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A B S T R A C T   

The quest for energy and environmental sustainability necessitates an increasing interest in the photocatalytic 
conversion of wastewater to biohydrogen. However, the complexity of the photocatalytic conversion and the low 
productivity of the biohydrogen produced has become a major concern in the scale-up of the process. This study 
employs a data-driven approach to model biohydrogen production from the photocatalytic conversion of 
wastewater. Having ascertained the influence of five different parameters namely catalyst size, reaction tem
perature, catalyst among, irradiation time, and radiation intensity on the biohydrogen production through 
parametric analysis, the data were employed to model the process using multilayer perceptron neural network 
(MLPNN) and nonlinear autoregressive neural network (NARX). Both the MLPNN and NARX models were trained 
using Levenberg-Marquardt (LM), Bayesian regularization (BR), and scaled conjugate gradient (SCG) algorithms. 
The performance of 20 network architectures was tested for MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, 
NARX-BR, and NARX-SCG. The analysis revealed that the best network architectures of 5-14-1, 5-11-1, 5-7-1, 5- 
14-1, 5-15-1, and 5-7-1 were obtained for the MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and 
NARX-SCG, respectively. All the models demonstrated a good predictability of the biohydrogen production as 
evidenced by the coefficient of determination (R2) > 0.9 and low root mean square error (RMSE) values. The best 
performance was displayed by MLPNN-BR model with R2 of 0.999 and RMSE of 0.138. The independent variable 
analysis shows that all the factors significantly influence the predicted biohydrogen production. The catalyst size 
has the most significant effect on the predicted hydrogen production as indicated by the importance value of 
0.329.   

1. Introduction 

Several industrial processes often result in the generation of a huge 
amount of wastewater which constitutes an environmental menace 
[1,2]. The discharge of this untreated wastewater into water bodies is 
detrimental to human and aquatic lives since they contain a high 

concentration of toxic organic compounds above the recommended level 
by environmental protection agencies [3,4]. The wastewater can be 
sustainably utilized for bioenergy production while simultaneously 
safeguarding human and aquatic lives [5,6]. Several efforts have been 
made in developing effective techniques to convert wastewater to bio
energy sources [6–8]. Among the various energy sources, hydrogen has 
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been prioritized as the energy of the future due to its numerous ad
vantages [9]. Currently, hydrogen is produced in commercial quantity 
by a thermo-catalytic pathway that utilizes natural gas as the starting 
feedstock [10]. Beside the thermo-catalytic pathway, the electrolysis 
method also significantly contributes to global hydrogen production 
[11]. Although these well-established pathways for hydrogen produc
tion are faced with some challenges such as high energy requirements, 
environmental concerns from CO2 emissions, and catalyst deactivation, 
efforts are being made for improvement through various strategies. As 
an emerging pathway, it is possible to utilize wastewater from several 
sources to produce green hydrogen. The green hydrogen produced can 
in turn be sold as fuels for numerous purposes in various industries. 

Hydrogen can be produced from wastewater mainly by biological or 
photocatalytic techniques which involve the use of microorganisms and 
photocatalysts, respectively for the conversion of the organic matter in 
the wastewater to hydrogen [12,13]. An extensive review by Tak et al. 
[13] revealed that wastewater from the olive mill, juice production, 
dairy processing, paper, and pulp mill, and oil palm processing in
dustries have been utilized as a source of hydrogen production by 
photocatalysis and photo-fermentation processes. The effectiveness of 
the hydrogen production from the various wastewater was tested under 
different experimental conditions such as catalyst amount, catalyst size, 
reaction temperature, radiation intensity, and irradiation time. The 
various studies revealed that the hydrogen yield and production rate 
differ under different experimental conditions. Hence, to improve the 
process, it is worthwhile investigating to what extent each of the factors 
influences the hydrogen yield and production rate. Response surface 
methodology combined with central composite design and Box-Behnken 
design has been widely employed to investigate the influence of various 
factors on hydrogen production using different types of wastewater 
sources [14–18]. The analyses of the different response surface models 
revealed that hydrogen production from wastewater was significantly 
influenced by the stipulated factors. However, the application of 
response surface methodology and design of experiments often require 
several experimental runs which is laborious and time-consuming. Be
sides, it is costly due to the amount of materials required for the process. 
On the contrary, using a data-driven approach can be less laborious, save 
time, and be cost-effective. 

Data-driven machine learning algorithms such as multilayer per
ceptron and nonlinear autoregressive neural networks have been widely 
employed in the modelling of several processes [19–21]. Ayodele et al. 
[22] employed an MLPNN for modelling catalytic steam methane 

reforming to hydrogen considering the role of activation functions in the 
performance of the various models. The study revealed that the MLPNN 
models had superior performance compared with nonlinear response 
surface methods. Whiteman et al. [23] compared the performance of 
MLPNN and response surface methodology in modelling biohydrogen 
production from sugarcane molasses. The MLPNN models provided a 
better prediction of the biohydrogen from molasses compared to the 
response surface models as indicated by R2 values of 0.91 and 0.75, 
respectively. Wang et al. [24] employed different data-driven modelling 
approaches built on MLPNN to model microbial kinetics of biohydrogen 
production from a dark-fermentation process. The authors revealed that 
the MLPNN combined a quick convergence, higher accuracy, clear 
visualization, and direct statistical analysis to accurately model the 
biohydrogen production from a dark fermentation process. Data-driven 
algorithms have also been employed for modelling hydrogen production 
from different wastewater sources. Yogeswari et al. [25] back propa
gation ANN for modelling hydrogen production from confectionery 
wastewater. An R2 of 0.996 obtained from the model performance in
dicates that the experimental and predicted hydrogen production rate 
was strongly correlated. Sridevi et al. [26] also employed back propa
gation ANN for modelling biohydrogen production using distillery 
wastewater. Using an LM algorithm for training the model, an R2 of 0.97 
was obtained which revealed that the model was robust in modelling the 
prediction of the biohydrogen from the distillery wastewater. Ghase
mian et al. [27] also employed an ANN for the predictive modelling of 
biohydrogen production from synthetic wastewater. The ANN also 
shows a robust prediction of the biohydrogen from wastewater. To the 
best of the authors’ knowledge, the application of a hybrid nonlinear 
autoregressive neural network with exogenous inputs and a back- 
propagated multilayer perceptron neural network for modelling bio
hydrogen production from the photocatalytic conversion of wastewater. 
This study, therefore, explores the robustness of data-driven machine 
learning techniques such as nonlinear autoregressive neural networks 
with exogenous inputs and back-propagated multilayer perceptron 
neural networks for modelling biohydrogen production from the pho
tocatalytic conversion of wastewater. 

2. Data acquisition from the photocatalytic conversion of 
wastewater 

Typically, the datasets of the modelling process were acquired from 
the photocatalytic conversion of wastewater [28,29]. The photocatalytic 

Fig. 1. Typical experimental set-up for photocatalytic reforming of wastewater for hydrogen Production.  

R. Kanthasamy et al.                                                                                                                                                                                                                           



Fuel 344 (2023) 128026

3

system depicted in Fig. 1 consists of a quartz reactor and a light-emitting 
diode lamp positioned vertically in the reactor which is required for 
generating the required light intensity by adjusting the distance between 
the light source and the reactant solution. A specified amount of catalyst 
was discharged in the wastewater which was placed in the reactor. To 
prevent the catalyst particles from settling to the bottom of the reactor 
and losing their active properties, a magnetic stirrer placed underneath 
the reactor provide continuous stirring. Nitrogen gas served as a carrier 
gas that was also used to purge the reactor to prevent the accumulation 
of any dissolved oxygen. The biohydrogen yield was measured from the 
gaseous stream using gas chromatography with a thermal conductivity 
detector incorporated with a data-acquisition system. 

2.1. Model description, configuration, training, and evaluation 

The Backpropagation MLPNN is a feedforward neural network with 
several layers and is the most popular type of data-driven machine 
learning algorithm [30]. As a supervised training algorithm, the MLPNN 
is often regarded as one of the simplest and most general approaches for 
data-driven modelling. By modifying the weight values, back
propagation MLPNN can approximate the non-linear connection be
tween input and output [22]. In addition, it may be extended to 
information that was not used in the training process. In back
propagation MLPNN, the feedforward process begins with the applica
tion of an input pattern to the network’s input layer and continues 
through the network’s layers until the output is generated. For each 
node contributing to the output, an error signal is calculated by first 
comparing the actual value produced by the network to the intended 
value. As all the hidden nodes are responsible, at least in part, for the 
error observed at the output layer, the signals indicating these errors are 
sent backward from the output layer to the hidden nodes that made 
direct contributions to the output layer. This is done layer by layer until 
each node in the network has received an error signal characterizing its 
contribution to the overall error. After the error signal has been calcu
lated on every unit, the nodes utilize the errors to adjust the connection 
weights until the network converges. The backpropagation MLPNN al
gorithm uses an inbuilt rule with a sigmoid activation function to search 
for the smallest value of the error function in weight space [31]. In this 

case, the optimal weights are those that lead to the lowest value for the 
error function, which solves the learning issue. The processing of the 
MLPNN can be represented in Eq. (1). 

φ = ϑ

(
∑

j
wjxj + b

)

(1)  

where ϑ, xj, wj and b are the non-linear activation function, the input 
units, the weights, and the bias. 

For sigmoid activation function ϑ(x) is expressed 1
1+e− x. 

Just like the MLPNN model, the NARX model can be trained to 
predict time-based data on the series’ previous values, which are 
referred to as feedback delays [32]. The Levenberg-Marquardt, Bayesian 
regularization, and scale conjugate gradient algorithms were used to 
train the MLPNN and the NARX models. These models were initially 
trained in the open-loop version utilizing the actual output rather than 
feedback. By linking the internal feedback, the open-loop NARX model is 
converted into a closed-loop version, where real output is substituted by 
anticipated output to achieve multi-step-ahead prediction. 

The performance of any data-driven model is a function of how well- 
trained the model is. Training a model is the process of extracting 
optimal values for the model’s parameters, such as the weights and the 
bias, from a dataset [33]. A machine learning method employs empirical 
risk minimization approach to construct a model in supervised learning 
by analysing several instances and searching for one that results in the 
least amount of loss [34]. In this study, three training algorithms namely 
Levenberg-Marquardt (LM), Bayesian regularization and Scale conju
gate descent were used to train the MLPNN and NARX models. 

The LM algorithm offers a numerical approach for minimising a 
nonlinear function [35]. The convergence is both quick and steady. The 
LM model offers the advantage of combining the he steepest descent 
method and the Gauss-Newton algorithm [36]. When training with LM 
algorithm, an increase in the RMSE of the validation samples serves as a 
signal that training has reached its end and generalisation has stopped 
getting better. Bayesian regularization (BR) emanated from probabilistic 
inference of network parameters [37]. This implies that the BM algo
rithm uses a probability distribution of network weights, as opposed to 
the deterministic approach of conventional network training, where the 

Fig. 2. Schematic representation of the data-driven assisted modelling of biohydrogen from the photocatalytic conversion of wastewater.  
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ideal set of weights is selected by minimizing an error function [38]. 
Since a probability distribution characterises the network’s predictions, 
it follows that BM has the advantage of great capacity to show poten
tially complicated linkages. The scaled gradient descent (SCG) algorithm 
can be employed to search for a local minimum or maximum of a 
function through an iterative first-order optimization process [39]. 
Minimizing a cost/loss function using this SCD algorithm is common in 

data-driving modelling. 
The schematic representation of the steps involved in the configu

ration, training, and evaluation of the MLPNN and NARX models is 
depicted in Fig. 2. The datasets acquired from the experimental studies 
on the photocatalytic conversion of wastewater are utilized to train the 
models. A total of six models namely MLPNN-LM, MLPNN-BR, MLP- 
SCG, NARX-LM, NARX-BR, and NARX-SCG were evaluated. The best 

Fig. 3. Interaction effect of (a) Radiation intensity and irradiation time (b) Radiation intensity and temperature (c) Catalyst amount and temperature (d) irradiation 
time and catalyst size (e) Catalyst amount and catalyst size (f) Temperature and catalyst size on hydrogen production rate. 
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performance for 20 architectures of each of the models was evaluated 
based on the coefficient of determination (R2) (Eq. (2)) and root mean 
square error (RMSE) (Eq. (3)). For a desirable R2 and RMSE, the model is 
deployed to predict biohydrogen production based on input and tar
geted variables. For non-desirable R2 and RMSE, the datasets are 
retrained or re-run from the experimental studies. The datasets were 
split into 70%, 15%, and 15% for training, testing, and validation. The 
training, testing, and validation of the model were performed using a 
machine learning toolbox in MATLAB 2022b (MATHWORK Inc) 
environment. 

R2 =

⎛

⎜
⎝

n(
∑

xy) − (
∑

x)(
∑

y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n
∑

x2 − (
∑

x)2 ][n
∑

y2 − (
∑

y)2 ]
√

⎞

⎟
⎠

2

(2)  

where x is the observed value and y is the predicted value. For a given 
number of observations (n), the RMSE is given as follows. 

Table 1 
Descriptive statistics of the input and targeted variables.  

Factors Range Minimum Maximum Mean Standard deviation Variance Skewness Kurtosis 

Catalyst size (nm)  84.77  0.23  85.00  14.93  17.80  316.75  2.28  4.84 
Reaction temperature (◦C)  100.00  10.00  110.00  26.75  12.43  154.47  5.54  37.22 
Catalyst amount (g)  1.99  0.01  2.00  0.59  0.41  0.17  0.61  1.00 
Irradiation time (h)  12.00  1.00  13.00  5.46  2.55  6.49  0.18  − 0.02 
Radiation Intensity  400.00  100.00  500.00  228.07  125.59  15772.99  1.23  0.42 
Hydrogen production (mmol/h)  4299.00  1.00  4300.00  999.68  956.81  915492.90  1.78  2.95  

Fig. 4. Network architecture for the (a) MLPNN trained using LM algorithms (b) MLPNN trained using BR algorithms (c) MLP trained using SCG algorithms.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(x − y)2

n

√

(3) 

The variable importance analysis was performed using modified 
Garson algorithms represented in Eq. (4) [40,41]. 

φik =

∑L
j=1

(
wij∑N

r=1
wrj

vkj

)

∑N
i=1

[
∑L

j=1

[
wij∑N

r=1
wrj

vkj

] ] (4)  

3. Results and discussion 

3.1. Parametric and descriptive statistical analysis 

To evaluate the relationship between the five input parameters and 
the targeted output, a three-dimensional parametric analysis of the 
interaction effects was conducted, and the results are presented in Fig. 3 
(a)-(f). It can be seen that all the input parameters have a non-linear 
relationship with the targeted output. Both the radiation intensity and 

the irradiation time have a non-linear interaction effect with the 
hydrogen production rate as depicted in Fig. 3 (a). The hydrogen pro
duction rate increases with an increase in the radiation intensity and the 
irradiation time. The most significant influence on the hydrogen pro
duction rate can be observed at 10 h irradiation time and 350 W radi
ation intensity. Similarly, a non-linear relationship also exists between 
the radiation intensity and the reaction temperature as depicted in Fig. 3 
(b). Both the radiation intensity and the reaction temperature have the 
most significant interaction effect at 450 W and 100 ◦C, respectively. In 
Fig. 3 (c), it can be seen that the catalyst amount used for the photo- 
conversion of the wastewater and the temperature of the reaction in
fluence the rate of hydrogen production. Moreover, a non-linear rela
tionship exists between the two parameters. At 100 ◦C of reaction 
temperature and 1.8 g of the photocatalysts, a maximum hydrogen rate 
of 10000 mmol/g/h can be produced. The interaction effect between the 
irradiation time and nanoparticle size of the catalyst is depicted in Fig. 3 
(d). Unlike the trend observed in Fig. 3 (c), there is lesser influence on 
the rate of hydrogen production between the irradiation time and the 
nanoparticle size as seen in the lower rate of hydrogen production. The 
catalyst amount and the nanoparticle size of the catalyst’s interaction 

Fig. 5. Network architecture for the (a) NARX trained using LM algorithms (b) NARX trained using BR algorithms (c) NARX trained using SCG algorithms.  
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effect are non-linear and had maximum influence at 50 nm and 100 ◦C, 
respectively. Overall, the most significant influence of the interaction 
effect on the hydrogen production rate from the photocatalytic con
version of wastewater is between the catalyst amount and the reaction 
temperature. The detailed descriptive statistical analysis of the input 
and the targeted parameters is summarized in Table 1. In Table 1, the 
range, minimum values, maximum values, mean, standard deviation, 

variance, kurtosis, and skewness of the input and targeted parameters 
are presented for datasets acquired from the experimental runs. 

3.2. Evaluation of the best model architecture 

Different model architectures were evaluated as a function of the 
types of training algorithms and the variation in the number of the size 

Fig. 6. Comparison between the observed biohydrogen production and (a) MLPNN-LM (b) MLPNN-BR and (c) MLPNN-SCG predicted values.  
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of the hidden layer. Based on the training algorithms, there are six 
models namely, MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, 
NARX-BR, and NARX-SCG. The size of the hidden layers was varied from 
1 to 20 for each of the models to determine the best performance during 
training. Figs. 4 and 5 represents the summary of the analysis for each of 
the model based on the training performance. In Fig. 4 (a), the RMSE 
obtained for training the MLPNN with the Levenber-Marquardt algo
rithm varies with the size of the hidden layers. The obtained RMSE 
values vary from 2.230 to 7000 while the R2 values are in the range of 
0.224 to 0.999. The MLPNN-LM with 5-14-1 architecture has the 

smallest RMSE values of 2.230 and R2 of 0.999 and is hence deployed to 
model the prediction of biohydrogen production. The 5-14-1 architec
ture of the MLPNN-LM represents five input parameters, 14 hidden 
neurons, and one targetted input. Fig. 4 (b) shows the performance of 
the various architectures of the MLPNN-BR as indicated by the RMSE 
values. The RMSE values vary from 1.023 to 850, while the R2 values 
vary from 0.407 to 0.999. The network architecture of 5-11-1 indicating 
5 input parameters, 11 artificial neurons in the hidden layer and 1 tar
geted output has the least RMSE of 1.023 and R2 of 0.999 hence 
deployed for modeling the biohydrogen prediction from the 

Fig. 7. Comparison between the observed biohydrogen production and (a) NARX-LM (b) NARX-BR and (c) NARX-SCG predicted values.  
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photocatalytic conversion of the wastewater. In Fig. 4 (c), the RMSE 
values for the MLPNN-SCG vary from 300 to 2300 while the R2 varies 
from 0.261 to 0.999. The network architecture of 5-7-1 which indicates 
5 input units, 7 artificial neurons in the hidden layers and 1 targeted 
output has the least RMSE of 300 and R2 of 0.999. Hence, also employed 
to predict the biohydrogen production from the photocatalytic conver
sion of the wastewater. 

Similar to the MLPNN-based network architecture performance 
evaluation, different network architectures were also evaluated for the 
NARX-LM, NARX-BR, and NARX-SCG. The performance of each of the 
architectures as a function of the RMSE values is summarized in Fig. 5. 
As shown in Fig. 5 (a), the RMSE values for each of the network archi
tectures vary from 1.432 to 1620. The NARX network with an archi
tecture of 5-14-1 indicating 5 input units, 14 artificial neurons at the 
hidden layer and 1 output unit have the least RMSE values of 1.432 and 
R2 of 0.999. The 5-14-1 NARX-LM model was subsequently deployed to 
predict the biohydrogen production from the photocatalytic conversion 
of wastewater. In Fig. 5 (b), the performance of the NARX-BR model as a 
function of the RMSE values of the various architectures is presented. 
The RMSE of each of the NARX-BR network architectures varies with the 
changes in the size of the hidden layers. The RMSE of the various ar
chitecture ranges from 1.534 to 650 and R2 ranges from 0.407 to 0.999. 
The NARX-BR architecture of 5-15-1 indicating 5 input units, 15 artifi
cial neurons in the hidden layers and 1 output unit has the least RMSE 
values of 1.534 and R2 of 0.999. Hence, the 5-15-1 NARX-BR model was 
subsequently deployed for the prediction of the Biohydrogen from the 
photocatalytic conversion of wastewater. Fig. 5 (c) displays the various 
RMSE values of each of the NARX-SCG architectures and the final ar
chitecture. The RMSE values of each of the NARX-SCG architectures 
vary with changes in the size of the artificial neurons in the hidden layer. 
The NARX-SCG with 5-5-1 architecture indicating 5 input units, 5 arti
ficial neurons in the hidden layer and 1 output unit have the least RMSE 
of 1.524 and R2 of 0.999. Hence, the 5-5-1 NARX-SCG architecture was 
employed to predict the biohydrogen production from the photo
catalytic conversion of the wastewater. 

3.3. Performance analysis of MLPNN models in the prediction of the 
biohydrogen 

The performance analysis of the MLPNN and NARX architectures in 
modelling the prediction of biohydrogen from the photocatalytic con
version of wastewater are depicted in Figs. 6 and 7. While the perfor
mance matrices in terms of the network architecture, R2, MSE, and 
RMSE are summarized in Table 2. All three MLPNN-based models dis
played good predictability as depicted in Fig. 6(a)-(c). In Fig. 6 (a), the 
predicted biohydrogen production rate for each of the experimental 
points is consistent with the observed values obtained from the experi
mental runs. The consistency of the predicted and the observed values of 
the biohydrogen production rates can be confirmed by the R2 values of 
0.997 and RMSE of 2.144. The robustness of the MLPNN-LM in model
ling the determination of the optimal structure for the prediction of 
dynamic viscosity of oil-based hybrid nanofluid has been reported by 
Hemmat Esfe et al. [42]. The rheology characteristics of the oil-based 
hybrid nanofluid were accurately predicted by the optimized MLPNN- 
LM with 8 neurons as indicated by R2 of 0.999 and MSE of 4.73 ×

10− 5. Also, Ouadfeul et al. [43] reported the efficiency of MLPNN-LM in 
predicting total organic carbon in shale gas reservoirs. The performance 
of the MLPNN-BR in predicting the biohydrogen production rate from 
the photocatalytic conversion of wastewater is depicted in Fig. 6 (b). 
Similar to the MLPNN-LM, the MLPNN-BR performed well in predicting 
the biohydrogen production from the photocatalytic conversion of the 
wastewater. As shown in Table 2, the predicted biohydrogen production 
rates obtained from the 5-11-1 MLPNN-BR network are consistent with 
the experimental values. This can be confirmed by the R2 of 0.999, 
which implies that the predicted and the observed values are strongly 
correlated with minimal prediction error (RMSE of 0.138). Haiqi et al. 
[44] had reported the robustness of the MLPNN-BR in predicting the 
modelling of photocatalytic phenol degradation from oil field-produced 
wastewater. As indicated by R2 of 0.999, the predicted photocatalytic 
phenol degradation is strongly correlated with the experimental values 
with a predicted error of 1.27. Also, MLPNN-BR was robust in modelling 
the prediction of the mass attenuation coefficient of gamma radiation as 
reported by Moshkbar-Bakhshayesh et al. [45]. This is evident from the 
R2 of 0.990, an indication that the predicted mass attenuation coefficient 
of gamma radiation is consistent with the experimental values. The 
performance of the MLPNN-SCG in modelling the prediction of the 
biohydrogen production rate from the photocatalytic conversion of 
wastewater is depicted in Fig. 6 (c). The predicted biohydrogen pro
duction rates are strongly correlated with the observed values obtained 
from the experimental runs. The 5-7-1 MLPNN-SCG network also dis
played a strong capability in modelling the prediction of the bio
hydrogen as indicated by R2 of 0.998 and RMSE values of 1.961. Yusoff 
et al. [46] employed MLPNN-SCG network to examine the effect of nano- 
silica modified bitumen in unaged and aged conditions. The study 
revealed that there is a strong correlation between the measured and 
predicted data depicting the ability of the MLPNN-SCG to efficiently 
model the inter-relationship between the input and the output 
parameters. 

3.4. Performance analysis of NARX models in the prediction of the 
biohydrogen 

The performance of the NARX models trained using the LM, BR, and 
SCG algorithms are depicted in Fig. 6. The optimized network archi
tecture of 5-14-1, 5-15-1, and 5-5-1 were employed to model the bio
hydrogen prediction using the NARX-LM, NARX, and NARX-SCG, 
respectively. As shown in Fig. 6 (a), the predicted biohydrogen pro
duction rate by the NARX-LM models is consistent with the observed 
values obtained from each point of the experimental runs. As evidenced 
by the R2 of 0.999, an indication of a strong correlation between the 
predicted biohydrogen production and the observed values with an 
RMSE of 1.142. Mohd et al. [47] reported the robustness of the NARX- 
LM used for modelling rainfall prediction. Also, Guzman et al. [48] 
successfully employed NARX-LM for modelling the prediction of daily 
groundwater levels. The performance of the NARX-BR in modelling 
biohydrogen prediction from wastewater is depicted in Fig. 6 (b). The 
observed biohydrogen production rate obtained from the experimental 
runs is consistent with the predicted values obtained from the NARX-BR 
model. With R2 of 0.999 and RMSE of 0.276, the optimized 5-15-1 
NARX-BR model robustly models the non-linear relationship between 
the various input parameters and the targeted output. The robustness of 
the NARX-BR in modelling the prediction of vertical track irregularities 
from the high-speed line has been reported by Jiang et al. [49]. Simi
larly, Al Jami et al. [50] reported the superior capability of the NARX-BR 
for the prediction of groundwater level. The predictability of the opti
mized 5-5-1 NARX-SCG model is depicted in Fig. 6 (c). At each of the 
data points, the predicted biohydrogen production rate by the NARX- 
SCG model and the observed values are in proximity. The R2 of 0.998 
obtained for the prediction of the biohydrogen production rate by the 
NARX-SCG model indicate the that the predicted values are strongly 
correlated with prediction errors of 1.202. The robustness of the NARX- 

Table 2 
Best network architecture from each of the models.  

Models Architecture R2 MSE RMSE 

MLPNN-LM 5-14-1  0.997  4.597  2.144 
MLPNN-BR 5-11-1  0.999  0.019  0.138 
MLPNN-SCG 5-7-1  0.998  3.846  1.961 
NARX-LM 5-14-1  0.999  1.304  1.142 
NARX-BR 5-15-1  0.999  0.076  0.276 
NARX-SCG 5-5-1  0.998  1.445  1.202  
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SCG in predicting the biohydrogen production rate is consistent with 
that reported by Nekoee et al. [51] for modelling the prediction of 
earthquake occurrence time. The predictive capability of the NARX-SCG 
in modelling the prediction of hourly solar radiation has been reported 
by Mohammed et al. [52]. 

3.5. Model performance validation 

The performance of the models was validated using the R2, MSE, and 
RMSE as summarized in Table 2. The R2, which ranges from 0 to 1, 
expresses how accurate the prediction of a model. The R2 may be seen as 
the percentage of variance in the dependent variable that the statistical 
model predicts. The R2 helps to analyze the degree to which variations in 
one variable can be accounted for by variations in another. When 
evaluating a model’s performance, whether during training or valida
tion, it is incredibly beneficial to determine the prediction error which is 
a function of the MSE and RMSE. The RMSE is a commonly used metric 
for determining how accurate a model is in predicting quantitative data 
[49,53,54]. As shown in Table 2, all the six models performed well in 
predicting the biohydrogen production rate from the wastewater as 
indicated by the R2 values. The R2 > 0.9 is an indication that the actual 
biohydrogen production rates obtained from the bioconversion of the 
wastewater are strongly correlated with the predicted values from the 
models. However, further analysis using the MSE and the RMSE shows 
that the prediction errors of each model vary. The MLPNN-LM has the 
highest MSE and RMSE of 4.597 and 2.144, respectively. While the 
MLPNN-BR has the lowest MSE and RMSE of 0.019 and 0.138, respec
tively. This implied that he MLPNN-BR model is more robust in 
modelling the biohydrogen production rate from the bioconversion of 
the wastewater with minimized errors compared to the other models. As 
shown in Fig. 8, both the actual and the predicted biohydrogen pro
duction rates are strongly correlated. It can be seen that the BR algo
rithm plays a significant role in the model performance [37,55]. The BR 
algorithm has the capability to detect and learn a complex relationship 
between the model input and the targets [56]. 

3.6. Comparison of the best model with literature and study implication 

Although the six MLPNN and NARX-based data-driven models 
evaluated for prediction of biohydrogen production from the photo
catalytic conversion of wastewater displayed good capability as indi
cated by the high R2. However, the MLPNN-BR and NARX-BR models 
have the most robust capability as indicated by the high R2 and low 
RMSE values. It is obvious that the use of the Bayesian regularization 
algorithm to train the MLPNN and NARX models significantly enhances 

the performance compared with the Levenberg-Marquardt and Scaled 
Conjugate gradient algorithms. The requirement for extensive cross- 
validation can be decreased or eliminated with Bayesian regularised 
MLPNN and NARX which are more resilient than traditional back- 
propagation algorithms. With the incorporation of the Bayesian regu
larization algorithms, the MLPNN and NARX are resilient in modelling 
the non-linear relationship between the input and targeted parameters. 
Thereby resulting in a robust prediction of biohydrogen with minimized 
errors as indicated by the RMSE values. The performance of the MLPNN- 
BR and NARX-BR model obtained from this study is comparable with 
that reported in the literature (Table 3) for modelling explosion risk 
analysis of the fixed offshore platforms, parameter extraction from 
proton exchange membrane fuel cell, Strength Characteristics of Fly-Ash 
and Bottom-Ash prediction, load prediction in district building and hy
draulic Fracturing Fluid Leakage as indicated by the R2 and RMSE 
values. The variation in the prediction capacity of each of the models in 
Table 3 can be due to the differences in the features, nature of datasets, 
and the network architectures. The independent variable importance 
was conducted for the MLPNN-BR since it outperformed the other 
models. As shown in Fig. 8, all the input variables have varying levels of 
influence on the predicted biohydrogen production rate. The predicted 
biohydrogen production rate can be seen to be most influenced by the 
catalyst size and least influenced by the irradiation time. This analysis 
can help with the decision of incorporating necessary measures to 

Fig. 8. Comparison between the actual biohydrogen production rate and the predicted values by the best model (MLPNN-BR).  

Table 3 
Comparison of the study with the literature.  

Model- 
type 

Function R2 RMSE Reference 

MLPNN- 
BR 

Modelling of biohydrogen 
production rate from photo- 
conversion of wastewater 

0.999 0.138 This 
study 

NARX- 
BR 

Modelling of biohydrogen 
production rate from photo- 
conversion of wastewater 

0.999 0.276 This 
study 

MLPNN- 
BR 

Modelling of explosion risk analysis 
of fixed offshore platform 

0.988 N.R. [37] 

MLPNN- 
BR 

Modelling parameter extraction from 
proton exchange membrane fuel cell 

N. R 0.086* [57] 

MLPNN- 
BR 

Modelling Strength Characteristics 
of Fly-Ash and Bottom-Ash 
prediction 

0.981 1.378 [58] 

MLPNN- 
BR 

Modelling of load prediction in the 
district building 

N.R. 91.01 [59] 

NARX- 
BR 

Modelling of hydraulic Fracturing 
Fluid Leakage 

0.944 0.0049 [60] 

* Converted to fraction, N.R is not reported. 
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optimize the parameters that significantly influence the biohydrogen 
production rate in the eventuality of a scale-up process (Fig. 9). 

4. Conclusion 

The parametric analysis and application of MLPNN and NARX 
models trained with Levenberg-Marquardt, Bayesian Regularization, 
and Scaled Conjugate Gradient algorithms for the prediction of bio
hydrogen production from the photocatalytic conversion of wastewater 
have been reported in this study. The changes in the numbers of artificial 
neurons in the hidden layers of 20 network architectures of each of the 
models significantly influence the model outputs. Optimized The anal
ysis revealed that the best network architectures of 5-14-1, 5-11-1, 5-7- 
1, 5-14-1, 5-15-1, and 5-7-1 were obtained for the MLPNN-LM, MLPNN- 
BR, MLPNN-SCG, NARX-LM, NARX-BR, and NARX-SCG. The optimized 
MLPNN-LM, MLPNN-BR, MLPNN-SCG, NARX-LM, NARX-BR, and 
NARX-SCG models displayed robust capabilities in modelling the bio
hydrogen production from the photocatalytic conversion of wastewater. 
The predictabilities of the models resulted in high R2 values (>0.9) 
indication the ability of the inbuilt algorithms to learn the non-linear 
relationship between the input variable and the targeted output. The 
MLPNN-BR having the least RMSE of 0.138 displayed the best predictive 
performance. The independent variable importance analysis of the 
MLPNN-BR model revealed that the catalyst size, reaction temperature, 
catalyst amount, irradiation time, and radiation intensity have a sig
nificant influence on the predicted biohydrogen production rate. The 
catalyst size with an importance value of 0.329 has the most significant 
influence on the predicted biohydrogen production rate by the MLPNN- 
BR model. 
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