn), until reaching an approximate solution of the root of the function.

Procedure

Problem 2.a)

For creating and testing this user-defined newtons_method function, I implemnted my own function to test the function before

moving on to 2.b); i.e. f(x) = x^2 - x - 1, where df(x) = 2x - 1. Since there are two roots to this equation, which can be found by

graphing the function, then two separate calls to the function, newtons_method() should be run with the varying intial guesses; -1.0,

and 10.0. The solution for x0 = -1.0 should be -0.618, and the solution for x0 = 10.0 should be 1.618.

Find first root: 

iteration: 1 
approximate solution: -0.6666666666666667 
cuurent output; f(xn): 0.11111111111111116 
error: 0.33333333333333326 

iteration: 2 
approximate solution: -0.6190476190476191 
cuurent output; f(xn): 0.0022675736961450532 
error: 0.04761904761904767 

iteration: 3 
approximate solution: -0.6180344478216819 
cuurent output; f(xn): 1.0265159331446227e-06 
error: 0.0010131712259371373 

iteration: 4 
approximate solution: -0.6180339887499892 
cuurent output; f(xn): 2.1094237467877974e-13 
error: 4.590716927710403e-07 

iteration: 5 
approximate solution: -0.6180339887498948 
cuurent output; f(xn): -1.1102230246251565e-16 
error: 9.43689570931383e-14 

iteration: 6 
approximate solution: -0.6180339887498948 
cuurent output; f(xn): -1.1102230246251565e-16 
error: 0.0

The aproximate solution is:  -0.6180339887498948 
And the error is:  0.0 

--------------------------- 

Find second root: 

iteration: 1 
approximate solution: 5.315789473684211 
cuurent output; f(xn): 21.94182825484765 
error: 4.684210526315789 

iteration: 2 
approximate solution: 3.037676157607132 
cuurent output; f(xn): 5.189800280887697 
error: 2.2781133160770786 

iteration: 3 
approximate solution: 2.015126399764636 
cuurent output; f(xn): 1.0456080072637475 
error: 1.022549757842496 

iteration: 4 
approximate solution: 1.67007003765974 
cuurent output; f(xn): 0.11906389302906528 
error: 0.3450563621048961 

iteration: 5 
approximate solution: 1.619191077769781 
cuurent output; f(xn): 0.002588668559484031 
error: 0.05087895988995883 

iteration: 6 
approximate solution: 1.618034586885024 
cuurent output; f(xn): 1.3374711664848604e-06 
error: 0.001156490884757 

iteration: 7 
approximate solution: 1.6180339887500548 
cuurent output; f(xn): 3.574918139293004e-13 
error: 5.981349693318094e-07 

iteration: 8 
approximate solution: 1.618033988749895 
cuurent output; f(xn): 0.0 
error: 1.5987211554602254e-13 

iteration: 9 
approximate solution: 1.618033988749895 
cuurent output; f(xn): 0.0 
error: 0.0

The aproximate solution is:  1.618033988749895 
And the error is:  0.0 

--------------------------- 

Problem 2.b)

Used provided function, f(x) = log(x) + x, has the derivative function, df(x) = 1/x + 1. After graphing the function, it can be observed

that there is only one root to the function, so only one call to the newtons_method() function should be necessary, assuming x0

does not result in an infinite loop, which is a known error or Newton's Method. When the initial guess is x0 = 0.1 the solution should

be 0.399.

Find root:

iteration: 1 
approximate solution: 0.18181818181818182 
cuurent output; f(xn): -0.558544507676062 
error: 0.08181818181818182 

iteration: 2 
approximate solution: 0.2677481060760375 
cuurent output; f(xn): -0.3045254864037672 
error: 0.08592992425785567 

iteration: 3 
approximate solution: 0.3320638182003216 
cuurent output; f(xn): -0.1467146245150302 
error: 0.06431571212428411 

iteration: 4 
approximate solution: 0.36863760523412037 
cuurent output; f(xn): -0.06476275863966457 
error: 0.036573787033798766 

iteration: 5 
approximate solution: 0.3860812208135691 
cuurent output; f(xn): -0.027240101352557833 
error: 0.017443615579448735 

iteration: 6 
approximate solution: 0.3936687210461369 
cuurent output; f(xn): -0.011200369667107246 
error: 0.007587500232567823 

iteration: 7 
approximate solution: 0.3968324823729925 
cuurent output; f(xn): -0.00456030389794243 
error: 0.0031637613268555853 

iteration: 8 
approximate solution: 0.3981280398138686 
cuurent output; f(xn): -0.001849194539737642 
error: 0.0012955574408760606 

iteration: 9 
approximate solution: 0.39865461261433843 
cuurent output; f(xn): -0.0007485939434544453 
error: 0.00052657280046986 

iteration: 10 
approximate solution: 0.39886798225244763 
cuurent output; f(xn): -0.00030284152586318447 
error: 0.0002133696381091954 

iteration: 11 
approximate solution: 0.39895433335197655 
cuurent output; f(xn): -0.00012248000460340913 
error: 8.635109952892517e-05 

iteration: 12 
approximate solution: 0.39898926224666637 
cuurent output; f(xn): -4.952981037281701e-05 
error: 3.492889468981186e-05 

iteration: 13 
approximate solution: 0.39900338806094754 
cuurent output; f(xn): -2.0028508126990197e-05 
error: 1.4125814281173987e-05 

iteration: 14 
approximate solution: 0.3990091003005809 
cuurent output; f(xn): -8.0988365904755e-06 
error: 5.712239633359761e-06 

iteration: 15 
approximate solution: 0.3990114101565359 
cuurent output; f(xn): -3.274865566726959e-06 
error: 2.3098559550072117e-06 

iteration: 16 
approximate solution: 0.3990123441794598 
cuurent output; f(xn): -1.3242287899006833e-06 
error: 9.340229238929965e-07 

iteration: 17 
approximate solution: 0.3990127218627847 
cuurent output; f(xn): -5.354661872236655e-07 
error: 3.776833248925193e-07 

iteration: 18 
approximate solution: 0.3990128745832121 
cuurent output; f(xn): -2.1652142012662523e-07 
error: 1.5272042741543146e-07 

iteration: 19 
approximate solution: 0.3990129363373502 
cuurent output; f(xn): -8.75527106924956e-08 
error: 6.175413808096053e-08 

iteration: 20 
approximate solution: 0.3990129613082874 
cuurent output; f(xn): -3.54028554250263e-08 
error: 2.4970937206880706e-08 

iteration: 21 
approximate solution: 0.3990129714055478 
cuurent output; f(xn): -1.4315514884621905e-08 
error: 1.0097260416674914e-08 

iteration: 22 
approximate solution: 0.39901297548848075 
cuurent output; f(xn): -5.788628076874858e-09 
error: 4.08293293618911e-09 

iteration: 23 
approximate solution: 0.3990129771394574 
cuurent output; f(xn): -2.3406922511348682e-09 
error: 1.6509766331829212e-09 

iteration: 24 
approximate solution: 0.39901297780704703 
cuurent output; f(xn): -9.464833361505498e-10 
error: 6.675896502272849e-10 

iteration: 25 
approximate solution: 0.3990129780769939 
cuurent output; f(xn): -3.8272046642973123e-10 
error: 2.699468426570206e-10 

iteration: 26 
approximate solution: 0.3990129781861497 
cuurent output; f(xn): -1.5475698500466706e-10 
error: 1.0915585102466707e-10 

iteration: 27 
approximate solution: 0.39901297823028803 
cuurent output; f(xn): -6.257755424954325e-11 
error: 4.413830412275388e-11 

iteration: 28 
approximate solution: 0.3990129782481358 
cuurent output; f(xn): -2.530387011034918e-11 
error: 1.7847778810420323e-11 

iteration: 29 
approximate solution: 0.39901297825535276 
cuurent output; f(xn): -1.0231815394945443e-11 
error: 7.216949260424599e-12 

iteration: 30 
approximate solution: 0.399012978258271 
cuurent output; f(xn): -4.137357123568108e-12 
error: 2.918221220227224e-12 

iteration: 31 
approximate solution: 0.399012978259451 
cuurent output; f(xn): -1.6729950758076484e-12 
error: 1.1800005417228476e-12 

iteration: 32 
approximate solution: 0.39901297825992815 
cuurent output; f(xn): -6.764588889041079e-13 
error: 4.771738559838923e-13 

iteration: 33 
approximate solution: 0.3990129782601211 
cuurent output; f(xn): -2.735034421164073e-13 
error: 1.929567616798522e-13 

iteration: 34 
approximate solution: 0.3990129782601991 
cuurent output; f(xn): -1.1063372440389685e-13 
error: 7.799316747991725e-14 

iteration: 35 
approximate solution: 0.39901297826023063 
cuurent output; f(xn): -4.4797499043625066e-14 
error: 3.1530333899354446e-14 

iteration: 36 
approximate solution: 0.3990129782602434 
cuurent output; f(xn): -1.8096635301390052e-14 
error: 1.27675647831893e-14 

iteration: 37 
approximate solution: 0.39901297826024856 
cuurent output; f(xn): -7.327471962526033e-15 
error: 5.162537064506978e-15 

iteration: 38 
approximate solution: 0.3990129782602507 
cuurent output; f(xn): -2.942091015256665e-15 
error: 2.1094237467877974e-15 

iteration: 39 
approximate solution: 0.3990129782602515 
cuurent output; f(xn): -1.1657341758564144e-15 
error: 8.326672684688674e-16 

The aproximate solution is:  0.3990129782602515 
And the error is:  8.326672684688674e-16 

--------------------------- 

Observations

Since Newton's Method is capable of finding a root regardless of the arbitrary initial guess value (x0), any value can be chosen, so

long as it does not cause an infinite loop error; however, if there are multiple roots, then the function must be called for every root

with a value near the root that will result in the approximation of that root. This may require graphing the function and observing

where the roots should be, then using a guess, x0, near that observed root.

Conclusions

Newton's Method is easier to implement than the Bisection Method, in regards to the fact that the intial guess value, x0, can be

arbitrary, so long as it does not cause an infinite loop. This process of finding proper a and b values for the interval of the Bisection

Method can require much more work to verify Bolzano's Theorem before proceeding.

The main difficulty in Newton's Method is the requirement to compute the derivative of f(x) beforehand; however it is possible to

right a function (problem 5) that can compute an aproximation of the derivative at a give location, x.

Question 3

Introduction

The purpose of this problem is to create a function that can approximate the roots of a given function by using the Bisection Method.

The Bisection Method requires the use of Bolzano's Theorem.

Procedure

Problem 3.a)

The intervals of monotonicity of the function can be observed from the graph and identifying where the function increases and

decreases. A more precise way to find the intervals of monotonicity is to find the turning points of the function by finding the roots of

the derivative of the function, i.e. f'(x) = 0. The roots of f'(x) are located at; 0.691, 1.809, and there is a vertical asymptote at 0.0.

Intervals of Monotonicity: (-inf, 0): increasing

(0.0, 0.691): decreasing

(0.691, 1.809): increasing

(1.809, inf): decreasing

The roots of the given equation are located at within each of these intervals:

The first root is -0.3 which is within the interval (-inf, 0).

The second root is 0.425 which is within the interval (0.0, 0.691).

The third root is 1.0 which is within the interval (0.691, 1.809).

The fourth root is 4.099 which is within the interval (1.809, inf).

[-3.09922871 -3.09709301 -3.09495284 ... -0.78540862 -0.78634838 
 -0.78728727] 
[<matplotlib.lines.Line2D at 0x1f8bc03a6a0>]

Problem 3.b)

f(x) = arctan(2(x-1)) - ln|x|

f'(x) = (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5))

Find the roots of f'(x) = 0 to find the points of inflection points. To do this find where the numerator of f'(x) equals 0:

-4x^2 + 10x - 5 = 0

The equation is quadratic, so use the quadratic formula to solve.

f'(x) = 0 at x = 0.691 and 1.809

The denominator generates a vertical asymptote; so, we must find where the denominator of f'(x) equals zero, to know where the

vertical asymptote is.

x(4x^2 - 8x + 5) = 0

The denominator of f'(x) equals 0 at x = 0.0

Now Bolzano's Theorem can be implemented to prove the existence of the roots by plugging in these inflection point values (or very

near values for -inf and inf) as the a and b values in the equation f(a) * f(b) < 0 to prove the existence (or non-existence) of each real

root within the respective interval.

Check Bolzano's Theorem for first interval, (-inf, 0.0):

f(-1000000000) = negative

f(-0.00000001) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval (-inf, 0.0).

Check Bolzano's Theorem for second interval, (0.0, 0.691]:

f(0.00000001) = positive

f(0.691) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval (0.0, 0.691].

Check Bolzano's Theorem for third interval, [0.691, 1.809]:

f(0.691) = negative

f(1.809) = positive

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

Check Bolzano's Theorem for fourth interval, [1.809, inf):

f(1.809) = positive

f(1000000000) = negative

Since f(a) * f(b) < 0, then there is a real root within the interval [0.691, 1.809].

This proves that the function, f(x) = arctan(2(x-1)) - ln|x|, has exactly for real roots for its entire domain, (-inf, inf).

Problem 3.c) -> Part 1

For this problem you can simply use the code from problem 1. The main alteration I made was creating a list of inputs for both the a

and b values, which can be iterated through a for loop the to compute each interval's respective outcome.

The implementation of this code with the provided function can be solved resulting in an error of 0.0, when the error tolerance is set

to a very small value. This means when the approximate solution is plugged into f(x) the result is 0.0. This returns a failure warning

that checks Bolzano's Theorem, despite the approximation being accurate. I added an additional statement to the Bolzano's

Theorem check for failure statement to inform the user, when this check fails, the result is still accurate when the error is 0.0.

Error Tolerance:  1e-15 

Find root 1 
1 -0.325 
2 -0.2875 
3 -0.30625
4 -0.296875 
5 -0.3015625 
6 -0.29921875 
7 -0.300390625 
8 -0.2998046875 
9 -0.30009765625 
10 -0.299951171875 
11 -0.3000244140625 
12 -0.30006103515625004 
13 -0.300079345703125 
14 -0.3000885009765625 
15 -0.30009307861328127 
16 -0.30009536743164067 
17 -0.3000965118408203 
18 -0.30009708404541013 
19 -0.3000973701477051 
20 -0.3000975131988526 
21 -0.30009758472442627 
22 -0.3000975489616394 
23 -0.30009756684303285 
24 -0.30009755790233617 
25 -0.3000975623726845 
26 -0.30009756460785864 
27 -0.30009756572544577 
28 -0.30009756628423934 
29 -0.30009756600484255 
30 -0.30009756586514413 
31 -0.30009756593499337 
32 -0.300097565969918 
33 -0.30009756598738024 
34 -0.30009756599611137 
35 -0.300097566000477 
36 -0.3000975659982942 
37 -0.3000975659972028 
38 -0.30009756599665705 
39 -0.30009756599692994 
40 -0.3000975659970664 
41 -0.30009756599699816 
42 -0.3000975659970323 
43 -0.30009756599704934 
44 -0.30009756599705784 
45 -0.3000975659970621 
46 -0.30009756599705995 
47 -0.30009756599706106 
48 -0.3000975659970605 
The aproximate solution when a is -0.4 and b is -0.25: -0.3000975659970605 
error: 6.661338147750939e-16 

Find root 2 
1 0.52 
2 0.445 
3 0.4075 
4 0.42625 
5 0.416875
6 0.4215625 
7 0.42390625000000004 
8 0.42507812500000003 
9 0.4256640625 
10 0.42537109375000004 
11 0.425517578125 
12 0.42544433593750003 
13 0.42540771484375006 
14 0.425426025390625 
15 0.42541687011718754 
16 0.4254122924804688 
17 0.42541000366210946 
18 0.4254111480712891 
19 0.4254117202758789 
20 0.425411434173584 
21 0.42541157722473144 
22 0.42541150569915775 
23 0.4254115414619446 
24 0.425411559343338 
25 0.4254115682840347 
26 0.42541157275438307 
27 0.4254115749895573 
28 0.42541157387197015 
29 0.4254115744307637 
30 0.42541157415136693 
31 0.4254115740116685 
32 0.42541157394181933 
33 0.42541157390689477 
34 0.425411573924357 
35 0.4254115739156259 
36 0.42541157391999146 
37 0.4254115739178087 
38 0.42541157391890005 
39 0.4254115739183544 
40 0.4254115739186272 
41 0.4254115739187636 
42 0.42541157391869544 
43 0.42541157391866136 
44 0.42541157391864426 
45 0.4254115739186528 
46 0.4254115739186571 
failure: did not pass Bolzano's Theorem this iteration. 
Thus, the bisection process cannot procceed any further. 
However, if the error is 0.0, then the solution is accurate. 
The aproximate solution when a is 0.37 and b is 0.67: 0.4254115739186549 
error: 0.0

Find root 3 
1 0.96 
2 1.08 
3 1.02 
4 0.99 
5 1.005 
6 0.9974999999999999 
7 1.00125 
8 0.9993749999999999 
9 1.0003125 
10 0.9998437499999999 
11 1.000078125 
12 0.9999609374999999 
13 1.00001953125 
14 0.999990234375 
15 1.0000048828125 
16 0.9999975585937501 
17 1.000001220703125 
18 0.9999993896484376 
19 1.0000003051757813 
20 0.9999998474121095 
21 1.0000000762939454 
22 0.9999999618530274 
23 1.0000000190734863 
24 0.9999999904632568 
25 1.0000000047683715 
26 0.9999999976158142 
27 1.0000000011920929 
28 0.9999999994039535 
29 1.0000000002980232 
30 0.9999999998509883 
31 1.0000000000745057 
32 0.999999999962747 
33 1.0000000000186264 
34 0.9999999999906868 
35 1.0000000000046567 
36 0.9999999999976718 
37 1.0000000000011642 
38 0.999999999999418 
39 1.000000000000291 
40 0.9999999999998546 
41 1.0000000000000728 
42 0.9999999999999637 
43 1.0000000000000182 
44 0.9999999999999909 
45 1.0000000000000044 
46 0.9999999999999977 
47 1.000000000000001 
48 0.9999999999999993 
49 1.0000000000000002 
The aproximate solution when a is 0.72 and b is 1.2: 1.0000000000000002 
error: 2.220446049250313e-16 

Find root 4 
1 4.0
2 4.5
3 4.25 
4 4.125 
5 4.0625 
6 4.09375 
7 4.109375
8 4.1015625 
9 4.09765625 
10 4.099609375 
11 4.0986328125 
12 4.09912109375 
13 4.099365234375 
14 4.0994873046875 
15 4.09942626953125 
16 4.099456787109375 
17 4.0994720458984375 
18 4.099464416503906 
19 4.099460601806641 
20 4.099462509155273 
21 4.09946346282959 
22 4.099462985992432 
23 4.0994627475738525 
24 4.099462866783142 
25 4.099462926387787 
26 4.0994628965854645 
27 4.099462881684303 
28 4.099462889134884 
29 4.099462885409594 
30 4.099462887272239 
31 4.099462888203561 
32 4.0994628877379 
33 4.099462887505069 
34 4.099462887621485 
35 4.099462887563277 
36 4.099462887592381 
37 4.099462887577829 
38 4.099462887570553 
39 4.099462887574191 
40 4.09946288757601 
41 4.0994628875751005 
42 4.099462887574646 
43 4.099462887574418 
44 4.099462887574532 
45 4.099462887574589 
46 4.0994628875745605 
47 4.099462887574575 
48 4.099462887574568 
49 4.099462887574571 
50 4.099462887574569 
failure: did not pass Bolzano's Theorem this iteration. 
Thus, the bisection process cannot procceed any further. 
However, if the error is 0.0, then the solution is accurate. 
The aproximate solution when a is 3.0 and b is 5.0: 4.09946288757457 
error: 0.0

Problem 3.c) -> Part 2

For this problem you can simply use the code from problem 2. The main alteration I made was creating a list of inputs for both the

x0 values (initial guesses), which can be iterated through a for loop the to compute each initial guesses respective outcome.

Find root 1 
1 -0.29943791713132906 
2 -0.30009687158682735 
3 -0.3000975659962917 
4 -0.3000975659970607 
5 -0.30009756599706067 
The aproximate solution when x0 is -0.28: -0.30009756599706067 
And the error when x0 is -0.28: 0.0 

Find root 2 
1 0.38584937885873893 
2 0.4219665127718015 
3 0.42538302020863666 
4 0.4254115719383915 
5 0.425411573918655 
6 0.425411573918655 
The aproximate solution when x0 is 0.28: 0.425411573918655 
And the error when x0 is 0.28: 0.0 

Find root 3 
1 1.0458375932853365 
2 1.0004682627967574 
3 1.0000001089681934 
4 1.000000000000006 
5 1.0
6 1.0
The aproximate solution when x0 is 0.85: 1.0 
And the error when x0 is 0.85: 0.0 

Find root 4 
1 4.163775202620497 
2 4.099164504212785 
3 4.099462881215324 
4 4.09946288757457 
5 4.09946288757457 
The aproximate solution when x0 is 2.5: 4.09946288757457 
And the error when x0 is 2.5: 0.0 

Problem 3.d -> Part 1 - bisect()

For this problem I simply computed the results using Scipy's bisect method to find the roots within the various intervals of a and b,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.3000975659972027 
root 2: 0.42541157391890017 
root 3: 0.9999999999994179 
root 4: 4.09946288757601 

----------runtime test---------- 
4.757552600000054 

Problem 3.d -> Part 2 - optimize()

For this problem I simply computed the results using Scipy's optimize method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756599706067 
root 2: 0.42541157391865486 
root 3: 1.0 
root 4: 4.09946288757457 

----------runtime test---------- 
4.678617400000803 

Problem 3.d -> Part 3 - fsolve()

For this problem I simply computed the results using Scipy's fsolve method to find the roots within the various initial guesses, x0,

then computed the runtime of the entire program using the module timeit's timeit method.

root 1: -0.30009756590387787 
root 2: 0.4254115739327119 
root 3: 1.0 
root 4: 4.099462887264225 

----------runtime test---------- 
4.79018250000081 

3.e)

For this problem, I applied my newtons_method() function to the provided initial guess input values; x0 = −1, 0.65, 0.7, 1.7, 1.8, 1.9,

5 and 10.

1 0.18625790959771327 
2 0.32333174127292197 
3 0.40489536009754024 
4 0.42444306850401514 
5 0.42540930166308594 
6 0.42541157390611367 
7 0.42541157391865503 
The aproximate solution when x0 = -1 is 0.42541157391865503 
And the error is:  1.1102230246251565e-16 

---------------------- 

1 -0.26723601197582225 
2 -0.2983058421881353 
3 -0.3000924361579916 
4 -0.3000975659550975 
5 -0.30009756599706067 
The aproximate solution when x0 = 0.65 is -0.30009756599706067 
And the error is:  0.0 

---------------------- 

1 5.07312044069807 
2 4.026066908607294 
3 4.099082932370794 
4 4.099462877263223 
5 4.099462887574569 
The aproximate solution when x0 = 0.7 is 4.099462887574569 
And the error is:  2.220446049250313e-16 

---------------------- 

1 -3.1023416900488945 
2 4.2400308953863135 
3 4.098022322980367 
4 4.099462739376932 
5 4.099462887574569 
The aproximate solution when x0 = 1.7 is 4.099462887574569 
And the error is:  2.220446049250313e-16 

---------------------- 

1 -66.19053751718572 
2 312.0226371469949 
3 -992.4283679087605 
4 7409.659796581593 
5 -46979.513588870584 
6 532189.6326290627 
7 -5648645.157658825 
8 91043286.69233719 
9 -1434482522.6664178 
10 31063527278.608936 
11 -670615079341.7915 
12 18644613108407.395 
13 -521784078898162.7 
14 1.7980194779561138e+16 
15 -6.267401612054683e+17 
16 2.6041119355702526e+19 
17 -1.0972532968874861e+21 
18 5.378504506713788e+22 
19 -2.676800266836948e+24 
20 1.5208899398842158e+26 
21 -8.777924536066726e+27 
22 5.697999567988671e+29 
23 -3.7575051616091404e+31 
24 2.753300237332616e+33 
25 -2.049207358499665e+35 
26 1.6778649119590494e+37 
27 -1.3950167238963468e+39 
28 1.2653432422633566e+41 
29 -1.1650083042413605e+43 
30 1.1619173454572426e+45 
31 -1.1758092801612648e+47 
32 1.2810942103451736e+49 
33 -1.4156550654590266e+51 
34 1.675431003854235e+53 
35 -2.0102203861028106e+55 
36 2.5712974366819213e+57 
37 -3.3329405397651787e+59 
38 4.5870318017464306e+61 
39 -6.394786883025636e+63 
40 9.431616197429248e+65 
41 -1.408529844668014e+68 
42 2.2182813861499023e+70 
43 -3.536093434072386e+72 
44 5.927197890219802e+74 
45 -1.0052530711360883e+77 
46 1.7880947829882362e+79 
47 -3.2170431599100052e+81 
48 6.056040367465298e+83 
49 -1.1527359292432665e+86 
50 2.2908926597558065e+88 
The function did not converge for this input value of x0. 
The approximation is very likely innacurate. See error value. 
The aproximate solution when x0 = 1.8 is 2.2908926597558065e+88 
And the error is:  201.8856334060456 

---------------------- 

1 9.623578977886847 
2 1.8946218648712536 
3 10.047434805181645 
4 1.5741435011056204 
5 -0.18801123753099347 
6 -0.27677362618235685 
7 -0.2992056083077888 
8 -0.30009629601948956 
9 -0.30009756599448884 
10 -0.30009756599706067 
The aproximate solution when x0 = 1.9 is -0.30009756599706067 
And the error is:  0.0 

---------------------- 

1 4.036838389810206 
2 4.099185732275161 
3 4.099462882087958 
4 4.09946288757457 
The aproximate solution when x0 = 5.0 is 4.09946288757457 
And the error is:  0.0 

---------------------- 

1 1.6108733370629 
2 -0.6367071381318539 
3 -0.1641496447105832 
4 -0.26438493904265614 
5 -0.2979738083407931 
6 -0.30009035592935795 
7 -0.30009756591416337 
8 -0.30009756599706067 
The aproximate solution when x0 = 10.0 is -0.30009756599706067 
And the error is:  0.0 

---------------------- 

Observations

3.a) a vertical asymptote will generate an inflection point, as well where f'(x) = 0.

3.b) Bolzano's Theorem can be used to prove how many real roots an equation has when using the inflection points to generate

intervals for the corresponding a and b values to test f(a) * f(b) < 0.

3.c) Newton's Method solved the approximation of the roots with many less iterations than the Bisection Method.

3.d) In regards to the speed of Scipy's methods, bisect was the fastest, optimize was the second fastest, and fsolve was the third

fastest. Since the input of the bisect() method is an interval, [a, b], instead of one value, x0, these results may vary depending on

the values of [a, b] and x0; however, optimize and fsolve both use x0 as input, so these runtime speed test results should be

accurate, since I used the same values for x0 in each implementation.

3.e) The initial guess value, x0 = 5.0 did not result in a converging sequence that could find the approximation of one of the roots of

the function f(x).

Conclusions

There are trade-offs between using the Bisection Method versus using Newton's Method. For the bisection method, Bolzano's

Theorem has to first checked and return true, which there are methods to find the proper intervals for each root, such as find the

inflection points of the function. For Newton's Method, the derivative of the function must be found in order to implement the

algorithm. Since the derivative of a function can be found (problem 5), it seems that Newton's Method is a more efficient algorithm

to implement than the Bisection Method, as there are many more steps involved in the bisection method, which adds complexity to

the algorithm. Newton's Method also found the roots of the function with many less iterations than the Bisection Method.

Question 4

Introduction

The purpose of this problem is to combine both methods, the Bisection Method and Newton's Method, to create another algorithm

that can solve for the roots of a given function.

Procedure

Problem 4.a)

The purpose of this problem is to combine the Bisection Method with Newton's Method to generate a more efficient function that

finds the root/s of a given function. In order to test for convergence, I checked if the current error was less than the previous error. If

the error was decreasing, then it was converging; increasing, then it way diverging; and not changing, then it was inconclusive.

Problem 4.b)

The purpose of this problem is to implement the findzero() function created in problem 4.a) by using the given function arctan(2(x-

1)) - ln|x| as the f(x). The function requires finding the derivative function of f(x), which is (-4x^2 + 10x - 5) / (x(4x^2 - 8x + 5)).

Find root  1 
real root is between interval [a, b] 
1 -0.30009755081591794 
2 -0.3000975659970603 
3 -0.30009756599706067 
converges 
The root approximation when a is  -0.4 and b is  -0.2 :  -0.30009756599706067 
error: 3.885780586188048e-16 
iteration count:  3 

Find root  2 
real root is between interval [a, b] 
1 0.407749017162497 
2 0.42468862350772174 
3 0.4254103069422888 
4 0.4254115739147558 
5 0.425411573918655 
6 0.425411573918655 
converges 
The root approximation when a is  0.4 and b is  0.6 :  0.425411573918655 
error: 0.0
iteration count:  6 

Find root  3 
real root is between interval [a, b] 
1 1.0
not enough iterations to test for convergence or divergence 
The root approximation when a is  0.6 and b is  2.2 :  1.0 
error: 0.0
iteration count:  1 

Find root  4 
real root is between interval [a, b] 
1 4.077791560995681 
2 4.099429460813845 
3 4.099462887494759 
4 4.09946288757457 
5 4.09946288757457 
converges 
The root approximation when a is  2.0 and b is  5.0 :  4.09946288757457 
error: 0.0
iteration count:  5 

Observations

The findzero() function solves the approximation of a root of a function in many less iterations than the Bisection Method or

Newton's Method. Additionally, the findzero() function's algorithm that utilises both the Bisection Method and Newton's Method

generates an extremely accurate result, i.e. notice the error values are very low or 0.0.

Conclusions

It is possible to combine different aspects of various methods in order to create a more efficient algorithm that is potentially capable

of also being more accurate.

Question 5

Introduction

The purpose of this problem is...

Procedure

Problem 5.a)

The purpose of this problem is to use Taylor expansion to demonstrate how imaginary numbers in combination with a very small

value of h can solve the derivative of a function at a given input value, x0.

f(x) = f(x0) + f'(x0)/1! (x-x0)^1 + f''(x0)/2! (x-x0)^2 + f'''(x0)/3! (x-x0)^3 + f''''(x0)/4! (x-x0)^4 + ...

x-x0 = ih x = x0 + ih

f(x0 + ih) = f(x0) + f'(x0)/1! (ih)^1 + f''(x0)/2! (ih)^2 + f'''(x0)/3! (ih)^3 + f''''(x0)/4! (ih)^4 + ...

i = i i^2 = -1 i^3 = i i^2 = -i i^4 = i^2 i^2 = 1 i^5 = i * i^4 = i ...

f(x0 + ih) = f(x0) + f'(x0)/1! i h + f''(x0)/2! -1 h^2 + f'''(x0)/3! -i h^3 + f''''(x0)/4! 1 h^4 + ...

Now, separate imaginary and real parts:

f(x0 + ih) = [f(x0) + f''(x0)/2! -1 h^2 + f''''(x0)/4! 1 h^4] + [f'(x0)/1! i h + f'''(x0)/3! -i h^3]

Factor out the i from the imaginary part and simplify:

f(x0 + ih) = [f(x0) + f''(x0)/2! -h^2 + f''''(x0)/4! h^4] + i[f'(x0) h + f'''(x0)/3! -h^3]

Im[f(x0 + ih)] = hf'(x0) - h^3/3! f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + h^2/3! * f'''(x0) + ...

f'(x0) = Im[f(x0 + ih)]/h + O(h^2)

Problem 5.b)

The purpose of this problem is to implement the same code form problem 4, with the addition of altering the df(x) function to find the

derivative with the provided formula; instead of explicitly writing the specific derivative function for the corresponding f(x) function.

This enables the code to be much easier to modify, since the user won't have to solve the derivative and input it into the df(x)

function before running the program.

Find root  1 
real root is between interval [a, b] 
1 -0.30009755081591794 
2 -0.3000975659970603 
3 -0.30009756599706067 
The root approximation when a is -0.4 and b is-0.2: -0.30009756599706067 
error: 3.885780586188048e-16 
iteration count: 3 

Find root  2 
real root is between interval [a, b] 
1 0.407749017162497 
2 0.42468862350772174 
3 0.4254103069422888 
4 0.4254115739147558 
5 0.425411573918655 
6 0.425411573918655 
The root approximation when a is 0.4 and b is0.6: 0.425411573918655 
error: 0.0
iteration count: 6 

Find root  3 
real root is between interval [a, b] 
1 1.0
The root approximation when a is 0.7 and b is1.9: 1.0 
error: 0.0
iteration count: 1 

Find root  4 
real root is between interval [a, b] 
1 4.099462866966103 
2 4.09946288757457 
3 4.09946288757457 
The root approximation when a is 3.9 and b is4.3: 4.09946288757457 
error: 0.0
iteration count: 3 

Problem 5.c)

The purpose of this problem is to calculate the rate of convergence of the newtons_method() function created in problem 3, as it

attempts to find the root/s of the given function, x(e^(x/2) + 1). If r is greater than 1, then the algorithm is converging. If r is less than

1, then the algorithm is diverging. I utilised the df(x) function from 5.b) as opposed to computing the derivative of f(x). I also added h

as a parameter to newtons_method() function as well as df(), so that I could generate varying outputs of the convergence rate,

based on varying values of h.

Find root  1 
real root is between interval [a, b] 
convergence rate:  inf 
4 -0.30009756599706067 
The root approximation when a is -0.4 and b is -0.2 : -0.30009756599706067 
error: 0.0
iteration count:  4 

Find root  2 
real root is between interval [a, b] 
convergence rate:  inf 
6 0.425411573918655 
The root approximation when a is 0.4 and b is 0.6 : 0.425411573918655 
error: 0.0
iteration count:  6 

Find root  3 
real root is between interval [a, b] 
The algorithm requires at least 3 iterations to compute the convergence rate. 
The root approximation when a is 0.7 and b is 1.9 : 1.0 
error: 0.0
iteration count:  1 

Find root  4 
real root is between interval [a, b] 
convergence rate:  inf 
3 4.09946288757457 
The root approximation when a is 3.9 and b is 4.3 : 4.09946288757457 
error: 0.0
iteration count:  3 

C:\Users\User\AppData\Local\Temp\ipykernel_26388\3135666090.py:51: RuntimeWarning: divide by zero encounter
ed in log10 
  r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1)))) 

Observations

5.a) If the exponent of the ih term is odd, then it will become a part of the imaginary section of the equation, and if the exponent of ih

is even, the it will become a part of the real section of the equation.

5.b) The results are exactly the same as 4.b), when h is an extremely small value, i.e. 1.e-32; however the accuracy for computing

the derivative deminishes the larger the value of h is; in addition to requiring more iterations to solve the for the root of the given

function.

5.c) Newton's Method is known to have a convergence rate of 2, so I first tested the convergence rate algorithm on

newtons_method() and it worked properly. So, I then implemented the same code into the findzero() function that combines both the

Bisection Method with Newton's Method.

When the values of h increase the convergence rate decreases. Once the convergence rate goes below 1, the algorithm is

incapable of finding the root, even with an infinite nmax value, due to the algorithm diverging.

The convergence rate for the findzero() method returned an infinity value due to the fact that the algorithm returned a final error of

0.0. This likely means the algorithm converges exponentially with every iteration, making it far more accurate and efficient than

either the Bisection Method or Newton's Method on their own.

Conclusions

Utilising the formula to solve for the derivative of f(x) at give x input is a very useful way of simplifying the amount of work a user

must do to use a function, preventing them from solving a derivative on their own. However, the value of h is intended to reach the

limit of 0, but using the value 0.0 exactly would create a division by zero error. This means we must use a positive value that is

extremely close to 0, but not quite zero, if we intend to have the most accurate results. Hence, 1.e-32 generating the most accurate

outcome in problem 5.c). The ability to combine various methods to create a more efficient algorithm has proven to be exponentially

faster to compute.

In [30]: import numpy as np 
 
def bisection(f, a, b, tolerance, nmax = 100): 
    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values 
        while (abs(b-a) > tolerance and iteration < nmax): # loop while interval is greater than  
            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b]  
            print("x: ", x) 
            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x) 
                b = x  # assign b to x if a is on the same side of x-axis as f(x) 
                print("set b = x") 
            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x) 
                a = x  # assign a to x if b is on the same side of x-axis as f(x) 
                print("set a = x") 
            else:   # bisection method only works when Bolzaono's Theorem returns true 
                print ("failure: did not pass Bolzaon's Theorem this iteration")  
                print("Thus, the bisection process cannot proceed any further.") 
                break
            print(iteration, x) # prints the iteration number and it's corresponding x value 
                                # the last iteration will be the final result that is returned 
            if (iteration >= nmax): 
                print("Failure: Maximum iterations reached before solving within the error tolerance thresh
                print('''Approximation may not be accurate. Try increasing the max iterations value, or  
                  possibly increasing the error tolerance value.''') 
            return x   # returns the midpoint of the final interval as an approximation of the root 
    else: 
        print("failure: Does not meet Bolzano's Theorem requirement") 

In [33]: import numpy as np 
 
def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6 
    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values 
        while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than  
            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b]  
            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x) 
                b = x  # assign b to x if a is on the same side of x-axis as f(x) 
            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x) 
                a = x  # assign a to x if b is on the same side of x-axis as f(x) 
            else:  # bisection method only works when Bolzaono's Theorem returns true 
                print ("failure: did not pass Bolzaon's Theorem this iteration")  
                print("Thus, the bisection process cannot proceed any further.") 
                break
            print(iteration, x) # prints the iteration number and it's corresponding x value 
                                # the last iteration will be the final result that is returned 
        if (iteration >= nmax): 
            print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
            print('''Approximation may not be accurate. Try increasing the max iterations value, or  
                  possibly increasing the error tolerance value.''') 
        return x   # returns the midpoint of the final interval as an approximation of the root 
    else: 
        print("failure: Does not meet Bolzano's Theorem requirement") 
#test function with given equation log(x) + x = 0 in the interval [0.1, 1] 
def f(x):    # create function log(x) + x 
    return np.log10(x) + x 
     
 
a = 0.1 
b = 1.0 
tol = 1.e-15 
max_iterations = 100 
x = bisection(f, a, b, tol, max_iterations) # assign return value of bisection() to x 
print("tolerance: ", tol) 
print("The approximate solution is: ", x)
print("And the error is: ", f(x)) 

In [63]: # use test function: f(x) = x^2 - x - 1 
# initial guesses; -1.0, 10.0 
def newtons_method(g, x0, tol = 1.e-15, nmax = 100): 
    err = 1.0 
    iteration = 0 
     
    xk = x0 
    while (err > tol and iteration < nmax): 
        iteration = iteration + 1 
        err = xk 
        xk = g(xk) 
        err = abs(err - xk) 
        print("iteration:",iteration) 
        print("approximate solution:", xk) 
        print("cuurent output; f(xn):", f(xk)) 
        print("error:", err) 
        print() 
    if (iteration >= nmax): 
        print("Failure: Maximum iterations reached before solving within the error tolerance threshold.") 
        print('''Approximation may not be accurate. Try increasing the max iterations value, or  
                  possibly increasing the error tolerance value.''') 
    return xk, err 
 
def f(x):  # implement whatever f(x) function here 
    return x**2-x-1.0  
 
def df(x):  # implement the derivative of the f(x) function here 
    return 2*x - 1 
     
def g(x):   # Newton's Method 
    return x - (f(x) / df(x)) 
     
 
tol = 1.e-15  # tolerance determines the accuracy of the approximation 
max_iterations = 100 
 
print("Find first root:\n") 
x0 = -1.0    # initial guess 
x = newtons_method(g, x0, tol, max_iterations) 
print('The aproximate solution is: ', x[0]) 
print('And the error is: ', x[1]) 
print() 
print("---------------------------") 
print() 
print() 
 
print("Find second root:\n") 
x0 = 10.0    # initial guess 
x = newtons_method(g, x0, tol, max_iterations) 
print('The aproximate solution is: ', x[0]) 
print('And the error is: ', x[1]) 
print() 
print("---------------------------") 
print() 
print() 

In [35]: # use given f(x) = log(x) + x 
# initial guess is 0.1 
def newtons_method(g, x0, tol = 1.e-15, nmax = 100): 
    err = 1.0 
    iteration = 0 
     
    xk = x0 
    while (err > tol and iteration < nmax): 
        iteration = iteration + 1 
        err = xk 
        xk = g(xk) 
        err = abs(err - xk) 
        print("iteration:",iteration) 
        print("approximate solution:", xk) 
        print("cuurent output; f(xn):", f(xk)) 
        print("error:", err) 
        print() 
    if (iteration >= nmax): 
        print("Failure: Maximum iterations reached before solving within the error tolerance threshold.") 
        print('''Approximation may not be accurate. Try increasing the max iterations value, or  
                  possibly increasing the error tolerance value.''') 
    return xk, err 
 
def f(x): 
    return np.log10(x) + x 
 
def df(x): 
    return 1.0/x + 1 
     
 
def g(x): # Newton's Method 
    return x - (f(x) / df(x)) 
     
 
tol = 1.e-15  # tolerance determines the accuracy of the approximation 
max_iterations = 100 
 
print("Find root:\n") 
x0 = 0.1    # initial guess 
x = newtons_method(g, x0, tol, max_iterations) 
print('The aproximate solution is: ', x[0]) 
print('And the error is: ', x[1]) 
print() 
print("---------------------------") 
print() 
print() 

In [31]: import numpy as np 
import matplotlib.pyplot as plt 
 
x = np.arange(-5.01, 10.01, 0.01) 
y = np.arange(-5.01, 10.01, 0.01) 
 
def f(x): 
    return np.arctan(2 * (x - 1)) - np.log(abs(x))   
 
for i in range(len(x)): 
    y[i] = f(x[i]) 
 
print(y) 
 
plt.figure(num = 0, dpi = 120) 
plt.plot(x, y) 

Out[31]:

In [36]: import numpy as np 
 
def bisection(f, a, b, tolerance = 1.e-6, nmax = 100): # define bisection prototype; tolerance default 1e-6 
    iteration = 0;    # this is a counter
    if (f(a) * f(b) < 0.0):     # check Bolzano's Theorem; outputs are opposite sign values 
        while ((b-a) > tolerance and iteration < nmax): # loop while interval is greater than  
            iteration = iteration + 1  #increment iteration          #tolerance and within iteration limit  
            x = (a + b) / 2.0               # set x to be midpoint of current interval [a,b]  
            if (f(a) * f(x) < 0.0):  # check if f(a) is on same side of x-axis as f(x) 
                b = x  # assign b to x if a is on the same side of x-axis as f(x) 
            elif (f(b) * f(x) < 0.0): # check if f(b) is on same side of x-axis as f(x) 
                a = x  # assign a to x if b is on the same side of x-axis as f(x) 
            else: 
                print ("failure: did not pass Bolzano's Theorem this iteration.") # bisection method only w
                print("Thus, the bisection process cannot procceed any further.") 
                print("However, if the error is 0.0, then the solution is accurate.") 
                break
            print(iteration, x) # prints the iteration number and it's corresponding x value 
                                # the last iteration will be the final result that is returned 
        if (iteration >= nmax): 
            print("Failure: Maximum iterations reached before solving within the error tolerance threshold.
            print('''Approximation may not be accurate. Try increasing the max iterations value, or  
                  possibly increasing the error tolerance value.''') 
        return x   # returns the midpoint of the final interval as an approximation of the root 
    else: 
        print("failure: Does not meet Bolzano's Theorem requirement") 
#test function with given equation log(x) + x = 0 in the interval [0.1, 1] 
def f(x):    # create function log(x) + x 
    return np.arctan(2 * (x - 1)) - np.log(abs(x))   
     
 
list_a = [-0.4, 0.37, 0.72, 3.0] 
list_b = [-0.25, 0.67, 1.2, 5.0] 
 
tol = 1.e-15 
max_iterations = 100 
 
print("Error Tolerance: ", tol) 
print() 
for i in range(len(list_a)): 
    print("Find root " + str(i+1)) 
    x = bisection(f, list_a[i], list_b[i], tol, max_iterations) # assign return value of bisection() to x 
    print("The aproximate solution when a is", list_a[i], "and b is " + str(list_b[i]) +": "+str(x)) 
    print("error: "+str(f(x))) 
    print() 

In [42]: # the guess can't be 0.0 since df is 1/x 
def newtons_method(g, x0, tol = 1.e-6, nmax = 100): 
    err = 1.0 
    iteration = 0 
 
     
    xk = x0 
    while (err > tol and iteration < nmax): 
        iteration = iteration + 1 
        err = xk 
        xk = g(xk) 
        err = abs(err - xk) 
        print(iteration, xk) 
    return xk 
 
 
 
def f(x): 
    return np.arctan(2*(x-1)) - np.log(abs(x)) 
 
def df(x): 
    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))  
     
 
def g(x): 
    return x - (f(x) / df(x)) 
     
 
tolerance = 1.e-15  # tolerance determines the accuracy of the approximation 
max_iterations = 100 
# x0 = -0.28    # initial guess 
x0 = [-0.28, 0.28, 0.85, 2.5] 
 
for i in range(len(x0)): 
    print("Find root " + str(i+1)) 
    x = newtons_method(g, x0[i], tolerance, max_iterations) 
    print("The aproximate solution when x0 is " + str(x0[i]) + ": "+str(x)) 
    print("And the error when x0 is " + str(x0[i]) + ": "+str(f(x))) 
    print() 

In [48]: # applied scipy.optimize.bisect -> arctan(2(x − 1)) − ln |x|. 
import numpy as np 
from scipy import optimize 
 
def f(x): 
    return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
 
list_a = [-0.4, 0.37, 0.72, 3.0] 
list_b = [-0.25, 0.67, 1.2, 5.0] 
 
i = 0 
while (i < len(list_a)):   
    root = optimize.bisect(f, list_a[i], list_b[i]) 
    print("root " + str(i+1) + ": " + str(root)) 
    i+=1 
     
print("\n----------runtime test----------") 
     
#------------------------------------------------------- 
 
#test runtime 
import timeit 
  
# code snippet to be executed only once 
mysetup = '''import numpy as np 
from scipy import optimize''' 
  
# code snippet whose execution time is to be measured 
mycode = ''' 
def function1():
    def f(x): 
        return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
 
    list_a = [-0.4, 0.37, 0.72, 3.0] 
    list_b = [-0.25, 0.67, 1.2, 5.0] 
 
    i = 0 
    while (i < len(list_a)):   
        root = optimize.bisect(f, list_a[i], list_b[i]) 
        print("root " + str(i+1) + ": " + str(root)) 
        i+=1 
    ''' 
  
# timeit statement 
print (timeit.timeit(setup = mysetup, 
                     stmt = mycode, 
                     number = 100000000)) 

In [52]: # example for scipy.optimize.newton 
import numpy as np 
from scipy import optimize 
 
 
def f(x): 
    return np.arctan(2 * (x - 1)) - np.log(abs(x))  # only one real root at x = 1 
 
root = optimize.newton(f, [-0.5, 0.1, 1, 2] ) 
 
i = 0 
while (i < len(root)):   
    print("root " + str(i+1) + ": " + str(root[i])) 
    i+=1 
     
print("\n----------runtime test----------") 
     
#------------------------------------------------------- 
 
#test runtime 
import timeit 
  
# code snippet to be executed only once 
mysetup = '''import numpy as np 
from scipy import optimize''' 
  
# code snippet whose execution time is to be measured 
mycode = ''' 
def function1():
    def f(x): 
        return np.arctan(2 * (x - 1)) - np.log(abs(x))  # only one real root at x = 1 
 
    root = optimize.newton(f, [-0.5, 0.1, 1, 2] ) 
 
    i = 0 
    while (i < len(root)):   
        print("root " + str(i+1) + ": " + str(root[i])) 
        i+=1 
     
    ''' 
  
# timeit statement 
print (timeit.timeit(setup = mysetup, 
                     stmt = mycode, 
                     number = 100000000)) 

In [51]: # example scipy.optimize.fsolve 
import numpy as np 
from scipy.optimize import fsolve 
 
def f(x): 
    return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
root = fsolve(f, [-0.5, 0.1, 1, 2]) 
 
i = 0 
while (i < len(root)):   
    print("root " + str(i+1) + ": " + str(root[i])) 
    i+=1 
     
print("\n----------runtime test----------") 
 
#------------------------------------------------------- 
 
#test runtime 
import timeit 
  
# code snippet to be executed only once 
mysetup = '''import numpy as np 
from scipy.optimize import fsolve''' 
  
# code snippet whose execution time is to be measured 
mycode = ''' 
def function1():
    def f(x): 
        return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
    root = fsolve(f, [-0.5, 0.1, 1, 2]) 
 
    i = 0 
    while (i < len(root)):   
        print("root " + str(i+1) + ": " + str(root[i])) 
        i+=1 
    ''' 
  
# timeit statement 
print (timeit.timeit(setup = mysetup, 
                     stmt = mycode, 
                     number = 100000000)) 

In [60]: # the guess value, x0, can't be 0.0 since there is a vertical asymptote as x = 0.0 
import numpy as np 
 
def newtons_method(g, x0, tol = 1.e-6, nmax = 50): 
    err = 1.0 
    iteration = 0 
 
    xk = x0 
    while (err > tol and iteration < nmax): 
        iteration = iteration + 1 
        err = xk 
        xk = g(xk) 
        err = abs(err - xk) 
        print(iteration, xk) 
    if (iteration >= nmax): 
        print("The function did not converge for this input value of x0.") 
        print("The approximation is very likely innacurate. See error value.") 
    return xk 
 
 
def f(x): 
    return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
 
def df(x): 
    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5))  
     
 
def g(x): 
    return x - (f(x) / df(x)) 
     
 
tolerance = 1.e-6  # tolerance determines the accuracy of the approximation 
max_iterations = 50 
x0 = [-1, 0.65, 0.7, 1.7, 1.8, 1.9, 5.0, 10.0] 
 
for i in range(len(x0)): 
    x = newtons_method(g, x0[i], tolerance, max_iterations) 
    print("The aproximate solution when x0 = " + str(x0[i])  + " is " + str(x)) 
    print("And the error is: ", abs(f(x))) 
    print() 
    print("----------------------") 
    print() 

In [32]: import numpy as np 
 
def findzero (a, b, tol, maxit, f, df): 
 
    if (f(a) * f(b) < 0):  # check Bolzano's Theorem 
        xstar = float("NAN") 
        niter = 0 
        err = 1.0 # initialise error to value greater than tolerance 
        prev_err = 0.0 
        conv_div_test = 0 
         
        print("real root is between interval [a, b]")   
        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b]  
        xi = 1.0 # initial arbitrary guess for Newton's Method 
         
        if (xi < a or xi > b): # if xi is outside [a, b]  
            xi = x0  # then set xi to Bisection Method value x0 
         
        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan 
            ierr = 1 
            return xstar, niter, ierr 
         
        while (err > tol and niter < maxit): 
            niter += 1 
            err = xi 
            xi = xi - (f(xi) / df(xi))   # Newton's Method 
             
            if (xi < a or xi > b): # if xi is outside [a, b]  
                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0                
                
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi) 
                    b = xi  # assign b to x if a is on the same side of x-axis as f(x) 
                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x) 
                    a = xi  # assign a to x if b is on the same side of x-axis as f(x) 
                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true 
                    break 
            err = abs(err - xi) 
 
            converge_test = 0.0 
            if (niter > 1): 
                if (err < prev_err): 
                    conv_div_test = 1 
                elif (err > prev_err): 
                    conv_div_test = 2 
                else:
                    conv_div_test = 3 
 
            prev_err = err 
             
 
            print(niter, xi) 
             
            if (niter == maxit): 
                ierr = 2 
        ierr = 0 # function converged successfully 
        xstar =  xi # approximation of the root 
         
        if (niter > 1): 
            if (conv_div_test == 1): 
                print("converges") 
            elif (conv_div_test == 2): 
                print("diverges") 
            elif (conv_div_test == 3): 
                print("convergence/divergence test inconclusive since error value did not change between it
        else: 
            print("not enough iterations to test for convergence or divergence") 
    else: 
        print("failure: no real root between interval [a, b] try different a, b values") 
    return xstar, niter, ierr, err 
 
def f(x):   # implement any function here 
    return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
 
def df(x):  # implement the derivative of f(x) here 
    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5)) 

In [7]: import numpy as np 
 
def findzero (a, b, tol, maxit, f, df): 
 
    if (f(a) * f(b) < 0):  # check Bolzano's Theorem 
        xstar = float("NAN") 
        niter = 0 
        err = 1.0 # initialise error to value greater than tolerance 
        prev_err = 0.0 
        conv_div_test = 0 
         
        print("real root is between interval [a, b]")   
        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b]  
        xi = 1.0 # initial arbitrary guess for Newton's Method 
         
        if (xi < a or xi > b): # if xi is outside [a, b]  
            xi = x0  # then set xi to Bisection Method value x0 
         
        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan 
            ierr = 1 
            return xstar, niter, ierr 
         
        while (err > tol and niter < maxit): 
            niter += 1 
            err = xi 
            xi = xi - (f(xi) / df(xi))   # Newton's Method 
             
            if (xi < a or xi > b): # if xi is outside [a, b]  
                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0                
                
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi) 
                    b = xi  # assign b to x if a is on the same side of x-axis as f(x) 
                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x) 
                    a = xi  # assign a to x if b is on the same side of x-axis as f(x) 
                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true 
                    break 
            err = abs(err - xi) 
 
            converge_test = 0.0 
            if (niter > 1): 
                if (err < prev_err): 
                    conv_div_test = 1 
                elif (err > prev_err): 
                    conv_div_test = 2 
                else:
                    conv_div_test = 3 
 
            prev_err = err 
             
 
            print(niter, xi) 
             
            if (niter == maxit): 
                ierr = 2 
        ierr = 0 # function converged successfully 
        xstar =  xi # approximation of the root 
         
        if (niter > 1): 
            if (conv_div_test == 1): 
                print("converges") 
            elif (conv_div_test == 2): 
                print("diverges") 
            elif (conv_div_test == 3): 
                print("convergence/divergence test inconclusive since error value did not change between it
        else: 
            print("not enough iterations to test for convergence or divergence") 
    else: 
        print("failure: no real root between interval [a, b] try different a, b values") 
    return xstar, niter, ierr, err 
 
def f(x):    
    return np.arctan(2 * (x - 1)) - np.log(abs(x)) 
 
def df(x): 
    return (-4*x**2 + 10*x - 5) / (x*(4*x**2 - 8*x + 5)) 
 
 
list_a = [-0.4, 0.4, 0.6, 2.0] 
list_b = [-0.2, 0.6, 2.2, 5.0] 
tol = 1.e-12 
maxit = 50 
 
 
for i in range(len(list_a)): 
    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation 
        print("failure: asymptote at 0.0, so neither a or b can be 0.0") 
        break 
         
    print("Find root ", i+1) 
    result = [] 
    result = findzero(list_a[i], list_b[i], tol, maxit, f, df)  
     
    print("The root approximation when a is ", list_a[i],  
          "and b is ", list_b[i], ": ", result[0]) 
    print("error:", result[3]) 
    print("iteration count: ", result[1]) 
    if (result[2] == 0): 
        "the method converged" 
    elif (result[2] == 1): 
        "df(xi) was zero or undefined" 
    elif (result[2] == 2): 
        "maximum number of iterations has been reached" 
    print() 

In [64]: import numpy as np 
 
def findzero (a, b, tol, maxit, f, df): 
 
    if (f(a) * f(b) < 0):  # check Bolzano's Theorem 
        xstar = float("NAN") 
        niter = 0 
        err = 1.0 # initialise error to value greater than tolerance 
         
        print("real root is between interval [a, b]")   
        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b]  
        xi = 1.0 # initial arbitrary guess for Newton's Method 
         
        if (xi < a or xi > b): # if xi is outside [a, b]  
            xi = x0  # then set xi to Bisection Method value x0 
         
        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan 
            ierr = 1 
            return xstar, niter, ierr 
         
        while (err > tol and niter < maxit): 
            niter += 1 
            err = xi 
            xi = xi - (f(xi) / df(xi))   # Newton's Method 
             
            if (xi < a or xi > b): # if xi is outside [a, b]  
                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0 
             
                #check for convergence 
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi) 
                    b = xi  # assign b to x if a is on the same side of x-axis as f(x) 
                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x) 
                    a = xi  # assign a to x if b is on the same side of x-axis as f(x) 
                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true 
                    break 
            err = abs(err - xi) 
            print(niter, xi) 
             
            if (niter == maxit): 
                ierr = 2 
        ierr = 0 # function converged successfully 
        xstar =  xi # approximation of the root 
    else: 
        print("failure: no real root between interval [a, b] try different a, b values") 
    return xstar, niter, ierr, err 
 
 
def f(x):    
    return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2)) 
 
def df(x): 
    h = 1.e-32 
    return np.imag(f(x + (1j*h)) / h) 
 
 
list_a = [-0.4, 0.4, 0.7, 3.9] 
list_b = [-0.2, 0.6, 1.9, 4.3] 
tol = 1.e-12 
maxit = 50 
 
 
for i in range(len(list_a)): 
    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation 
        print("failure: asymptote at 0.0, so neither a or b can be 0.0") 
        break 
         
    print("Find root ", i+1) 
    result = [] 
    result = findzero(list_a[i], list_b[i], tol, maxit, f, df)  
     
    print("The root approximation when a is", list_a[i],  
          "and b is" + str(list_b[i]) + ":", result[0]) 
    print("error:",result[3]) 
    print("iteration count:", result[1]) 
    if (result[2] == 0): 
        "the method converged" 
    elif (result[2] == 1): 
        "df(xi) was zero or undefined" 
    elif (result[2] == 2): 
        "maximum number of iterations has been reached" 
    print() 

In [62]: import numpy as np 
 
def findzero (a, b, tol, maxit, f, df): 
 
    if (f(a) * f(b) < 0):  # check Bolzano's Theorem 
        xstar = float("NAN") 
        niter = 0 
        err = 1.0 # initialise error to value greater than tolerance 
         
        print("real root is between interval [a, b]")   
        x0 = (a + b) / 2.0  # set x to be midpoint of current interval [a,b]  
        xi = 1.0 # initial arbitrary guess for Newton's Method 
         
        if (xi < a or xi > b): # if xi is outside [a, b]  
            xi = x0  # then set xi to Bisection Method value x0 
         
        if (df(xi) == 0.0 or np.isnan(df(xi))): #check if df(xi) is 0 or nan 
            ierr = 1 
            return xstar, niter, ierr 
         
        e1 = 0.0 
        e2 = 0.0 
        e3 = 0.0 
         
        while (err > tol and niter < maxit): 
            niter += 1 
            err = xi 
            xi = xi - (f(xi) / df(xi))   # Newton's Method 
             
            if (xi < a or xi > b): # if xi is outside [a, b]  
                xi = (a + b) / 2.0  # then set xi to Bisection Method value x0 
             
                #check for convergence 
                if (f(a) * f(xi) < 0.0):  # check if f(a) is on different side of x-axis as f(xi) 
                    b = xi  # assign b to x if a is on the same side of x-axis as f(x) 
                elif (f(b) * f(xi) < 0.0): # check if f(b) is on different side of x-axis as f(x) 
                    a = xi  # assign a to x if b is on the same side of x-axis as f(x) 
                else:
                    print ("failure") # bisection method only works when Bolzaono's Theorem returns true 
                    break 
            err = abs(err - xi) 
             
            e1 = e2 
            e2 = e3 
            e3 = err 
         
        if (niter > 3 and (e2 == 0.0 or e1 == 0.0)): 
            print("failure: e1 or e2 equal 0.0, so can't compute convergence rate;") 
            print("due to division by zero.") 
        elif (niter >= 3):    # compute convergence rate
            r = abs(np.log10(abs(e3/e2) / abs(np.log10(e2/e1)))) 
            print("convergence rate: ", r)   
             
            print(niter, xi) 
             
            if (niter == maxit): 
                ierr = 2 
        ierr = 0 # function converged successfully 
        xstar =  xi # approximation of the root 
    else: 
        print("failure: no real root between interval [a, b] try different a, b values") 
    if (niter < 3): 
        print("The algorithm requires at least 3 iterations to compute the convergence rate.") 
    return xstar, niter, ierr, err 
 
 
def f(x):    
    return np.arctan(2 * (x - 1)) - np.log(np.sqrt(x**2)) 
 
def df(x): 
    h = 1.e-32 
    return np.imag(f(x + (1j*h)) / h) 
 
 
list_a = [-0.4, 0.4, 0.7, 3.9] 
list_b = [-0.2, 0.6, 1.9, 4.3] 
tol = 1.e-16 
maxit = 50 
 
 
for i in range(len(list_a)): 
    if (list_a[i] == 0.0 or list_b[i] == 0.0): # asymptote at 0 for this equation 
        print("failure: asymptote at 0.0, so neither a or b can be 0.0") 
        break 
         
    print("Find root ", i+1) 
    result = [] 
    result = findzero(list_a[i], list_b[i], tol, maxit, f, df)  
     
    print("The root approximation when a is", list_a[i],  
          "and b is", list_b[i], ":", result[0]) 
    print("error:",result[3]) 
    print("iteration count: ", result[1]) 
    if (result[2] == 0): 
        "the method converged" 
    elif (result[2] == 1): 
        "df(xi) was zero or undefined" 
    elif (result[2] == 2): 
        "maximum number of iterations has been reached" 
    print() 


