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ABSTRACT

Titanium (Ti)-based halide perovskites with A,TiXe and ATiX; stoichiometry can be promising alternatives to
lead-based perovskites due to their high cuboctahedral stability and reduced internal stresses. It is important to
study compositional stability and crystal chemistry controlling the formation of BXy octahedral periodic arrays
in Ti-based perovskites. Here, we investigate on the formability of Ti-based mixed organic-inorganic and all-
inorganic perovskite crystals via establishing a library of tolerance (t) and octahedral (n) stability factors using
random sampling of ionic radii. Structural mapping and machine learning analysis are performed for twelve Ti-
perovskites selected by mixing/matching cations with halide anions. Formation probabilities from normal/bi-
nomial distributions are integrated into a statistical algorithm used in a “Decision tree classifier” to obtain
training/testing datasets. We relate perovskites stability to cuboctahedral formation considering complex crystal
chemistry including ionic radii, bond length from ions electronegativity, and bond-valence sums from co-
ordination numbers. Results revealed that cuboctahedral B-sites should be occupied by Ti cations to have a stable
structural composition. High formation tendencies are estimated for methylammonium Ti-based chloride or
bromide perovskites. Game theory methods determined six formable structures (Cs,TiX¢ and RbTiX; for X = F~,
Cl™, Br™). Probabilities of formation of future datasets with different halides are A, TiBrsy, (0.93) > A, TiCls,,
(0.91) > A,TiF3, (0.79) > A, Tils, (0.52) matching statistical results with + 8% marginal error and 96.3%
classification accuracy; there is optimality in having a (Ti-Br)-like structure for a balanced cuboctahedral. This
work shows a potential towards the discovery of novel lead-free perovskites for photoluminescence, tunable
bandgaps, tunneling junctions, and photovoltaic applications.

1. Introduction

(moisture, light, and oxygen) due to formation of lead-iodide salts
[12-19] that would only occur if internal stresses are enough to dislodge

Organic-inorganic hybrid perovskite crystals are widely used in op-
toelectronic devices such as solar cells and light-emitting devices [1-3]
owing to their strong ability for visible light absorption (0.7 x 107
em™Y) [4] and tunability of their bandgap energy (1.5 ~ 2.43 eV)
[2,5,6]. Typical perovskite materials have the chemical formula ABX3
where A refers to an organic and/or inorganic cation with +1 charge
(e.g. Cs*, MA™, and Rb*), B is a metal cation with +2 charge (e.g.
Pb*2 Hg"? Zn*? Mg*2 and Cd*?) and X is a halide anion with —1
charge (e.g. F~, Cl7, Br™, and I7) [7-9]. Ideal ABX; perovskites consist
of a cubic array with three-dimensional A-site corners sharing BXg oc-
tahedral units in which A-site cation is surrounded by 12 equidi-
stant X anions; the A-site cations fill the cuboctahedral cavities and B-site
cations occupy the center of the octahedral sublattice and have 6 nearest
X-anion neighbors [10,11]. Previous studies identified that conventional
Pb-based perovskites (e.g. MAPbI3) show structural stability problems at
high temperatures (> 100 °C) and/or from other environmental factors
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ions form their A and B sites within the cubic and octahedral structures,
respectively. Stabilization of inorganic halide perovskites may be
achieved through grain encapsulation, surface passivation or most im-
portantly by using stable B-site metals like Ti (e.g. Cs;TiXe) for less-
toxicity and broader tunable bandgaps [20]. Formability (stability) of
halide organic-inorganic Ti-based non-toxic perovskites is critical to
study as for the case of other Pb, Sn, Hg, and Ba metal cations based-
structures studied by Tanaka et al. and Li et al. [21,22].

In this context, we theoretically investigate on the formability and
stability of various Ti-based perovskites through mixing/matching of
various cations and anions from random sampling of their reported
ionic radii (e.g. Shannon, Pauling, and Stern) for determining
Goldschmidt’s tolerance factor (t) and octahedral factor (u). Structural
mapping, probabilities of formation, normal and binomial probability
distributions, Nash equilibrium, and iterative deletion of strictly
dominated strategies (IDSDS) game theory methods are considered for
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Nomenclature
Greeks and Letters

Organic and/or inorganic cation

Metal cation (B=Ti"?)

Halide anion

Tolerance factor

Tonic radius, A

Octahedral factor

Sample mean

Sample number

Sample size

Sample standard deviation

Normal distribution (normal probability density function)

Probability of formation (success)

Probability of instability (failure)

Binomial probability

Desired outcome (desired successful trials)

Utility (payoff or preference)

BL Bond length, A

X Electronegativity

BVS Bond-valence sums of oppositely charged ions with respect
to the ion of interest

v Valence or charge state of a bond between two atoms

b Universal value of 0.4 A for BVS

CA Classification accuracy

S A URT S QS K MR T I

N Number of samples that are correctly classified
S Total number of samples

Subscripts and superscripts

Probability with respect to tolerance factor (e.g. p, refers
to the percentage of stable tolerance factors; g, refers to
the percentage of unstable tolerance factors)

u Probability with respect to octahedral factor (e.g. p, refers
to the percentage of stable octahedral factors; g, refers to
the percentage of unstable octahedral factors)

in Stability factors within the stability range (e.g. t;, refers to
the number of determined stable tolerance factors)

n Sample stability factors (e.g. ¢, refers to the number of all
calculated tolerance factors for a sample with n size)

1 Player 1 as an organic and/or inorganic cation

2 Player 2 as a halide anion

* Best responses of player 1 or 2 to one another (best replies
from cations to anions and vice versa)

ij Refers to bonding between i and j atoms as in v; andBL;;

i First atom or ion in diatomic bonding for BL and BVS
calculations (refers to i atom as in BVS;)

J Second atom or ion in diatomic bonding for BL and BVS
calculations (refers to j atom as in BVS;)

0 Refer to a reference tabulated value as in bond length of

bond-valence parameter L,

further statistical analysis. Decision tree classification technique (su-
pervised learning) is used to construct a machine learning model for the
various Ti-based perovskites from their training datasets (input/re-
sponse) to predict future datasets outputs. A statistical algorithm is built
to obtain training/testing datasets determined from a random sampling

(b)

(d)

o [A] = CHsNH,
@ -
@ B)=Ti

~ABX; Structure®™

of involved ionic radii. Training/testing datasets address the relation
between various ionic radii sizes and structural stability as well as the
contribution of the BXg octahedral ions/atoms electronegativity, bond
length (BL), coordination number (CN), and bond-valence sums (BVS)
or formal charge state (oxidation numbers) in optimizing perovskite
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Fig. 1. Ti-based perovskites (ABX3) typical crystal structure: (a) A cubic structure unit cell; (b)) MA* cation occupying an A-site and surrounded by eight octahedral
structures; (c) Role of stability factors in determining the possibility of MA™* and Ti*? cations to occupy A-sites and B-sites, respectively, based on the involved
elements ionic radii; (d) The ideal cubic structure for MATil; when (t = 1) indicating a perfect cation fit.
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formability from stability factors. Predicted model results for the new/
future datasets are used to test the model validity from comparison with
training datasets results for credible formability knowledge.

2. Formability and stability factors

Theoretically, formability and structural stability of A,TiXe and/or
ATiX; perovskite materials (e.g. MATil; crystals with MA™, Ti*2, and
I~ ions) are found to be linked to and could be possibly estimated from
two main factors: (i) t-factor, and (ii) p-factor [21]. Goldschmidt’s tol-
erance factor evaluates whether A cations (organic or inorganic) can
enter between the formed octahedral structures to fill cubic structure
corners in the BX3; framework. Every cavity is surrounded by eight
octahedral BXg structures and this might prevent A cations from oc-
cupying A-sites if the opening is not large enough to fit the radius size of
A cations [10].

The perovskite structure would be empirically formable with fea-
sible structural stability when: (i) t-factor ranges from 0.813 to 1.107,
and (ii) p-factor ranges from 0.442 to 0.895 [21]. For ideal cubic
structures: t ~1; otherwise, structural distortions lower crystal sym-
metry and result in an orthorhombic or tetragonal structure
(t = 0.71-0.9) [11]. More details regarding the stability factors roles in
defining the crystal chemistry, structural sites occupation, and form-
ability of perovskites can be found in Supplementary (see section 1).

It is worth mentioning that the above stability factors range hold if
ionic radii (A, B or X) are assumed to be rigid, spherical shaped and
constant regardless of surrounding temperature and ions [10]. This
assumption may not be valid for systems with heavier halides (e.g. I~ as
compared to O~ 2, or F7) due to lower electronegativity and higher
atomic number; hence, t-factor might fail in the formability prediction
test of many iodide-based perovskites since previous works identified
32 known inorganic ABI; perovskites failing the test [10,21]. A better
approach to check for the formability of iodide-based perovskites is to
lower the t range to 0.8 > t > 0.9 [10] compensating for the higher
atomic number and lower electronegativity that might excessively in-
crease the halide anion radius and the octahedral size leading to nar-
rowing A-site cavities (Fig. 1).

3. Atomic and ionic radii and their impact on crystal chemistry

Variations in the reported ionic radii of involved perovskites ions
are widespread where changes are dependent upon electronegativity,
BL, CN, and BVS of ions impacting the crystal chemistry. Thus, quan-
tifying ionic radii ranges and determining their corresponding crystal
parameters are important to accurately predict structural stabilities and
identify the controlling parameters that would tune/change perovskite
formability. More details on the relative size of atoms/ions according to
the distribution of electrons and the BVS role can be found in the
Supplementary (see section 2).

The constituent ions involved in the perovskite structure might be
approximated to be hard spheres as reported by Shannon [23,24] for
the estimation of the solid-state ionic radii size. However, deviations
from standard Shannon radii are possible to occur if there is a strong
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dependency of cations on anions, and vice versa, which arise from
covalency relating to the number of bonds an atom can form within a
molecule as in metal-halide (B-X) bonds (much prominent in heavier
halides as compared to metal-oxide and fluoride bonds) [10]. Hence,
the conventional Shannon radii values might not be sufficient for pre-
dicting the formability of organic and/or inorganic perovskite struc-
tures (Ti-based perovskites: A,TiXg and/or ATiX3) from their tolerance
and octahedral factors. This is attributed to the fact that B-X covalent
bonds for all metals show unusual bond lengths different from those
reported by Shannon. Variations in the bond lengths would result in
deviations from the typical ionic radii (e.g. Shannon); especially when
there are heavier halides X = Cl™~, Br~, and I~ attached to a metal
element. Travis et al. [10] found out that d-block metals (e.g. Ti, Cd,
Hg) bonded with halogens would show a shorter B-X covalent bond
length of 0.075 ~ 0.1 A less than those of Shannon bonds leading to
greater variations in ionic radii. Lower electronegativity between the
metal and halogen explains the reason of having greater covalency of
atoms and capacity to share more electrons and form covalent bonds
(electronegativity of Ti (1.54) is less than Pb (2.33) [25], which might
be the reason for more ionic radii variations in Ti* 2 and less validity of
Shannon model); ionic radii of Pb*2 is around 1.33 ~ 1.43 A while for
Ti*2is 0.86 ~ 1 A which both depend on geometry, coordination, and
electronic environment [23,26-28]. The ionic radius of methylammo-
nium (MA) which is determined to be between 1.8 ~ 2.7 A (as ap-
proximated from Table 1) would make MA a suitable organic cation
candidate for forming the perovskite structure. A more rational option
to form Ti-perovskites would be to select Cs and/or Rb monovalent
cations that have smaller ionic radii than MA that are in the ranges
1.69 ~ 1.88 10\, and 1.48 ~ 1.72 10\, respectively (as reported in Table 1).
Discussions on the introduction of promising Br~ or Cl~ and the use of
MA™, Cs*, and Rb* cations in forming Ti-based perovskites, reported
by Tanaka et al. [21], can be found in Supplementary (see section 2).
The obtained results in the earlier study [21] might not represent
correct stabilities due to the assumption that ionic radii are considered to
be exactly similar to the standard Shannon values (constant values) that
do not depend on ions electronegativity, oxidation state, and interactions
with neighboring ions. Hence, we have obtained all the possible ionic
radii from various studies to recalculate the formation probability of Ti-
based perovskites from our determined ionic radii ranges for (A = MA ™,
CsT,Rb*), B = Ti*®» and (X = F~, Cl™, Br™, I") elements. In short,
we have gathered all the possible ionic radii values for the different
atoms/ions involved in the studied Ti-based perovskite structures
(Table 1) to carry out our formability test and stability calculations.
Lufaso et al. [29] programmed SPuDS software to predict the oc-
tahedral tilt angle with a high degree of accuracy. However, SPuDS
does not work well in systems where octahedral distortions result from
changes in the B-X bond length (were held constants). The unstudied
parameters including changes in the B-X bond length and the possibility
of having Ti*?-based perovskites have been incorporated in this study
using bond valences regarded to ionic radii and composition to explain
octahedral stability in the presence of (B-X)-based distortions. More
details about the pioneering work by Lufaso et al. [29] on predicting
CaTiO3 using SPuDS can be found in Supplementary (see section 2).

Table 1
Possible ionic radii values of cations/anions reported in previous studies and literature with their expected ranges used in the theoretical and probabilistic calcu-
lations.
Tons MA™* Cs™* Rb* Tit2 F~ cl- Br~ I~ Ref.
Ionic Radius (/o\) 2.17 1.88 1.72 0.86 1.35 1.81 1.96 2.20 [21]
1.80 1.75 1.48 0.92 1.36 1.81 1.92 2.19 [4,23,26]
- 1.69 - 0.96 1.33 1.81 1.95 2.16 [26,30]
2.23 - 1.52 1.00 1.33 1.84 1.96 2.16 [31-33]
2.70 1.81 1.66 1.00 1.33 1.81 - 2.03 [28,33,34]
1.8 ~2.7 1.69 ~ 1.88 1.48 ~ 1.72 0.86 ~ 1 1.33 ~ 1.36 1.81 ~ 1.84 1.92 ~ 1.96 2.03 ~ 2.2 Radii ranges; This study
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4. Ti-based perovskites via machine learning

Application of machine learning in materials science for the pre-
diction of material property and in the discovery of new materials and/
or perovskites have been already proposed in earlier works [35-39].
High-dimensional data require an automated analytical model building
technique such as machine learning allowing computers to learn from
input/response data using various algorithms; hence, classification of
discrete information or regression of continuous data would be ap-
plicable via iterative construction of the model. In other words, models
obtained from machine learning methods and input/output samples can
produce reliable and credible decisions and results regarding the

OO
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Random Sampling
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stability or formability of materials of interest. The basic steps involved
in machine learning are sample construction, model building, and
model evaluation. Built models are usually evaluated from the model
accuracy in predicting results similar to values from experiments and/
or from reliable theoretical models [35].

Li et al. (2018) and Li et al. (2019) [36,37] combined machine
learning with density functional theory (DFT) calculations to study the
formability and stability of 354 kinds of halide perovskites from their
decomposition energies according to the elemental ionic radius. The
machine learning model, including stability factors, was able to dis-
cover stabilities of ~10° rare-earth-metal perovskites from the total
tested halide double perovskites of ~10*. Pilania et al. [38] classified
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Fig. 2. (a) Theoretical framework used for random sampling of various ionic radii and their probabilistic calculations for formability of Ti-based perovskites; (b)
Statistical algorithm proposed for calculating training datasets (inputs/outputs) used for machine learning and “Decision tree” model building analysis.
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various ABOj3 via “the gradient tree boosting classifier” depending upon
A and B ionic radii relative to the radius of O (Shannon radii values
[23]) to identify possible structural chemistry for forming perovskite
solid crystals; Wagner et al. [40] applied a “Decision tree” algorithm to
determine perovskite formability based on gini (GII) impurity (see
Supplementary; section 3).

5. Theoretical framework
5.1. Statistical analysis

The theoretical study was initiated by following the suggested fra-
mework as shown in Fig. 2(a). Circles in the framework figure refer to
input and/or output data where squares indicate the process and/or
method considered for data collection and analysis. In brief, radii va-
lues of various elements (components) of the Ti-based perovskite
structure (A,BXs and/or ABXs;; where A = Cs,", Rb", or MA™;
B =Ti"% and X = F~, CI” Br or I") have been randomly selected,
mixed, and matched with one another by a random sampling technique
using a pre-coded MATLAB program (Random_Generator). Three ma-
trices of [100x1] are randomly generated for each of the 12 studied
perovskites from the three available radii ranges of R, Rp, and Rx. This
is also equivalent to saying that we have generated a one [100x3]
matrix for each of the 12 studied Ti-based perovskites to plot the
structural maps (total of 12 matrices of [100x3]). Collected data from
[4,21,23,26,28,30-34] were then utilized to determine possible toler-
ance and octahedral factors of various studied Ti-based perovskites
(Table 1). Obtained stability factors were used to plot structural maps of
different perovskites; hence, giving us a clear idea to distinguish be-
tween stable (formable) and non-stable perovskite structures which
determines the probability of formation and/or success. The rationale
behind the random selection is attributed to the many reasons that can
impact the ionic radii of involved ions. Variations in the ionic radii are
expected due to inevitable changes in ions oxidation state, electro-
negativity, covalency, bond length, and coordination from neighboring
atoms interactions. Gathered ionic radii values from the three models
(e.g. Shannon, Pauling, and Stern) can be randomly mixed with un-
evenly distributed percentages. This would be translated to a wider
range of radii possibilities for checking ABX3 and A,BX, formability.
Since the three models are correct to an extent, using ionic radii mixed
from these models will give us much more accurate results mimicking
all the possible combinations that could occur. Normal distribution
curves (histogram) of both t-factor and p-factor were plotted. Normal
distribution curves must show up for any drawn sample size of > 30
(n > 30). The sample mean and sample standard deviation of the
calculated tolerance and octahedral factors (n = 100; for each) were
determined to get the population density of the formation. Probability
of success as p (formation) and probability of failure as q (instability)
obtained from Eq. (6) and Eq. (7), respectively, were used in the bi-
nomial distribution analysis at different desired outcomes (k = 20, 40,
60, 80, 100). The desired outcome (k) refers to the number of suc-
cessfully formed perovskites (success) in the sample size n = 100 (e.g.
if k = 40 refers to getting 40 successful trials (formation) out of 100
calculated from p and q). Normal and binomial probabilities of the
formation along with Nash equilibrium and IDSDS strategies were used
later to select the most stable combinations.

5.2. Machine learning

A proposed statistical algorithm was used to calculate the impact of
various randomly sampled ionic radii (see Table S1 and Figure S1) on
the crystal chemistry parameters, Fig. 2(b). Then, obtained radii values
were utilized to get perovskite crystal chemistry data (inputs) and
stability factors (outputs) for constructing training datasets. Briefly,
random sampling of ionic radii is our starting point to identify the
impact of ionic radii size on structural stability attributed to changes in
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input parameters as ions/atoms electronegativity, bond length, co-
ordination number, and bond-valence sums (oxidation numbers). Re-
garding the machine learning framework, determined training datasets
were simultaneously fed into a MATLAB classification learner “Decision
trees”. Only ionic radii, ions/atoms bond length, and BVS are con-
sidered as explicit inputs since atoms electronegativity and CN are
implicitly involved in Eq. (11) and Eq. (13). A fine tree classifier learner
was initiated with our training datasets to build four separate “Decision
tree” models for A, Tilsy,, AnTiFay, AnTiClsy,, and A, TiBrs,, where
m = 1for A =MA* or Rb* and m = 2 for A = Cs*. We had four
generated [300x10] matrices as future/trained datasets for the studied
A TiXs,, structure. The first, second, and third 100 row-values in the
matrices were obtained for MA™, Cs™, and Rb*, respectively, from
their known ionic radii ranges (see Table S1 and Figure S1). Predictions
of structural stabilities of future datasets (obtained from another trial of
random sampling) were determined from the built “Decision trees”.
Model accuracy and evaluation were carried out by five cross-valida-
tion (CV) split as well as classification accuracy (CA) of the trained
model, reported in Eq. (14).

6. Equations and methods

t-factor and p-factor were calculated for the different studied Ti-
based perovskites from their ionic radii from Eq. (1) and Eq. (2), re-
spectively, as reported in earlier works [10,21,22]. Structural maps of
the Ti-perovskites were plotted and then utilized in carrying out normal
and binomial probability distributions (discrete). Obtained prob-
abilities of formation from stability factors would allow us to focus
more on studying the samples that showed stability/instability behavior
(p = 1). In the results section, we will find that six samples were
showing stability/instability behavior based on their probabilities of
formation: Cs,Tils, MATiF3, MATiCls, MATiBr3, MATils, and RbTils (or
in short, Cs,Tils, MATiX3, and RbTil3) which have been studied further
to determine their normal and binomial probability distributions.

V2 ([Rp + Ry) (€]
_Rs
K= Re @

The sample mean and sample standard deviations were obtained for
the Ti-perovskites with p < 1 from Eq. (3) and Eq. (4), respectively, to
carry out normal distribution and histogram analysis. Thus, normal
distribution and histogram curves can be plotted for the six stable/
unstable Ti-based perovskites (p < 1) from Eq. (5). Probability normal
distribution allows us to determine the population percentage that fits
within the desired ranges of t and p [41,42].

x

X= ®)

X e=X)?
TN )

e~ &=%/25%)
y= o2m 5)

The probability of formation and/or instability of Ti-based per-
ovskites have been defined in Eq. (6) and Eq. (7), respectively, as the
product and/or summation of the probabilities of having t-factor and p-
factor within our stability/instability ranges. The general binomial
probability formula used in the binomial distribution analysis is shown
in Eq. (8) which gives us an estimation about the mass distribution of
successful trials (formation) at various k desired successful outcomes (0
to 100) from the total sample size (n = 100) [41,42]. Several as-
sumptions have been made to perform our probabilistic analysis, in-
cluding: (i) discrete distributions, (ii) population is infinite (N— o), (iii)
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sample sizes of various ionic radii are 100 numbers (n = 100) chosen
by the random sampling method using a pre-coded MATLAB random
generation program; hence, according to the central limit theorem, (iv)
our probability distributions of all samples are expected to approach a
normal distribution behavior (this is only true if n > 30) [41,43,44].

tin \[ Min
o E 'u_ (6)
R

n!
pE — pe
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8

Selection strategies and combinations of various ions have been
done by applying the mix/match strategy (treating cations and anions
as players based on game theory concepts [45]). Studied Ti-based
perovskites are as shown in Table 2 which involve mixing/matching
between four halide anions and three organic/inorganic cations with Ti
as a metal cation. Nash equilibrium from best replies (p*, P(k)*) and
IDSDS methods, as in Eq. (9) and Eq. (10) [45-47], were applied to our
studied perovskites to choose the best strategies that maximize our
formation probabilities (probability and binomial probability); hence,
we would be able to identify the best selections yield in the formation of
Ti-based perovskites.

Nash equilibrium from best replies for player 1 (A ions):

vi(@*, P(k)*) = vi(p, P(k)*) ©)]
Nash equilibrium from best replies for player 2 (X ions):
v, (p*, P(k)) = v, (p*, P(k)) (10)

For the statistical algorithm used in the machine learning analysis,
the bond length of involved covalent and hydrogen bonds in the BXq
octahedral was calculated from Schomaker-Stevenson Eq. (11) [48,49];
this equation accounts for the impact of high electronegativity differ-
ences in the hetero-diatomic configuration. The bond-valence model
shown in Eq. (12) and Eq. (13), as reported by Brown [50], determines
bond lengths with consideration of coordination numbers — which
would identify deviations of the theoretical BVS from our predicted
values. The number of bonds exists in the studied atoms yield in the
determination of oxidation numbers. Briefly, a valence assigned to an
ion is the sum of the bond valences associated with covalent bonds with
neighboring ions of the opposite charge. The parameter b has a nearly
universal value of 0.4 10\, where BL, is taken from tabulated anion-ca-
tion pairs bond lengths defining chemical bonding and crystal stability
[38].

BVS = ) vy (12)
v; = exp [(BLo — BLyj)/b] 13)

Classification accuracy (CA) of the observed machine learning
models was evaluated from using Eq. (14) as reported elsewhere [35];
where S and N denote the number of samples that are correctly clas-
sified and the total number of samples, respectively.

CA =S/N a4
7. Results and discussion
7.1. Stability factors and probability of formation

Structural mapping for Cs,TiXe, MATiX3, and RbTiX3, as shown in

Fig. 3, estimated that Cs,TiX¢ and RbTiX; are formable Ti-based per-
ovskites at all times (for any radii combinations) except when halide
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anion is chosen to be I” (~0.5 formation probability). Ionic radii of F~,
Cl~, and Br~ are smaller than those radii values of I~ halide anions
(Table 1) which would allow Ti*? ions to enter the octahedral structure
occupying B-sites. This explains the formability of Cs;TiXe and RbTiX;
for X = F~, Cl7, Br~ (u-factor = 0.45 ~ 0.75 within the formability
range). The t-factor condition was met with no stability problems for
inorganic Cs* and/or organic Rb* cations in occupying the A-sites
between the eight octahedral structures. Cs™ and Rb* cations with
reasonably small radii sizes compared to MA cations allow them to
enter cubic corner cavities in the BX3 framework (Fig. 3 and Table 3).
However, if the p-factor condition is not met, the formed structure
would not be considered as a perovskite material. In terms of MATiXs,
both t-factor and p-factor played a key role in determining MATiX;
structural probabilities owing to the larger radii range of MA cations
(affecting t-factor) and relatively large iodide ions (affecting p-factor).
Thus, more controversial results were found for MATiX; with form-
ability probabilities in the range 0.465 to 0.87 dependent upon the
selected halide anion. Very small ionic radii in F~ and Cl~ would make
it easy for MA™ cations to escape from A-sites due to the much smaller
octahedral structures; whereas very large ions as in I~ would overlap in
the octahedral framework blocking the A-site region from being occu-
pied by MA. Therefore, the optimal choice in MATiX; determined to be
with the use of Br~ anions giving us an ideal t-factor range with a
maximum formation probability of 0.87 (Fig. 3 and Table 3).

Probability of formation, probability of instability and the corre-
sponding t-factor and p-factor mean and sample standard deviation
have been theoretically calculated for all the studied Ti-based per-
ovskites as shown in Table 3. Probabilities of formation were obtained
from the product of both p, and p, (being in the range from Eq. (6))
since those were two independent events occurring simultaneously
when forming perovskites.

7.2. Statistical normal distribution and histogram

Normal distributions of t-factor and p-factor for metastable Ti-per-
ovskites (Fig. 4 and Table 3) perfectly fitted the histogram bell curves
indicating the reliability of randomization of generated samples. From
mean and standard deviation in normal distribution curves (Fig. 4,
Table 3, Table S2, and Table S3), frequency of occurrence (population
density) met the t-factor condition in all combinations with
t = 0.856 ~ 1.042 (except for MATiF3). However, mean values of p =
0.438 ~ 0.690 found to be sometimes out of the stable range
(n < 0.438) lowering formation probabilities in specific combinations
(e.g. Cs,Tilg, MATil3, and RbTil; with p < 0.5). In metastable Ti-per-
ovskites, the highest formation probabilities were observed for MATiBr3
(0.87) and MATiICl; (0.81) as shown in Fig. 5(a), respectively. This is
attributed to the optimum ionic radii of mixed cations and anions. In
general, stable Pb-based perovskites have larger Pb*? radius size and
higher electronegativity than Ti*? leading to p-factors within the sta-
bility range. From normal distribution curves and (68%-95%-99.7%)
statistical rule, mean and sample standard deviations of p and t were
used to determine the population percentage meeting the stability
constraints; Fig. 5(b). Combinations with the highest population density
of formation (stability percentage for both p and t > 67%) recorded
the highest formation in agreement with the predetermined prob-
abilities for MATiBr; and MATiCl; (see Supplementary for explanations

Table 2
Studied Ti-based perovskites from selected organic/inorganic cations and ha-
lide anions.

Cation \ Halide Anion F~ Cl™ Br— 1~

Cs™ Cs,TiFg Cs,TiClg Cs,TiBryg Cs,Tilg
MA™ MATiFs MATICl3 MATiBr3 MATils
Rb* RbTiF; RbTiCl3 RbTiBrs RbTil;
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Fig. 3. Structural maps of the various studied Ti-based perovskites: (a) CsTiXe; (b) RbTiX3; (¢) MATiXs.
Table 3

Formation and instability probabilities of Ti-based perovskites with mean and standard deviation of identified t-factor and p-factor from random sampling.

Ti-Perovskite Probability of formation (p)*

Probability of instability (q)*

Sample Mean (X)* Sample Std. Deviation (o)*

Cs,TiF ,1=1 0,0=0
Cs,TiClg ,1=1 0,0=0
Cs,TiBr 1,1=1 0,0=0
Cs,Tilg 1,05 = 0.5 0,05 = 0.5
MATiF, 0.49,1 = 0.49 0.51,0 = 0.51
MATiCl, 0.81,1 = 0.81 0.19,0 = 0.19
MATiBr; 0.87,1 = 0.87 0.13,0 = 0.13
MATil; 0.93, 0.5 = 0.465 0.07, 0.5 = 0.57
RbTiF, 1,1=1 0,0=0
RbTiCl, ,1=1 0,0 =

RbTiBr; 1,1=1 0,0=0

RbTil, 1,0.5 = 0.5 0,05 = 0.5

0.973, 0.690 0.022, 0.030
0.927, 0.509 0.017, 0.023
0.918, 0.478 0.016, 0.022
0.905, 0.438 0.015, 0.023
1.113, 0.690 0.079, 0.030
1.042, 0.509 0.065, 0.023
1.028, 0.478 0.062, 0.022
1.009, 0.438 0.058, 0.023
0.919, 0.690 0.027, 0.030
0.882, 0.509 0.022, 0.023
0.875, 0.478 0.021, 0.022
0.865, 0.438 0.020, 0.023

*(#, #) = (t, W; probability of formation and/or instability is totally dependent on t and y; p = p, * p, (independent events for formation); g = g, + g,, (dependent

and cumulative events for instability).

regarding the other metastable structures; section 6).

7.3. Statistical binomial distribution

According to the binomial distribution analysis in Fig. 5(c), it was
observed that the highest probabilities were determined for MATiCl3
(0.096 @ k = 80) > MATiI; (0.035 @ k = 40) > MATiF; (0.016 @

= 40) > MATiBr; (0.015 @ k = 80) > Rb-based and Cs-based
perovskites (0.01 @ k = 40, 60); (see Table S4 and Figure S2). Hence,
one may conclude that perovskite formability would be best for MA-
TiCl3 > MATiBr3 > (Cs,Tilg, MATiF3, RbTil;) > MATil; regarding
the metastable Ti-based combinations according to the binomial dis-
tribution analysis (see detailed explanations in Supplementary; section
7).

7.4. Game theory and Nash equilibrium decisions

Calculations associated with game theory concepts were carried out
using Eq. (9) and Eq. (10); yielded in giving the “Nash equilibrium
options” that are the best selections (decisions) based on the best re-
sponses of both players (A*Ti*? and X~) among the quasi-stable Ti-
perovskites. The strategic form of the game is shown in Table 4 where
payoff values (utilities) for every player were assigned from the cor-
responding probabilities. The best reply (BR) method determined the
highest utility values (1, 1) attributed to the best decisions. Best se-
lections would give us the highest probabilities of formation where the
utility of 1 indicates 100% formability for the corresponding mixed/
matched ions. Nash equilibrium or dominant strategies in Table 5 were
found for the stable Cs,TiXe and RbTiX3; for X = F~, Cl7, Br™ in
agreement with probabilistic analysis (Table 3).

In other words, Nash equilibrium gave us the six formable structures
(Cs,TiFg, Cs,TiClg, Cs,TiBrg, RbTiFs, RbTiCls, RbTiBrs) since ionic radii

sizes in those compounds will yield in a 100% probability of formation.
IDSDS method showed the same six strategies because IDSDS does not
lose dominant Nash strategies [45-47]. Deletions of dominated strategies
(IDSDS) occur sequentially as (i) Cs3 Ti*2 and Rb*Ti*? strictly dom-
inates MA*Ti*2 for player 1 (cation-Ti), and (ii) F3y, Cl3m, and Bray,
strictly dominate I3, for player 2 (halide anion) that occurs after deletion
of MA*Ti*2 The six non-Nash dominated strategies in Table 4 show
stable/unstable structures with highest to lowest formation probability as
MATiBr; > MATICl; > (Cs,Tilg and RbTil3) > MATiF; > MATils. Ti-
perovskites with iodides had the lowest formation tendency because of
the large iodide anions (> 2A) that might overlap in the octahedral. The
undesired overlapping prevents Ti cations from occupying B-sites as
observed in the earlier analysis.

7.5. Machine learning and supervised decision tree analysis

Input/output pairs of various Ti-based perovskites (Fig. 6 and Figure
S1) were used for fine tree training (Decision trees) via the classification
learner toolbox in MATLAB relying on patterns and inference. Tree
training algorithms were carried out via 7 predictors (Ra, R, Rx, BL for
Ti-X, BL for X"H, BVS for Ti and BVS for X) and 2 responses for
structural formability (Yes/No); trained data were used to build
mathematical decision tree models for the formability of future input
datasets (Figure S1) with high predictions accuracy (96.3% ~ 99%). We
believe that BL of Ti-X and X'~'H in the BXs octahedral would explain
the stability of the octahedral surrounded by the cubical structure, re-
spectively (Figures S3-S6). Minimum and maximum BLs of Ti-X and
X H were estimated from ionic radii and their corresponding electro-
negativities (Table S5). From electronegativities: F~ (3.98) > Cl~
(3.16) > Br~ (2.96) > I~ (2.66) > H" (22) > Ti*? (1.54)
[25,51,52], they showed prominent impact on BL as shown in Table 6.
With the consideration of maximum ionic radii (in A): I~ (2.2) > Br~
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Fig. 4. t-factor and p-factor histogram curves and normal distribution fittings of unstable Ti-perovskites from random mixing/matching of selected ionic radii
(random samplings): (a) Cs,Tils; (b) MATiF3; (c) MATICls; (d) RbTils; () MATiBr3; (f) MATils. Background color green for stable and red for unstable populations.

(1.96) > Cl” (1.84) > F~ (1.36) > Ti*2 (1) > H' (0.012), we
conclude that iodide-based perovskites have the longest BLs with a
maximum of 3.3 A for Ti-I and 2.17 A for I'"H among the other halides.
Minimum and maximum H" ionic radii are approximated as
8.4 x 107° A [53] and 0.012 A [23,26].

The large iodide BLs and low electronegativity could be the reason
behind the addressed instabilities in the BXg iodide-octahedrons.
Precisely, Seshadri [54] defined that BVS should be equal to the formal
oxidation state of the cation or anion to have a formable/stable struc-
ture. If BVS for X = —1 and Ti = +2, (that is for each Ti atom, there
will be two attached iodides) there will be a complete stable structure.
However, our BVS analysis for iodide-based structures confirms that
both X and Ti BVS have a wide range of possibilities (Table 6 and Table

S6). The wider the BVS range, the lower the stability we might have due
to the higher chances for Ti to be over-bonded or under-bonded with
iodide.

Pb-free ATiX; perovskites with A = MA™ or Rb™ are identified with
formability of stable/unstable structures (from highest to lowest) as
ATil; > ATiBrs > ATiCl; > ATiF3; which were in good agreement
with our statistical and game theory analysis. In ATils, the observed
high deviated BVS agrees with the high structural instabilities (low
stabilities in I-based perovskites could be from the wide BVS ranges of
Ti-I and I'"H found as 1.31 and 0.66, respectively).

According to the absolute deviations of BVS from formal oxidations
in Cs-based perovskites, stability from high to low is found to be as
CsTiClz > CsTiBrz > CsTiF3 > CsTilz (results revealed good
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Table 4

Strategic form of the game (Ti-based perovskite formation) showing the pos-
sible decisions (mix/match) with their assigned utilities calculated from prob-
ability and binomial probability of formation*

Cation-Ti / Halide Anion Fam Clzm Bram I3m
CsyTit? 1,1 1,1 1,1 0.5, 0.08
MA*Ti*2 0.49,0.08  0.81,0.1  0.87,0.12  0.465, 0.08
Rb*Ti*? 1,1 1,1 1,1 0.5, 0.08

*m = 2 for Cs3 Ti~% otherwise m = 1; utilities refer to the payoff and/or
satisfaction and preference of both players (cations/anions) defined as: (#, #)
= “p, P(k)” where P(k) was determined from binomial probabilities at the
mean = np.

Table 5
Nash equilibrium analysis showing dominant strategies and the highest for-
mation probabilities among the studied Ti-based perovskites.

Cation-Ti / Halide Anion Fim Cl3m Bram
CsyTit? 1,1 1,1 1,1
Rb*Ti*? 1,1 1,1 1,1

agreement of models with previous analysis). Machine learning pre-
dicted that structural formability of Cs,TiXe > RbTiX3; > MATiX3
described by the higher CN and lower BVS deviations in Cs-based
perovskites. Among all the studied combinations, Cs-based perovskites
show the longest BLs and lowest BVS deviations owing to the greater
CN (8 ~ 12) of Ti cuboctahedral atoms. Fig. 6(i,j) shows an illustration
of the taken CN for Ti and X in the two studied perovskite structures. In
a unit cell of A, TiXs, cuboctahedral structure, the optimal CN
of X should be (3 for m = 1, and 6 for m = 2); where CN selections for
Ti would be ideal with (6 for m = 1 and 12 for m = 2) knowing that
m = 2 for A = Cs*; elsewhere, m = 1 (for A = MA* and Rb™") as
explained in a previous work [56].

Probabilities of formation of training datasets concerning used ha-
lides in A, TiXs,, were identified as 0.49, 0.83, 0.94, and 0.96 for I,
F~, C17, and Br, respectively, matching our earlier results. To check
for the validity of determined machine learning “Decision trees”
models, new randomly generated datasets showed estimated formation
probabilities as 0.52, 0.79, 0.91, and 0.93 for I, F~, Cl™, and Br™,
respectively (Fig. 7). These results were comparable to the actual cal-
culated probabilities 0.44, 0.80, 0.90, and 0.93 for I", F~, Cl™, and
Br~, respectively. Moreover, similarities in probabilities of formation
between training and future datasets were identified with a marginal
error of = 8%. Hence, formability probability (from high to low) were
found to be ApTiBram > AnTiClym > AnTiFsm > AnTilsm (Fig. 7).

We might generalize that it is optimal to have ions with electro-
negativity and ionic radius close to the Br~ as 2.96 and 1.96 A, re-
spectively (i.e. electronegativity-to-ionic-radius ratio ~ 1.51 A~1). In
contrast, low A~ ratio in I~ (1.2) or high A~ ! ratio in CI~ (1.71) and
F~ (2.96) are not favorable for having a balanced cuboctahedral due to
not yet known halide interactions or chemical bonding with neigh-
boring ions/atoms.

The supervised machine learning model "Decision tree" classified
our discrete inputs into two categories (Yes/No) for formability possi-
bility. Model results were illustrated in branch/node plots representing
outcomes (class labels) in the branches according to chosen predictors
or controlling stability parameters in the nodes. Decision trees analysis
of the training datasets (Fig. 7 and Table S7) revealed the controlling
parameters responsible for formability of the different halide per-
ovskites, which found to be Rp in (A, TiBrsy,, AynTiClsm, Ay TiFsy,) and
Rp in A, Tilz, describing the importance of ionic radii role in defining
perovskite structural stabilities (e.g. Ti atoms properties determine io-
dide-based perovskite stabilities). Classification accuracy of predicted
results showed high model reliability of 99%, 98.3%, 96.3%, and 97.7%
for Ay, TiBray, AmTiClsm, ApTiFsy,, and Ay Tilsy,, respectively (obtained
from plotting Rp vs. Ry, see Supplementary; section 10). As we go down
the trees (Fig. 7), defined predictors for input data classification become
less important to impact perovskites stability. Analyzed predictors used
in machine learning analysis include R,, Rp, Rx, BL for Ti-X, BL for
X"H, BVS for Ti in Ti-X and BVS for X in X'"H bonds (where BLs and
BVS determine BXg stability). Using a predictor importance function in
MATLAB, we estimated the relative importance of the seven predictors
in controlling perovskites formability. Predictor importance results re-
vealed that R4 (0.1244 compared to O for other predictors) is the only
important parameter for studying the formability of A, TiBrs,,. How-
ever, A, TiCls, can be stabilized via tuning R, (0.0343), Rg (0.0065), or
Rx (0.0015) where numbers refer to predictor importance relative to 0
values in the remaining parameters. Interestingly, both R, (0.1606) and
BVS of F (0.0033) are the controlling formability indicators in A, TiF3y,.
As expected, a more complicated case was observed in A, Til5,, where
all ionic radii R, (0.0014), Rg (0.0602), Rx (0.0093), and BL for Ti-I
(0.0076) are linked to the cuboctahedral stability. In summary, form-
ability of A, TiBrs,, is much easier to control by only changing R, to
stabilize the unstable cubic structures surrounding stable octahedrons
in the crystal lattice; A, TiCls,, requires 3 parameters to control in-
stability issues by changing/matching possible A ions with Ti with more
emphasis on forming the cubical structures; A, TiF3,, could be formed
by tuning fluoride BLs mixed with different oxidation states of Ti to
achieve formable octahedrons; and lastly, A, Tils,, stability is more
controversial and might be controlled by changing the 3 ionic radii
sizes or tuning Ti-I BL for enhanced octahedral stability allowing cu-
bical structure to form afterward.

Comparisons of our findings with the reported experimental results
will show the validity of the constructed theoretical algorithm. Chen
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Fig. 6. Training datasets used in the machine learning analysis obtained from inputs (R, BL = f(R, %), and BVS = f(R,CN)) and response (stability factors t and p as
outputs) from random sampling of ionic radii in Ti-based perovskites: (a) and (d): A, Tilsy; (b) and (e): Ay, TiFsy; (¢) and (f): A, TiClsy; (g) and (h): A, TiBrsy,. Note

thatm = 2 forA = Cs*

; elsewhere, m = 1 (for A = MA™ and Rb™); background colors orange for MA, green for Cs, and purple for Rb. For BVS calculations, ionic

bonds and used coordination numbers (CN) are estimated from (i) for MA-Ti-based and Rb-Ti-based perovskites and (j) for Cs-Ti-based perovskites.

et al. (2018) [57] fabricated thin-film-double perovskites Cs,TiBrg with
1.8 eV bandgap showing a highly stable structure (with solar conver-
sion efficiency ~ 3.3%) matching our estimated structural stability
(balanced cuboctahedral) for (Ti-Br)-based perovskites. The association
between highly stable structure and estimated structural stability can
be thought of as the right occupation and/or strong attachment of A, B,
and X ions to their corresponding ionic sites (i.e. the structure is ther-
modynamically in equilibrium when phases are stable with lowest en-
ergy state due to ion migration to their intended sites form ions po-
tential gradients creating a cuboctahedron). High stability refers to
minimal loss/gain of thermal energy preventing salt formation de-
gradation reactions arising from internal stresses due to UV or high-
temperature environment. Other studies estimated the possibility of
creating thermodynamically stable Ti-based perovskites (with high-
pressure phase equilibria) from using Ca inorganic cations in CaTiO3
[58-60] and CaTiOs-CaSiO5 [61].

The thermodynamic phase stability is a key parameter governing
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the perovskite synthesizability. Future works on the evaluation of Ti-
based perovskite thermodynamic stability (lowest energy state) are
important to validate our results. A common computational approach
involves studying the stability from phase diagrams (e.g. using
Pymatgen) determined from DFT-[convex hull] (DFT-CH). Phase sta-
bility is determined by constructing the energy convex hull of a given
region of composition space. The energy above the convex hull (Ep.;)
provides a direct measure of the stability [62]. The convex hull consists
of phases with energy lower than any other phase or a linear combi-
nation of phases at the respective compositions [63]. Ep,; (meV/atom)
is a measure of the decomposition energy of the compound into a linear
combination of the stable phases. Thermodynamically stable com-
pounds exhibit an Ey,y of zero (i.e., they are on the convex hull and are
stable with equilibrium phases at T = 0 K lower in energy than any
other phase or combination of phases) [63]. More positive values of
Epan indicate decreasing stability [64]. The stability or convex hull
distance can be defined as [AH 2 = AH/"™ — AH;], where AH/"™ is
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Table 6
Bond length, oxidation state, and coordination numbers for BVS investigation in the involved structural bonding in the BXs octahedral of the studied Ti-based
perovskites.
Perovskite Structure Bond BL (A)* Ox.* CN (No. of Bonds)* Lo* BVS for Ti or X* Dev. of BVS (%)*
Ti X
MATiX; / RbTiX3 Ti-F 2.41 ~ 2.58 2 3,4,5,6 1,2,3 1.72 0.44 ~ 0.87 -77.9 ~ —56.6
F-H* 1.17 ~1.21 1 N/A 1,2,3 0.92 0.50 ~ 1.45 —50~+45
Ti-Cl 2.82 ~ 2.99 2 3,4,5,6 1,2,3 217 0.50 ~ 0.97 —75.1 ~ =51.5
ClH* 1.72 ~ 1.77 1 N/A 1,2,3 1.28 0.29 ~ 0.85 -70.8 ~ —-15
Ti-Br 291 ~ 3.09 2 3,4,5,6 1,2,3 2.32 0.59 ~ 1.15 —70.7 ~ —42.5
BrH* 1.85 ~ 1.90 1 N/A 1,2,3 1.42 0.30 ~ 0.87 —69.8 ~ —13
Ti-I 2.99 ~ 3.30 2 3,4,5,6 1,2,3 2.54 0.86 ~ 2.17 —-57.1~+8.5
IH* 1.99 ~ 217 1 N/A 1,2,3 1.61 0.35 ~ 1.01 —65.1~+1.0
Cs,TiXe Ti-F 2.41 ~ 2.58 2 8,9,10,11,12 1,2,3 1.72 1.11 ~ 1.73 —445 ~ —135
Ti-Cl 2.82 ~ 2.99 2 8,9,10,11,12 1,2,3 217 1.27 ~1.95 —-36.5~ —-25
Ti-Br 291 ~ 3.09 2 8,9,10,11,12 1,2,3 2.32 1.45 ~ 2.31 —-27.5~+15.5
Ti-I 2.99 ~ 3.30 2 8,9,10,11,12 1,2,3 2.54 1.52 ~ 3.14 —24~+57

*H-bonds only exist in the MATiX3 structure; BL: Bond length; Ox.: Oxidation number and is either for Ti or X [for Ti in Ti-X bonds and halide anions or X in X"H
bonds]; CN: Coordination number referring to number of bonds attached to the atom of interest; Ly: Bond-valence parameter of specified bonds taken from tabulated
values in [55]; BVS: Bond-valence sums for either Ti in Ti-X or X in X'"H bonds; Dev.: Deviation of BVS from formal oxidation states of anions or cations.

the formation energy of ABX3 calculated from the total energy of the
perovskite, E(ABX3), from [AH;‘BX3 = E(ABX;) — u, — Mg — 3uy] and
My, Mg, and u, are the chemical potentials of A, B, and halide, re-
spectively (for most elements, chemical potentials are equal to the DFT
total energies of their ground states); AH; is the convex hull energy at
the ABX3 composition. A positive convex hull distance indicates un-
stable phases whereas negative distances confirm compound stability
[63]. Metastable phases can often be synthesized whereby a structure
predicted to lie near, but somewhat above the CH [65]. Previous studies
[64-66] focused only on studying ABOjz using DFT-CH (analysis of
stability attributed to decomposition into other phases) using the Open
Quantum Materials Database (OQMD) [63] for total energy calculations
to evaluate constructed machine learning models. Thus, checking the
studied Ti-based perovskites (A,TiXe and ATiX3) thermodynamic sta-
bility via DFT-CH is recommended in future works to validate our re-
sults from formation/decomposition energy of compounds.

8. Conclusion

The formability of Ti-based perovskites has been theoretically in-
vestigated through mixing/matching of various cations and anions re-
lying on a random sampling of reported ionic radii (e.g. Shannon,
Pauling, and Stern) and common stability factors for structural map-
ping. Our theoretical analysis predicts that Cs,TiXe¢ and RbTiX; are
structurally stable with all halogens except for I~ with only ~ 0.5
formation probability. In metastable Ti-perovskites, the highest for-
mation probabilities are observed for MATiBr; (0.87) and MATiCl;
(0.81) owing to the optimum ionic radii allowing MA to occupy A-sites
and Ti metals to fill B-sites for structural formation. However, the other
unstable structures (Cs,Tilg, RbTil3, MATiF3, MATils) showed a 50/50
formation chance which might be associated with changes in ionic radii
resultant from actual oxidation state and covalency. Also, instability of
Ti-iodide-based structures might be associated with large anion radius
I ~2A— overlapping) preventing Ti atoms from occupying B-sites in
the octahedral. Hence, one may conclude that perovskite formability
would be best for MATiICl; > MATiBrs > (Cs,Tilg, MATIFs3,
RbTil3) > MATil; obtained from binomial distribution analysis of the
metastable combinations. Nash equilibrium determined the six stable
structures as (Cs,TiXe and RbTiX; for X = F~, Cl7, Br™) in agreement
with the probabilistic analysis. Moreover, the IDSDS method yielded in
the same six stable combinations (strategies) identified by Nash equi-
librium from deletions of dominated strategies.

Seven predictors are utilized in the machine learning analysis in-
cluding ionic radii (Ra, Rg, Rx), bond length (BL for Ti-X, BL for X'H),
and bond-valence sums (BVS for Ti in Ti-X and BVS for X in X "H bonds).
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BLs and BVS implicitly involve both ions electronegativity and atoms
coordination number (CN), respectively, for the determination of BXg
octahedral stability. Studied predictors give us the important crystal
chemistry parameters responsible for controlling cuboctahedral stability.
Critical predictors are determined as R for A, TiBray,; Ra, R, and Rk for
AL TiClsy; Ra and BVS of F for A, TiFs,, with a more complicated case
observed in A, Tils,, where all ionic radii (Ra, R, Rx) and BL for Ti-I are
critical for the determination of the A, Tils, cuboctahedral stability.
Predicted model results for the new/future datasets (and their maximum
and minimum BL and BVS from Table S8) are used to test the model
validity. We concluded that Cs-based perovskites have high stabilities
(CsoTiXe > RDTiX3 > MATiX3) because of their higher CN and lower
BVS deviations. Moreover, formability probabilities of future datasets are
found as 0.52, 0.79, 0.91, and 0.93 for I, F~, Cl ™, and Br ™, respectively
(AnTiBrsy, > AnTiCly, > ALTiFz, > A,Tils,) with a marginal
error = 8% and a classification accuracy > 96.3%. The wider the BVS
range, the lower the stability we might get due to the higher chances for
Ti to be over-bonded or under-bonded with halides. Structural optimality
is found in (Ti-Br)-like structures with electronegativity-to-ionic-radius
ratio ~ 1.51 A~ for a balanced cuboctahedral. Machine learning results
are found in good agreement with our statistical and game theory ana-
lysis, with the addressed contradictions in ATil; where high BVS devia-
tions showed high structural instabilities. Ti might become a promising
metal cation candidate in forming stable and formable perovskites
(A,TiXe and/or ATiX3) substituting the conventional toxic Pb-based de-
gradable perovskites and to be futuristically used in photoluminescence,
tunable bandgaps, tunneling junctions, and high thermal and/or
moisture photovoltaic applications.
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cation tree graphs from fine tree training of the training datasets: (b) Ay, Tilz; (d)
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