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Abstract - This paper suggests a new method of predicting flux values at reverse osmosis (RO) 

desalination plants.  The study is initiated by using the solution-diffusion model that is applied to 

the groundwater source at Abqaiq plant (500 RO plant) at Saudi Aramco, Dhahran, Saudi Arabia 

in order to calculate the osmotic pressure of the treated water for Shedgum/Abqaiq groundwater. 

For modelling purposes, the same technique is used to determine the osmotic pressure drops at the 

same plant configuration and operating conditions when using seawater sources such that of 

Arabian Gulf and Red Sea waters. High rejection brackish water RO (BWRO) element Toray 

TM720D-400 with 8” is the RO membrane type that is used at Abqaiq plant. The calculated 

osmotic pressures of the three water sources, assuming that they are all treated at Abqaiq plant, are 

utilized to determine the appropriate flux values as well as membrane resistances of different 

BWRO Toray membranes. Values of numerous parameters such as water permeability constant, 

applied pressure, gas constant, water temperature, water molar volume and membrane thickness, 

water salinity/TDS are taken into account to develop our calculations through the solution-

diffusion model. A comparison between low-pressure, standard and high-pressure BWRO Toray 

membranes performance have been established to select the ideal membrane type for the treatment 

of water from various sources at Abqaiq plant. The model results confirm an inverse relationship 

between the membrane thickness and the water flux rate. Also, a proportional linear relation 

between the overall water flux and the applied pressure across the membrane is identified. Higher 

flux rates and lower salinity indicate lower membrane resistance which yield to higher water 

production. Modelled data predict that BWRO Toray TM720D-440 with 8”membrane is the 

optimal BWRO membrane choice for the three water sources at Abqaiq plant. 
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1. INTRODUCTION 

The solution-diffusion model is popular technique that is used to explain the transport in dialysis, 

reverse osmosis, gas permeation and pervaporation. Previous experimental data and modelling 

results verified that flux rate is proportional to a gradient in the chemical potential [1]. 

There are two different models to describe and control the permeation in membranes for better 

separation. The first model is the solution-diffusion model where permeants dissolve (sorption) in 

the membrane material at the upstream interface in the presence of a concentration gradient that 

allows permeants to diffuse through the membrane and desorbed on the downstream interface side. 

Separation between different permeants occurs because each material has a different diffusion rate 

in the membrane. The solution-diffusion model has been used since 1940 to explain the transport 

of gases across polymeric membranes. A second model called the pore-flow model depends on the 

presence of a pressure gradient which yields to a convection flow of permeants through 
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membrane’s tiny pores is more limited compared to the first model. Exclusion or filtration of larger 

permeant’s pores is the separation technique which explains the pore-flow model [1, 2]. 

There is a major difference between the solution-diffusion model and the pore-flow model in 

expressing the chemical potential. In the solution-diffusion model, the pressure within a membrane 

is uniform and that the chemical potential gradient is expressed only as a concentration gradient. 

Solution-diffusion membranes transmit pressure in the same way as liquids that is the reason for 

expressing the pressure difference across the membrane as a concentration gradient only. On the 

other hand, the chemical potential gradient in the pore-flow model is expressed only as a pressure 

gradient since that the concentrations of both solvent and solute within a membrane are uniform. 

Figure 1 shows a comparison between both models for one-component solution in a pressure-

driven permeation system [1, 2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Pressure-driven permeation of a one-component solution across a membrane according to the solution-

diffusion and the pore-flow models 

The objective of this work is to estimate the osmotic pressure drop value of the high rejection 

brackish water RO membrane (Toray TM720D-400 with 8”) by using the solution-diffusion model 

that is applied to Abqaiq plant (500 RO plant) for Shedgum/Abqaiq groundwater at Saudi Aramco, 

Dhahran, Saudi Arabia. Osmotic pressure drops has been calculated for the groundwater, Arabian 

Gulf and Red Sea waters at the same plant configuration and operating conditions of Abqaiq plant 

in Aramco.  

The calculated osmotic pressures are utilized to determine the applied pressure drop across the 

membrane and the applicability of using different BWRO Toray membrane types for the treatment 

of seawaters. The maximum achievable water flux values are determined for the various suggested 
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BWRO membranes for the three water sources. Also, the membrane resistance values has been 

investigated for comparison purposes. The ideal membrane for the treatment of various water 

sources at a RO plant with the same configuration of Abqaiq plant has been selected. 

The feasibility of using BWRO membranes in desalination of Red Sea water in Jeddah, Saudi 

Arabia is studied at the same flux rate of Arabian Gulf water source and same plant conditions of 

Abqaiq plant. The osmotic pressure drop, applied pressure drop, flux rates and membrane 

resistance values for Red Sea water source are compared with those of Shedgum/Abqaiq 

groundwater and Arabian Gulf water. 

2. REVERSE OSMOSIS 

In reverse osmosis, water flows from the salt solution to the pure waterside by applying pressure 

(∆𝑝) that is greater than the osmotic pressure (∆𝜋) [1]. Generally, in reverse osmosis, we must 

satisfy this condition (∆𝑝 > ∆𝜋) all the time to allow water to pass through the membrane and 

reach the permeate side [1, 2]. Reverse osmosis membranes are preferred over Ultrafiltration and 

Nanofiltration since they are capable of removing 90 to 99% of TDS in water [3]. 

Osmotic pressure (Δ𝜋) is defined as the pressure difference (𝑝𝑜 − 𝑝ℓ) across the membrane. If a 

pressure higher than the osmotic pressure is applied to the feed side (left side in Figure 2) of the 

membrane, the process is called reverse osmosis. Figure 2 shows the driving forces in a reverse 

osmosis membrane according to the solution-diffusion and the pore-flow models. 𝜇𝑖 and 𝛾𝑖 are the 

chemical potential and activity coefficient, respectively, of component 𝑖 [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2. Chemical potential, pressure, and solvent activity profiles in a reverse osmosis membrane according to the 

solution-diffusion and the pore-flow models 
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3. METHODOLOGY AND DATA 

Abqaiq 500 RO plant data (Table 1) has been used to determine osmotic pressure drop values for 

the RO membrane (Toray TM720D-400 with 8”) from Equations (1) and (2). However, in order 

to calculate the osmotic pressure for seawater sources, we applied the same information of 

Shedgum/Abqaiq groundwater at Abqaiq 500 RO plant, except for the flux and salinity values, for 

the treatment of either Arabian Gulf or Red Sea waters as listed in Table 1 [1, 4]. 

Water permeability is approximately determined to be 9.5 ×  10−7 𝑐𝑚2/𝑠 [8]. For water-salt 

solution, reverse osmosis permeation expression can be simplified as the following [1, 5]:  

 𝑱𝒊 = 𝑨(𝚫𝒑 − 𝚫𝝅) (1) 

 

 
𝑨 =

𝑷𝒊𝒄𝒊𝒐𝝂𝒊

𝑹𝑻𝓵
 (2) 

 

Where; 

𝑱𝒊 = Membrane flux of component 𝑖, water, 𝑔𝑓𝑑 

𝚫𝒑 = Applied pressure drop across the membrane, 𝑝𝑠𝑖 
𝚫𝝅 = Osmotic pressure drop across the membrane, 𝑝𝑠𝑖 
𝑨 = Water permeability constant, cm/atm s 

𝑷𝒊 =Permeability of component 𝑖, water, 𝑐𝑚2/𝑠   

𝒄𝒊𝒐 = Initial mole concentration of water, 𝑝𝑝𝑚 

𝝂𝒊 = Water molar volume, 𝑐𝑚3/𝑚𝑜𝑙 
𝑇 = Water tempreture, 𝐾 

𝑹 = Gas constant, 𝑚3𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾 

𝓵 = Membrane thickness which is assumed to be similar to spacer thickness, 𝑚𝑖𝑙 

 

Table 1. Data of RO Membrane Process at Abqaiq 500 RO Plant (Shedgum/Abqaiq groundwater) and the Two 

Seawaters Studied Scenarios [1, 4, 6, 7] 

Parameter 
Shedgum/Abqaiq 

Groundwater 

Arabian Gulf 

Water Scenario 

Red Sea Water 

Scenario 

Membrane type Toray TM720D-400 with 8” 

RO module 72 parallel membranes × 8 units 

Membrane thickness (ℓ) [3] Assumed to be similar to spacer thickness of 34 𝑚𝑖𝑙 
Membrane area (𝐴𝑟𝑒𝑎) [3] 400 𝑓𝑡2 

Max pressure drop per vessel (𝑝) ~ 60 𝑝𝑠𝑖 
Max pressure drop per membrane (𝑝) ~ 20 𝑝𝑠𝑖 

Water salinity (𝒄𝒊𝒐)* ~ 2800 𝑝𝑝𝑚 [4] ~ 41070 𝑝𝑝𝑚 [6] ~ 42070 𝑝𝑝𝑚 [7] 

Membrane water flux (𝐽𝑖  )* ~ 18 𝑔𝑓𝑑 ~ 12 𝑔𝑓𝑑 ~ 12 𝑔𝑓𝑑 

Water temperature (𝑇) ~ 25°𝐶 

Water permeability constant (𝑃𝑖)** 9.5 ×  10−7 𝑐𝑚2/𝑠 

Water molar volume (𝜈𝑖) 18 𝑐𝑚3/𝑚𝑜𝑙 
Gas constant (𝑅) 8.2057 × 10−5 𝑚3𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾 

*Averaged values 

** Taken from Paul (2004), regardless of the temperature effect on permeability; can be calculated at different temperatures from Maddah (2016). 
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Membrane resistance [8] constants for each BWRO Toray membrane has been calculated by using 

Equation (3). 

 

 
𝑱𝒊 =

∆𝒑

𝜿 𝓡𝒎
 (3) 

 

Where; 

𝑱𝒊 = Membrane flux of component 𝑖, water, 𝑔𝑓𝑑 

𝚫𝒑 = Applied pressure difference across the membrane, 𝑝𝑠𝑖 
𝛋 = Dynamic viscosity of water, 𝐼𝑏 𝑠/𝑓𝑡2 

𝓡𝒎 = Membrane resistance , 𝑓𝑡−1 

 

Van't Hoff [9] osmotic pressure (𝜋) formula can estimate the osmotic pressure of an aqueous 

solution from its molar concentrations of dissolved species. The overall required osmotic pressure 

drop (∆𝜋) for a water treatment plant has been investigated for the three various water sources 

from Equation (4). 

 

 𝝅 = 𝓜ℝ𝑻 (4) 

 

 

Where; 

𝓜 =  Molar concentration of dissolved species, 𝑚𝑜𝑙/𝐿 

ℝ = Ideal gas constant, 0.08206 𝐿 𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾 

𝑻 =Water tempreture, 𝐾 

 

Equation (5) defines the ability of a membrane to separate salt from the feed solution which is 

known as membrane removal percentage (𝜒) and it increases with the applied pressure. The feed 

TDS concentration is taken from the three studied various sources, as shown in Table 1, while the 

outlet TDS concentration is determined by using Equation (5) at a similar removal percentage of 

Toray TM720D-400 with 8’’ membrane that is 99.8%, Table 4. The water molecular weight 

(18 𝑔/𝑚𝑜𝑙) should be used to convert our ppm values to molar concentrations of TDS. 

 

 
𝝌 = (

𝒄𝒋𝒐 − 𝒄𝒋𝓵

𝒄𝒋𝒐
) ×  𝟏𝟎𝟎 (5) 

 

 

Where; 

𝜒 = Membrane removal percentage, % 

𝒄𝒋𝒐 = Initial mole concentration of component 𝑗, salt, 𝑝𝑝𝑚 

𝒄𝒋𝓵 = Final mole concentration of component 𝑗, salt, 𝑝𝑝𝑚 
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Table 2 shows the applied pressure drop per element (RO module) must be at 20 psi or below and 

must be 60 psi or below per vessel [4, 6]. The assumption of having an equal pressure on 

membranes per vessel would simplify our calculations. Altaee’s study showed that permeate flow, 

pressure and recovery rate are distributed almost equally to membranes per RO vessel [10]. A field 

study confirmed an improved performance by rearranging the elements in pressure vessels in order 

to reduce the pressure drop and permeate conductivity across the vessel [11]. Typical flux rates 

and maximum recovery values for the groundwater and the two studied water source scenarios 

(Arabian Gulf and Red Sea waters) at Abqaiq 500 RO plant are given in Table 3. 
 

Table 2. Operating Design Limits of the Overall RO Module at Abqaiq 500 RO Plant for Shedgum/Abqaiq 

groundwater [4, 12, 13] 

 

 

 

 

 

 

 

Table 3. Characteristics of Groundwater Source and the Studied Water Sources at Abqaiq 500 RO Plant [4] 

Water Source Shedgum/Abqaiq Groundwater Arabian Gulf Red Sea 

Feed silt density index 𝑆𝐷𝐼 < 3 𝑆𝐷𝐼 < 4 𝑆𝐷𝐼 < 4 

Typical target flux, gfd 18 12 12 

Max. element recovery, % 19 14 14 

 

The determined osmotic pressure values for the RO membrane (Toray TM720D-400 with 8”) of 

the groundwater and the two studied water source scenarios are used again in Equation (1) to 

calculate the applied pressure drop and suggested flux values. The same osmotic pressure drop for 

each case is utilized to determine the results of different Toray BWRO membrane types at high, 

low and standard operating pressure as shown in Table 4. It is worth mentioning that our applied 

pressure drop must be higher than the calculated osmotic pressure in order to have a positive flux. 

Table 4. Various Toray Brackish Water RO 8’’ Diameter Membranes [13, 14] 

Category Type Rejection (%) Thickness (mil)* 

Standard BWRO 
TM720-370 99.7 31 

TM720-440 99.7 28 

High-pressure BWRO 

TM720DA400 99.8 31 

TM720D-400 99.8 34 

TM720D-440 99.8 28 

Low-pressure BWRO 

TM720C-440 99.2 28 

TM720L-400 99.5 31 

TM720L-440 99.5 28 
           * Since enough data are not available, membrane thickness is assumed to be the same as spacer thickness to ease our calculations 

  

TS-diagrams [7] are used to determine the exact value of water densities at different feed sources 

from the average water temperature and water salinity, Table 5. Exact water densities would allow 

us to convert gas constant values from 𝑚3𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾 to kg 𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾 and advance our 

calculations. 
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Table 5. Water Densities at Different Sources from TS-diagrams [4, 6, 7, 15] 

Water Source Temperature (°C) Salinity (ppm) Density (𝑘𝑔/𝑚3) 

Shedgum/Abqaiq Groundwater 25 2800 [2] 999.19 

Arabian Gulf 25 41070 [4] 1027.97 

Red Sea 25 42070 [6] 1028.67 

 

4. RESULTS AND DISCUSSIONS 

TM-720-370 and TM720-440 are standard BWRO membranes and TM720C-440, TM720L-400 

and TM720L-440 are low-pressure BWRO membranes whereas TM720DA400, TM720D-400 

and TM720D-440 are high-pressure BWRO membranes, Table 4. 

Equations (1) and (2) allowed us to calculated osmotic pressure drop (∆𝜋)  for each water source; 

calculations are reported in Table 6. It is shown that the osmotic pressure of the groundwater source 

is less than Arabian Gulf and Red Sea water sources which is related to the flux rates and water 

salinity. Flux rate for Arabian Gulf and Red Sea waters are approximately half of the groundwater 

source. However, water salinity of the groundwater source is much lower than the other sources. 

Therefore, the required applied pressure drop must be larger in case of seawater sources due to the 

higher determined osmotic pressure values of these sources. Since the plant configuration has 8 

elements per vessel, we should have a maximum osmotic pressure of 60 psi or less per vessel 

which is equivalent to a max pressure of 7.5 psi per membrane; assuming that the pressure is 

distributed equally on membranes per vessel. The selected applied pressure range for our study is 

6.5 to 7.5 psi; maximum pressure values are assigned to the different membranes based on their 

category as illustrated in Table 7. 

 

 
Table 6. Calculated Osmotic Pressure Drop (∆𝜋) for Each Water Source from Equation (1) and (2) 

 

 

 

Table 7. Assigned Pressure Values for Toray BWRO Membranes 

Category Type ∆𝑝 Range (𝑝𝑠𝑖)* 

Standard BWRO 
TM720-370 6.50 - 7.25 

TM720-440 6.50 - 7.25 

High-pressure BWRO 

TM720DA400 6.50 - 7.50 

TM720D-400 6.50 - 7.50 

TM720D-440 6.50 - 7.50 

Low-pressure BWRO 

TM720C-440 6.50 - 7.00 

TM720L-400 6.50 - 7.00 

TM720L-440 6.50 - 7.00 
   *High and low pressure values area taken relative to the standard pressure 
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The relation between the applied pressure drops and the overall water flux rates for the 

groundwater source are obtained in Figures 3, 4 and 5 for standard, high-pressure and low-pressure 

Toray BWRO membranes, respectively. Figure 3 shows that the maximum possible flux for the 

groundwater in the standard membranes is around 11 gfd for TM720-440 membrane, where in 

Figures 4 and 5 the highest observed groundwater flux in the high-pressure and low-pressure 

membranes are 14.7 gfd for TM720D-440 and 7.5 gfd for TM720C-440 and TM720L-440, 

respectively (blue and green lines overlap in Figure 5). This observation is associated with the 

membrane thickness in which the least membrane thickness (28 mil) has been capable to achieve 

the highest flux. This confirms an inverse relationship between the membrane thickness and the 

water flux rate. Further, there is a linear relation between the applied pressure drop and the overall 

water flux. 
 

 

 

 
 
 
 
 
 
 
Figure 5. Effect of different applied pressures on the groundwater flux for Toray low-pressure BWRO membranes 

 

 

Figure 6 identifies a proportional relation between the water flux and the applied pressure across 

the membrane. The highest recorded flux is accounted for TM720D-440 for Shedgum/Abqaiq 

groundwater because water TDS is low for groundwater and TM720D-440 has the lowest 

thickness and the highest pressure range. The Arabian Gulf and Red Sea water sources almost have 

similar flux rates at same applied pressures due to the similarities in their water salinity levels. 

TM720C-440, TM720L-400 and TM720L-440 membranes reserved the lowest flux values since 

they are categorized as a low-pressure BWRO membranes. 

Figure 7 demonstrates the membrane resistance for the three studied water sources. Seawater 

sources have higher membranes resistances than the groundwater source because of having lower 

flux and higher TDS. TM720L-400 has the highest membrane resistance since it is in the low-

pressure category and has the highest membrane thickness of 31 mil. 

Figure 3. Effect of different applied pressures on the 

groundwater flux for Toray standard BWRO 

membranes 

Figure 4. Effect of different applied pressures on the 

groundwater flux for Toray high-pressure BWRO 

membranes 
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Figure 6. Observed water flux for various water sources at different applied pressures and Toray BWRO membranes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Observed membranes resistance of various water sources for Toray BWRO membranes 

 

Equation (4) calculations are shown in Table 8. The study predictions estimated that the overall 

osmotic pressure drops required for seawater and groundwater treatment plants are approximately 

55 psi and 830 psi, respectively. The higher the salinity difference between the fed and the 

produced water, the more the osmotic pressure drop we need to overcome in order to produce 

treated water (positive flux). 

 
Table 8. Van't Hoff Calculations for the Required Osmotic Pressures for Water Sources 
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5. CONCLUSIONS 

The application of the solution-diffusion model to Abqaiq plant (500 RO plant) is initiated by 

using various parameters to calculate the osmotic pressure of Toray TM720D-400 with 8” 

membrane for Shedgum/Abqaiq groundwater treatment. For the same membrane, the osmotic 

pressure values are determined for Arabian Gulf and Red Sea waters to predict flux rates in other 

membranes for seawater situations. Low-pressure, standard and high-pressure BWRO Toray 

membranes performance have been compared to identify the optimal membrane kind for the 

treatment of the three studied water sources at Abqaiq 500 RO plant.  

The assumption of having a membrane thickness that is similar to its spacer thickness may not 

seem very accurate. However, it is true that we should have a proportional relation between both 

thicknesses which suggests that our results are still valid. A linear relationship has been observed 

between the water flux and the applied pressure drops. It is proved that membrane flux decreases 

with the increase in membrane thickness at constant pressure drop. Modelling results endorse that 

BWRO Toray TM720D-440 with 8”membrane is the optimum membrane choice for the three 

water sources at Abqaiq 500 RO plant since it has the lowest membrane resistance and the highest 

overall water flux. 
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Introduction
The solution-diffusion model is popular technique that
is used to explain the transport in dialysis, reverse
osmosis, gas permeation and pervaporation. In the
solution-diffusion model, the pressure within a
membrane is uniform and that the chemical potential
gradient is expressed only as a concentration gradient.

Purpose
This paper suggests a new method of predicting flux
values at reverse osmosis (RO) desalination plants.
The study is initiated by using the solution-diffusion
model that is applied to the groundwater source at
Abqaiq plant (500 RO plant) at Saudi Aramco, Dhahran,
Saudi Arabia in order to calculate the osmotic pressure
of the treated water for Shedgum/Abqaiq
groundwater.

Methodology & Data
Values of numerous parameters such as water
permeability constant, applied pressure, gas constant,
water temperature, water molar volume and
membrane thickness, water salinity/TDS are taken into
account to develop our calculations through the
solution-diffusion model. A comparison between low-
pressure, standard and high-pressure BWRO Toray
membranes performance have been established to
select the ideal membrane type for the treatment of
water from various sources at Abqaiq plant.
Abqaiq 500 RO plant data has been used to determine
osmotic pressure drops for the RO membrane (Toray
TM720D-400 with 8”) from Eq. (1) and (2).

However, in order to calculate the osmotic pressure
for seawater sources, we applied the same
information of Shedgum/Abqaiq groundwater at
Abqaiq 500 RO plant, except for the flux and salinity
values, for the treatment of either Arabian Gulf or
Red Sea waters. Water permeability is approximately
determined to be 9.5 × 10−7 𝑐𝑚2/𝑠. For water-salt
solution, reverse osmosis permeation expression is
simplified in Eq. (1) and (2); where membrane
resistance constants are calculated by using Eq. (3).

Where;
𝑱𝒊 = Membrane flux of component 𝑖, water, 𝑔𝑓𝑑
𝚫𝒑 = Applied pressure drop, 𝑝𝑠𝑖
𝚫𝝅 = Osmotic pressure drop, 𝑝𝑠𝑖
𝑨 = Water permeability constant, cm/atm s
𝑷𝒊 =Permeability of component 𝑖, water, 𝑐𝑚2/𝑠
𝒄𝒊𝒐 = Initial mole concentration of water, 𝑝𝑝𝑚
𝝂𝒊 = Water molar volume, 𝑐𝑚3/𝑚𝑜𝑙
𝑇 = Water tempreture, 𝐾
𝑹 = Gas constant, 𝑚3𝑎𝑡𝑚/𝑚𝑜𝑙 𝐾
𝓵 = Membrane or spacer thickness, 𝑚𝑖𝑙
𝛋 = Dynamic viscosity of water, 𝐼𝑏 𝑠/𝑓𝑡2

𝓡𝒎 = Membrane resistance , 𝑓𝑡−1

Above equations are used to calculate osmotic
pressures of the three water sources and then
utilized to determine the appropriate flux and
resistance of different BWRO Toray membranes.

Results
A proportional relation between the water flux and
the applied pressure is identified. The highest
recorded flux is accounted for TM720D-440 for
Shedgum/Abqaiq groundwater because of low water
TDS, low membrane thickness and the highest
pressure operating range. Seawater sources have
higher membranes resistances than the groundwater
source because of having lower flux and higher TDS.

Calculated Osmotic Pressure Drop (∆𝜋)

Observed water flux for various water sources at 
different applied pressures and Toray BWRO 

membranes

Observed membranes resistance of various water 
sources for Toray BWRO membranes

Conclusion
The model results confirm an inverse relationship
between the membrane thickness and the water flux
rate. Also, a proportional linear relation between the
overall water flux and the applied pressure across the
membrane is identified. Higher flux rates and lower
salinity indicate lower membrane resistance which yield
to higher water production. Modelled data predict that
BWRO Toray TM720D-440 with 8”membrane is the
optimal BWRO membrane choice for the three water
sources at Abqaiq 500 RO plant since it has the lowest
membrane resistance and the highest overall water flux.

Acknowledgement 
The authors would like to express their gratitude toward
Saudi Aramco Company for sharing their valuable data of
Abqaiq 500 RO plant.

𝑱𝒊 = 𝑨(𝜟𝒑 − 𝜟𝝅) (1)

𝑨 =
𝑷𝒊𝒄𝒊𝒐𝝂𝒊
𝑹𝑻𝓵

(2)

𝑱𝒊 =
∆𝒑

𝜿 𝓡𝒎

(3)
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