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Abstract-- This paper critically reviews electrokinetic flow 

mechanism (diffusio-osmosis) of electrolyte solutions in 

micro/nano channels. We have attempted to show the complete 

analytical derivation and the missing steps from previous 

literature to obtain diffusio-osmosis electric potential and velocity 

distribution of an electrolyte in a fine capillary slit. Diffusio-

osmotic transport occurs due to the presence of a charged surface 

(electrostatic interactions between surface and electrolyte) which 

is induced by the imposed electrolyte concentration gradient. 

Electrostatic and induced potential distribution and velocity 

distribution were determined from using Poisson, linearized 

Poisson–Boltzmann and modified Navier–Stokes equations, 

respectively. Various assumptions such as having a constant 

concentration gradient imposed along the axial direction have 

been considered to ease our calculations. It was found that 

normalized induced electric field increases with an increase in the 

electo-kinetic distance from the center to a maximum value at the 

slit wall; and normalized velocity decreases monotonically with the 

increase in the electro-kinetic distance. The effect of the induced 

electric field was found to be of dominant significance on the 

diffusio-osmotic flow.  

 
Index Term--   Diffusio-osmosis; transport; electrolyte; porous 

media; charged capillary wall 

1. INTRODUCTION 

Electrokinetic flows of electrolyte solutions in charged 

micro/nano channels has gained much interest in many areas of 

science and engineering. In electrokinetics, electro-osmosis has 

been the most known transport mechanism used to manipulate 

the fluid flow in microfluidic and nanofluidic systems. Electro-

osmosis transport occurs due to the interaction between an 

external, tangential, electric field with the electric double layer 

(EDL) adjacent to a charged wall [1]. 

Principally, transport of fluids in micropore systems (porous 

media) involves three different driving forces: pressure 

difference between the two ends of a capillary pore 

(convection), concentration gradient of the impermeable solute 

between the two bulk solutions surrounding the pore on both 

ends (osmosis), and tangential electrical fields affecting the 

electrical double layer (EDL) near a charged pore wall (electro-

osmosis). Transport problems related to the three mentioned 

driving forces has been studied extensively in the past [2,3,4]. 

Conversely, it has been found that there is another driving force 

for electrolyte solutions in a capillary pore which is known as 

diffusioosmosis and is associated with the presence of a 

concentration gradient of a permeable solute along the capillary 

pore. Diffusio-osmosis is an important electrokinetic flow 

mechanism in microchannels and nanochannels for 

understanding transport of fluids in porous media [2,4]. In an 

electrolyte system, diffusio-osmosis transport results from the 

electrostatic interaction between a tangential concentration 

gradient of the electrolyte and a charged wall. Dissociation of 

electrolytes along the charged solid surface would result in a 

fluid flow by two mechanisms: (1) chemi-osmotic effect due to 

stresses developed by tangential gradient of excess pressure 

within the EDL (2) electro-osmotic effect due to the inequality 

of the tangential diffusive and convective fluxes of the two 

electrolyte ions which is related to the macroscopic electric 

field [1,2]. 

Understanding the mechanism of diffusio-osmotic flow of 

electrolyte solutions in porous media would make it possible to 

improve and develop much more advanced applications related 

to separation technologies. Permeable membranes for 

molecular separation, nanofluidic devices for biological and 

chemical analysis and polymer electrolyte fuel cells for energy 

storage are some important applications of diffusio-osmotic 

flow [1]. 

The diffusio-osmotic flow of an electrolyte solution in a slit 

(capillary channel) which is induced by the presence of a 

charged surface induced by the imposed electrolyte 

concentration gradient has been discussed and investigated 

theoretically by Ma and Keh (2006) [2]. 

Analytical solutions of the diffusio-osmotic transport of a 

permeable solute (electrolyte solution) in the tangential 

direction of a capillary channel (slit) between two identical 

parallel and charged plates has been derived and identified. The 

use of the well-known Poisson and linearized Poisson–

Boltzmann equations, which apply to the case of low potentials 

or low fixed-charge densities, with the basics of transport 

phenomena in electrolyte systems allowed us to obtain the 

electrostatic potential distribution of an electrolyte solution 

inside a capillary pore. Electrostatic potential distribution 

would help us in calculating thickness of EDL adjacent to the 

charged walls which is an arbitrary thickness relative to the 
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capillary pore size. Moreover, fluid velocity profile along the 

tangential direction (the horizontal position) was obtained 

semi-analytically from solving the modified Navier–Stokes 

equation with neglecting electric current arising from the 

cocurrent diffusion, electric migration, and diffusio-osmotic 

convection of the electrolyte ions. It should be noted that any 

charged surface may have either a constant surface potential or 

a constant surface charge density with an arbitrary quantity, 

which would play a key role in simplifying our transport 

problem analysis [2,4,5] 

2. PROBLEM FORMULATION & MATHEMATICAL MODELING 

The steady diffusio-osmosis flow of a symmetric electrolyte 

solution in a capillary channel between two identical parallel 

charged plates is investigated to obtain both electric potential 

and velocity distributions within the slit which has a separation 

distance of 2ℎ. For simplicity, we need to only consider the 

half region 0 ≤ 𝑦 ≤ ℎ  as shown in Fig. 1 where further 

analysis is similar to the case of the charged plate [1,2]. 

 

 

Fig. 1. Diffusion-osmosis flow in a capillary slit due to the presence of an applied concentration gradient of an electrolyte. 

 

(a) Electrostatic potential distribution 

Considering the given assumptions with the utilization of the well-known Poisson equation in microscopic models as shown in Eq. 

(1) and Eq. (2); substitution of Eq. (2) into Eq. (1) gives us Eq. (3) [1-3,6]. 

 

∇2𝜓 = −
𝜌𝑒

𝜀
 (1) 

 

𝜌𝑒 = 𝐹 ∑ 𝓏𝑖𝑛𝑖

𝑖

 (2) 

where 𝜓 is the electric potential, 𝜌𝑒 is the charge density, 𝜀 = 4𝜋𝜀0𝜀𝑟, 𝜀𝑟 is the relative permittivity of the electrolyte solution 

and 𝜀0 is the permittivity of a vacuum, 𝐹 is Faraday’s constant, 𝓏𝑖 is a valence (a positive or negative integer), Z is a valence (a 

positive integer), and 𝑛𝑖 represents local concentrations of both cations, 𝑛+(𝑦, 0), and anions, 𝑛−(𝑦, 0) in the electrolyte solution 

[1,2]. 

 

 𝑑2𝜓

𝑑𝑦2
= −

4𝜋𝑍𝑒

𝜀
[𝑛+(𝑦, 0) − 𝑛−(𝑦, 0)] (3) 

 

The Boltzmann distribution equation, Eq. (4), relates between the local ionic concentrations to the electrostatic potential as shown 

in Eq. (5) [1,2]. 

 

 𝑛𝑖 = 𝑛∞ 𝑒±�̅�𝑖   (4) 

 𝑛± = 𝑛∞ 𝑒−�̅�    ;     𝑛− = 𝑛∞ 𝑒+�̅�  (5) 

 

where �̅� = (𝓏𝑖𝐹𝜓 𝑅𝑇) = (𝑍𝑒𝜓 𝑘𝑇) =⁄⁄  is the dimensionless electrostatic potential at a position y from the wall relative to that in 

the bulk solution, 𝑅 is universal gas constant, 𝑘 is Boltzmann constant, 𝑇 is the absolute temperature. Substituting Eq. (5) into 

Eq. (3) results in the well-known Poisson–Boltzmann equation, Eq. (6) [1-3,6]; 
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𝑑2�̅�

𝑑𝑦2
= 𝒦2 sinh �̅� (6) 

 

where 𝒦 = [4𝜋(𝑍𝑒)2𝑛∞(𝑧 = 0)/𝜀𝑘𝑇]1/2 is the Debye screening parameter. Eq. (7) and Eq. (8) show the boundary conditions 

within the slit; which were utilized to solve Eq. (6) [1,2]. 

 

𝑦 = ℎ ;  �̅� = 𝜁 (7) 

 

𝑦 = 0 ;  
𝑑�̅�

𝑑𝑦
= 0 (8) 

                           ∫ (
𝑑2�̅�

𝑑𝑦2
) 𝑑�̅� =

1

2
(

𝑑�̅�

𝑑𝑦
)

2

+ 𝐶 (9) 

 

cosh2 �̅� =
1

2
[cosh(2�̅�) + 1] (10) 

 

To solve Eq. (6), we employ the mathematical identities in Eq. (9) and Eq. (10) and integrate from 𝑦 = 0 to 𝑦 = 𝑦 using the 

boundary condition in Eq. (8). Note that �̅�𝑐 = �̅�(𝑦 = 0) is the potential at the median plane between the slit walls [1,2,5-7]. 

 

(
𝑑�̅�

𝑑𝑦
)

2

= 2 ∫ (
𝑑2�̅�

𝑑𝑦2
)

�̅�

�̅�𝑐

 𝑑�̅� − 𝐶 (11) 

 

(
𝑑�̅�

𝑑𝑦
)

2

= 2𝒦2[cosh �̅� − cosh �̅�𝑐] (12) 

 

(
𝑑�̅�

𝑑𝑦
)

2

= 2𝒦2 [2 (cosh2
�̅�

2
− 1) − 2 (cosh2

�̅�𝑐

2
− 1)] (13) 

 

(
𝑑�̅�

𝑑𝑦
)

2

= 4𝒦2 [cosh2 (
�̅�

2
) − cosh2 (

�̅�𝑐

2
)] (14) 

 

𝑑�̅�

𝑑𝑦
= 2𝒦 [cosh2 (

�̅�

2
) − cosh2 (

�̅�𝑐

2
)]

1/2

 (15) 

 

When we have a surface potential of 𝜁, the potential profile in a capillary slit can be determined numerically from Eq. (15). 

However, if there is a surface charge density of 𝜌𝑒, the boundary condition in Eq. (7) should be replaced by the Gauss condition as 

[1,2,5-7]; 

 

 

𝑦 = ℎ ; 
𝑑�̅�

𝑑𝑦
=

4𝜋𝜌𝑒

𝜀
 (16) 

 

Applying the new boundary condition in Eq. (15) results in: 
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1

2
(

4𝜋𝜌𝑒

𝜀𝒦
)

2

= cosh (
𝑍𝑒𝜁

𝑘𝑇
) − cosh (

𝑍𝑒�̅�𝑐

𝑘𝑇
) (17) 

 

Dimensionless and scaling analysis for Eq. (17) [1-3,6]; 

 

LHS: 
4𝜋𝜌𝑒

𝜀𝒦
[=]

𝜌𝑒

𝜀𝒦
[=]

𝐶/𝑚2

(𝐶/𝑉𝑚) ∗ (1/𝑚)
[=] 𝑉 

 

RHS: 
𝑍𝑒𝜁

𝑘𝑇
[=]

𝑍𝑒�̅�𝑐

𝑘𝑇
[=]

𝐶 𝑉

(𝐽/𝐾) ∗ 𝐾
[=]

𝐶 𝑉

(𝐽/𝐾) ∗ 𝐾
[=]

 𝑉

𝑉
[=] 1 

 

where 𝐶 is Coulomb (the SI unit of electric charge), 𝑚 is meter (the length unit), 𝑉 is volt (the SI unit of electromotive force), 𝐽 

is joule (a derived unit of energy; 𝐽 = 𝑘𝑔 𝑚2 𝑠−2 = 𝑁𝑒𝑤𝑡𝑜𝑛 × 𝑚 = 𝑊𝑎𝑡𝑡 × 𝑠), and 𝐾 is Kelvin (the SI unit of thermodynamic 

temperature). Thus, we need to make the LHS dimensionless by multiplying LHS with the scaling factor (𝑍𝑒 𝑘𝑇) ⁄ 2
, then LHS 

becomes, 

 

LHS: 
4𝜋𝜌𝑒

𝜀𝒦
∗

𝑍𝑒

𝑘𝑇
[=]

𝜌𝑒

𝜀𝒦
∗

𝑍𝑒

𝑘𝑇
[=]

𝐶/𝑚2

(𝐶/𝑉𝑚) ∗ (1/𝑚)
∗

𝐶

(𝐽/𝐾) ∗ 𝐾
[=] 

 𝑉

𝑉
[=] 1 

 

 

1

2
(

4𝜋𝑍𝑒𝜌𝑒

𝜀𝒦kT
)

2

= cosh (
𝑍𝑒𝜁

𝑘𝑇
) − cosh (

𝑍𝑒�̅�𝑐

𝑘𝑇
) (18) 

 

Eq. (18) provides the relation between 𝜁 and 𝜌𝑒 for an arbitrary value of 𝒦h. 

 

(b) Induced electric potential 

The total flux can be expressed by using Nernst-Einstein equation as in Eq. (19) [1-3,6]; 

 

 
𝐽± = −𝐷± (∇𝑛± +

𝓏𝑖𝐹

𝑅𝑇
𝑛±∇𝜓) + 𝑛±𝑢 (19) 

 

where 𝑢 =  𝑢(𝑦) is the fluid velocity relative to the slit walls in the direction of decreasing electrolyte concentration, 𝐷+ 𝑎𝑛𝑑 𝐷− 

are the diffusion coefficients of the cations and anions, respectively, 𝐸 =  𝐸(𝑦) is the macroscopic electric field induced by the 

concentration gradient of the electrolyte. Substitution of (𝓏𝑖𝐹𝜓 𝑅𝑇) = (𝑍𝑒𝜓 𝑘𝑇)⁄⁄  into Eq. (19) and applying the principle of 

superposition for the electric potential gives [1-3,6]; 

 

 

𝐽± = −𝐷± [∇𝑛± +
𝑍𝑒

𝑘𝑇
𝑛±(∇𝜓 − 𝐸)] + 𝑛±𝑢 (20) 

 

Assuming that 𝐽+ = 𝐽− = 𝐽 is possible if we have no net electric current arising from the transport of cations and anions by 

cocurrent diffusion, electric migration, and diffusio-osmotic convection; which will yield to have an analytical expression for the 

induced electric field distribution as obtained in Eq. (21) [1,2,7]; 

 

 

𝐸 =
𝑘𝑇∇𝑛∞

𝑍𝑒𝑛∞(𝑧 = 0)
[
(1 + 𝛽)𝑒−�̅� − (1 − 𝛽)𝑒�̅�

(1 + 𝛽)𝑒−�̅� + (1 − 𝛽)𝑒�̅�
+

Pe sinh �̅�

(1 + 𝛽)𝑒−�̅� + (1 − 𝛽)𝑒�̅�

𝑢

𝑈∗
] (21) 

 

Where 𝑈∗ = 2𝑘𝑇|∇𝑛∞| 𝜂𝒦2 ⁄ is a characteristic value of the diffusio-osmotic velocity, 𝛽 = (𝐷+ − 𝐷−) (𝐷+ + 𝐷−)⁄  is the 

dimensionless effective diffusivity, Pe = [4𝑛∞(𝑧 = 0)𝑈∗ (𝐷+ + 𝐷−)⁄ |∇𝑛∞|] = [8𝑛∞(𝑧 = 0)𝑘𝑇 (𝐷+ + 𝐷−)𝜂𝒦2⁄ ], and 𝜂 is the 
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fluid viscosity. Eq. (21) shows that 𝐸(𝑦) is strongly dependent on the local electrostatic potential 𝜓 and fluid velocity 𝑢. To 

estimate the induced electric field 𝐸 numerically, we need to solve for 𝑢 as shown in part (c) [1,2,5]. 

 

(c) Fluid velocity distribution 

The momentum balance from the modified Navier-Stoke equations can be applied for the steady diffusio-osmotic flow in a capillary 

slit to determine pressure and velocity distributions. Assuming the fluid is Newtonian and incompressible, 𝑦 and 𝑧 direction 

equations, respectively, gives [1-3,6]; 

 
𝜕𝑝

𝜕𝑦
+ 𝑍𝑒(𝑛+ − 𝑛−)

𝑑𝜓

𝑑𝑦
= 0  (22) 

 

𝜂
𝜕2𝑢

𝜕𝑦2
=

𝜕𝑝

𝜕𝑧
− 𝑍𝑒(𝑛+ − 𝑛−)𝐸 = 0  (23) 

 

Boundary conditions for velocity profile [1-3,6]; 

 

𝑦 = ℎ ; 𝑢 = 0 (24) 

 

𝑦 = 0 ;
𝑑𝑢

𝑑𝑦
= 0 (25) 

Solving for pressure distribution from Eq. (5) and Eq. (22) and integrate from 𝜓(𝑦 = 0) = 𝜓𝑐 to 𝜓(𝑦 = ℎ) = 𝜓 gives [1-3,6]; 

 

 

∫
𝜕𝑝

𝜕𝑦

𝑝0

𝑝

𝑑𝑦 +  𝑍𝑒(𝑛∞ 𝑒−�̅� − 𝑛∞ 𝑒+�̅�) ∫
𝑑𝜓

𝑑𝑦

𝜓

𝜓𝑐

𝑑𝑦 = 0 (26) 

 

𝑝0 − 𝑝 + 𝑛∞𝑍𝑒( 𝑒−�̅� − 𝑒+�̅�)(𝜓 − 𝜓𝑐) = 0 (27) 

 

𝑝 = 𝑝0 + 𝑛∞𝑘𝑇( 𝑒−�̅� −  𝑒+�̅�)(�̅� − �̅�𝑐) (28) 

 

𝑝 = 𝑝0 + 2𝑛∞𝑘𝑇(− sinh �̅� − sinh �̅�𝑐) (29) 

 

sinh �̅� + cosh �̅� = ? (30) 

 

 

 

 

 

Evaluating Eq. (30) 

 
1

2
𝑒�̅� +

1

2
𝑒−�̅� +

1

2
𝑒�̅� −

1

2
𝑒−�̅� = 𝑒�̅� (31) 

 

for 𝒦 → ∞ ; (𝑍𝑒 → ∞ or 𝑘𝑇 → 0), thus �̅� → 0 ;  𝑒0 = 1, and then Eq. (27) becomes 

 

 

sinh �̅� + cosh �̅� =  1 (32) 
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Substitution of Eq. (32) into Eq. (29) results in 

 

 

𝑝 = 𝑝0 + 2𝑛∞𝑘𝑇(cosh �̅� − cosh �̅�𝑐) (33) 

 

where 𝑝0 is the pressure on the mid-plane between slit walls and at 𝑦 = 0. Substituting Eq. (5) and Eq. (33) into Eq. (23) and 

integrating with respect to y-direction twice subject to the given boundary condition in Eq. (24) and Eq. (25) gives [1,2,7]; 

 

 
𝜂

𝜕2𝑢

𝜕𝑦2
=

𝜕𝑝

𝜕𝑧
− 𝑍𝑒(𝑛+ − 𝑛−)𝐸 = 0 (34) 

 

𝜕2𝑢

𝜕𝑦2
=

1

𝜂
[2|∇𝑛∞|𝑘𝑇(cosh �̅� − cosh �̅�𝑐) − 𝑍𝑒𝑛∞𝐸 (𝑒−�̅� − 𝑒�̅�)] (35) 

 

 𝜕2𝑢

𝜕𝑦2
=

1

𝜂
[2|∇𝑛∞|𝑘𝑇(cosh �̅� − cosh �̅�𝑐) + 2𝑍𝑒𝑛∞𝐸 sinh �̅�] (36) 

 

 𝜕2𝑢

𝜕𝑦2
=

2|∇𝑛∞|𝑘𝑇

𝜂
[(cosh �̅� − cosh �̅�𝑐) +

𝑍𝑒𝑛∞𝐸

𝑘𝑇|∇𝑛∞|
 sinh �̅�] (37) 

 

 
𝑢 =

2|∇𝑛∞|𝑘𝑇

𝜂𝒦2
∫ ∫ [(cosh �̅� − cosh �̅�𝑐) +

𝑍𝑒𝑛∞𝐸

𝑘𝑇|∇𝑛∞|
 sinh �̅� ] 𝑑(𝒦y)𝑑(𝒦y)

𝒦y

0

𝒦y

𝒦h

 (38) 

 

 𝑢

𝑈∗
= ∫ ∫ [(cosh �̅� − cosh �̅�𝑐) +

𝑍𝑒𝑛∞𝐸

𝑘𝑇|∇𝑛∞|
 sinh �̅�  ] 𝑑(𝒦y)𝑑(𝒦y)

𝒦y

0

𝒦y

𝒦h

 (39) 

 

 

To estimate the induced electric field 𝐸 numerically, we solve for 𝑢 from Eq. (39) and �̅� from Eq. (15); and plug both of them 

into Eq. (21) [1,2]. 

3.  RESULTS AND DISCUSSION 

From Fig. 2 and for specific values of the dimensionless parameters, 𝐸(𝒦𝑦)/𝐸(0) is positive and increases with an increase in the 

electo-kinetic distance (𝑦/ℎ) from unity at the symmetrical position at the center (𝑦 = 0) to a maximum value at the slit wall 

(𝑦 = ℎ) when Pe = 0. Normalized electric field decreases with an increase in 𝑍𝑒|𝜁 |/𝑘𝑇  and increases with an increase in 

𝜁/|𝜁 |𝛽 if it is not too close to unity. It was found that the effect of the electrolyte convection on the local induced electric field in 

the slit (when Pe = 1) could be quite significant even if there is a low zeta potential at the walls [1,2]. 
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Fig. 2. Normalized electric field induced by an electrolyte gradient parallel to the walls of a slit versus the dimensionless coordinate 𝑦/ℎ for the case of 𝒦𝑦 =  1 

with various values of the parameter 𝛽 with 𝑍𝑒𝜁/𝑘𝑇 =  2; solid curves: Pe = 1, dashed curves: Pe = 0. 

 
From Fig. 3 and for specific values of the dimensionless parameters, the dimensionless velocity 𝑢/𝑈∗ decreases monotonically 

with the increase in the electro-kinetic distance (𝑦/ℎ). In other words, one can also understand that 𝑢/𝑈∗ increases monotonically 

and remarkably with an increase in the value of 𝒦ℎ. Also, it was determined that when 𝛽 = 0, 𝑢/𝑈∗ increases with an increase 

in Pe and as Pe → ∞, 𝑢/𝑈∗ becomes finite, Fig. 4. 

When 𝑃𝑒 =  𝛽 =  0, the normalized velocity 𝑢/𝑈∗ is negative and the fluid flows toward the higher electrolyte concentration due 

to the chemi-osmotic contribution only. Similarly, when 𝑃𝑒 = 0  and  𝜁/|𝜁 |𝛽 ≠ 1 , 𝑢  is negative; however, if 𝑃𝑒 = 0 

and 𝜁/|𝜁 |𝛽 ≈ 1 the fluid velocity 𝑢 is positive, meaning that the fluid flows against the electrolyte concentration gradient. The 

fluid velocity 𝑢/𝑈∗ monotonically increases as 𝑍𝑒|𝜁 |/𝑘𝑇 increase, as concluded from Fig. 3 and Fig. 4. 

Comparing the analysis results in a fine capillary slit with the previous identified results in a fine capillary tube may help us to 

understand the diffusio-osmotic transport behavior. In both cases, in general, the effect of the induced electric field in the EDL is 

found to be of dominant significance on the diffusio-osmotic flow. However, for the tube case, the fluid velocity may have more 

than one reversal in direction over a small surface potential range and the flow rate does not always increase with an increase in the 

electro-kinetic radius of the capillary [8,9,10]. 
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Fig. 3. Normalized diffusio-osmotic velocity in a slit versus the dimensionless coordinate 𝑦/ℎ for the case of 𝒦ℎ =  1 with various values of the parameter 𝛽 

with 𝑍𝑒𝜁/𝑘𝑇 =  2; solid curves: Pe = 1, dashed curves: Pe = 0. 

 

 
Fig. 4. Normalized diffusio-osmotic velocity in a slit versus the dimensionless coordinate 𝑦/ℎ for the case of 𝑍𝑒𝜁/𝑘𝑇 = 4 with 𝒦h = 1; solid curves: β =−0.2, 

dashed curves: β = 0. 

4. THEORY SHORTCOMINGS AND LIMITATIONS 

Diffusio-osmotic flow within a capillary slit was derived with 

various assumptions such that the fluid is Newtonian, steady 

state, incompressible, y-direction dependent only, only slightly 

nonuniform in the electrolyte concentration and there is only a 

small external gradient of the electrolyte concentration along 

the plane wall and near the parallel plates in a slit [1,5]. The 

consideration of many assumptions in solving the distribution 

profile of both induced electric potential and fluid velocity may 

result in some kind of errors and deviation from a real case 

scenario. It is suggested that numerical analysis should be 

compared with experimental results to have a better judgment 

on the validity of the theory. 

Moreover, it was assumed that the applied electrolyte 

concentration gradient 𝛻𝑛∞  is constant along the tangential 

direction since there is only a small external gradient; where 

𝑛∞ is the linear electrolyte concentration in the bulk phase and 

far away from the surface at y→∞ [1,2].  
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The theoretical and numerical investigations were carried out 

for electrolyte systems with bare walls. In contrast to this, the 

existence of a surface charge layer can result in a quite different 

diffusio-osmotic flow relative to a charged plane wall and/or 

relative to a capillary slit with bare walls. Earlier studies found 

that the structure of the surface charge layer have a tremendous 

effect on the flow velocity depending on the capillary 

characteristics and the electrolyte solution [9]. For example, a 

slit with a surface charge layer can lead to an augmented or a 

diminished electro-kinetic flow and the flow may also be 

reversed relative to that in a capillary with bare walls [4]. 

Linearized Poisson-Boltzmann equation have only a few terms 

analyzed (after applying Taylor’s series expansion to the non-

linear form) and this may result in a huge error in calculations 

if and only if the further terms have large magnitudes. Non-

linear form of Poisson-Boltzmann will obviously result in 

having a much better prediction, but the problem will be more 

difficult to solve analytically. 

X. Xing (2011) applied the non-linear Poisson-Boltzmann 

equation for two parallel uniformly charged plates and obtained 

new exact asymptotic results in various regime, but it turned out 

that the theory has some limitations and assumptions that might 

affect exact solutions which include the following [10,11]: (1) 

crystallization; high surface charge density may crystallize the 

counter-ion density on the plate surface (2) Neutral bound pairs; 

the response of ions form neutral bound pairs and ions with 

multiple valence to the external charged objects is a serious 

ununderstood issue, and (3) chemical interactions; there must 

be short range chemical interactions between ions and charged 

surfaces in real situations. Taking previous issues into 

consideration is critical in analyzing transport of electrolytes. 

Even though crystallization possibility has been extensively 

explored by many authors, the problem has not been completely 

understood. Also, the latter two issues must be investigated 

thoroughly and should be major missions of future works [10]. 

5. CONCLUSION  

Electrostatic and induced potential distribution and velocity 

distribution of an electrolyte solution inside a capillary pore 

were investigated. In general, the normalized induced electric 

field is positive and increases in the electo-kinetic distance from 

the center (𝑦 = 0)  and normalized velocity decreases 

monotonically with the increase in the electro-kinetic distance. 

However, an increase in Pe results in a monotonic increase in 

𝑢/𝑈∗ and as Pe → ∞ , 𝑢/𝑈∗  becomes finite. When  Pe = 0 

and 𝛽 =  0, 𝐸 vanishes everywhere and 𝑢 is negative. When 

𝑢  is negative, it means the fluid flows toward the higher 

electrolyte concentration; but, having a positive 𝑢  indicates 

that the fluid flows against the electrolyte concentration 

gradient. The effect of the induced electric field was found to 

be of dominant significance on the diffusio-osmotic flow. Thus, 

it is important to understand the mechanism of diffusio-osmotic 

flow of electrolyte solutions in porous media to improve and 

develop related separation technologies. 
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