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Abstract—The focus of the scientific community has shifted 

towards renewable and sustainable natural photosensitizers 

for Dye-Sensitized Solar Cells (DSSCs). Here, we statistically 

investigate the possibility to achieve relatively high PCEs in 

naturally-sensitized-photoanode-based DSSCs using decision 

trees (machine learning). We studied the chemical structure 

and bandgap of 27 sensitizers, which were then correlated to 

the literature reported PCEs. Tree training was carried out 

via 4 (dye) predictors including the number of π-bonds (PI), 

the number of anchoring groups (X), HOMO(H)-LUMO(L), 

and Bandgap Energy (BG), with 2 responses regarding the 

statistical possibility to achieve high PCEs (Yes/No). Trained 

datasets revealed the controlling parameters responsible for 

increasing PCEs. Testing (future) datasets were chosen to 

check for built models' accuracy in performance prediction 

for enhanced charge injection (current density). This work 

shows the potential of natural sensitizers used in DSSCs for 

renewable, cost-effective, and sustainable energy production. 

 

Index Terms—power conversion efficiency, natural 

sensitizers, machine learning, dye-sensitized solar cells 

 

I. INTRODUCTION 

Photosensitization is the basis for designing efficient 

Dye-Sensitized Solar Cells (DSSCs) capable of initiating 

electron injection and charge transfer from dye molecules 

to the semiconductor [1]-[3]. There are many different 

kinds of natural and environmental-friendly 

photosensitizers [4], which can be extracted from light-

harvesting complexes of anthocyanin, carotenoid, and 

chlorophyll biomolecules [5] emerged as an attempt to 

substitute the expensive and toxic [6] metal-based 

ruthenium polypyridyl dyes [7]. Natural dyes extracted 

from different natural sources (e.g. anthocyanin, 

carotenoid, flavonoid, etc.) have been previously proposed 

to be used as sensitizers in DSSCs due to their low cost and 

environmental friendliness [4]. However, the Power 

Conversion Efficiency (PCE) from naturally-sensitized 

DSSCs is typically in the average range (<0.05-1.7%) [8] 

requiring a thorough understanding of the role of 

pigment’s molecular structure, electronic properties, 

anchoring groups, and conjugated double bonds or free 𝜋-

electrons for improved PCE from enhanced carriers 

transport and decreased recombination [9]-[11]. 

A photosensitizer is considered efficient when it fulfills 

these requirements [12]: (i) intense visible-light absorption, 

(ii) strong chemisorption onto the semiconductor surface, 

(iii) fast electron injection into the semiconductor CB, and 

(iv) involve several =O or -OH groups to anchor dye 

molecules onto semiconductor surface. Since the 

beginning of technology, machines (computers) in many 

trials have been used to learn specific patterns for data 

classification and decision making [13]. Classification 

algorithm distributes variously mixed datasets into 

categories by constructing a model via supervised learning 

the relation between input attributes and an output-

dependent parameter [14]. 

A common classification algorithm known as “Decision 

trees” is well-known for its ability to categorize datasets. 

The method consists of a tree with internal nodes that are 

nothing but tests and with leaf nodes used as categories. 

This builds classification models from observations of 

datasets attributes or predictors (branches as terminal 

nodes) to reach conclusions based on categorized 

responses [15]. There are different types of decision tree 

algorithms including the common ones as Iterative 

Dichotomies 3 (ID3), the successor of ID3 (C4.5), 

classification and regression tree (CART), and Conditional 

Inference Trees (CTREE) [14]. Decision trees work great 

with redundant attributes, provide good results in presence 

of data noise, classify small datasets easily, give high 

accuracy with minimum nodes or features. [14].  

Odabas et al. [16] applied decision trees to analyze the 

impact of materials selection on the stability of organo-

lead halide perovskite solar cells from 404 cells stability 

profiles. Decision trees deduced rules and guidelines for 

fabricating long-term stable perovskite solar cells [16]. 

PCE prediction of DSSCs was earlier studied via multi-

learner ensembles based on clustering and modeling 

approaches for achieving high accuracy. The L-SVM-

KNN-WMA based achieved high accuracy >91% for PCE 

prediction [17]. Im et al. applied Gradient-Boosted 

Regression Trees (GBRT) to predict bandgap for lead-free 

perovskites [18]. Prediction of dye adsorption on titania 

and absorption capabilities was previously studied via 
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classification methods which accurately indicated spectral 

shifts in 70–80% of inspected photosensitizers [19]. 

In this work, we statistically investigate the possibility 

to achieve high PCEs in naturally-sensitized-photoanode-

based DSSCs using decision trees machine learning [17], 

[20], [21] of dye structural, electronic, and molecular 

properties. An earlier introduced concept in our work [21], 

called “in-between randomization”, was then applied for 

an expansion of datasets information from 27 natural 

sensitizers. Models building algorithms were carried out 

via 4 (dye) predictors including the number of π-bonds (PI), 

the number of anchoring groups (X), HOMO(H)-

LUMO(L), and Bandgap Energy (BG), with 2 responses 

for PCEs >1.82% (Yes/No). A “parameters importance” 

analysis was conducted to find the prime factors and 

controlling variables that would enhance dye abilities to 

absorb more of the visible-light energy (photons) and 

separate generated electron-hole pairs for maximum 

performance. 

II. METHODS AND EQUATIONS 

We collected raw information regarding the 

performance of various redox-liquid and TiO2-based 

naturally-sensitized DSSCs from more than 30 recently 

published articles (2015–2020) [8], [22]-[25]. Collected 

PCEs were then correlated to the dye type, structural, 

electronic, and molecular properties. The chemical 

structures of the studied dyes were then carefully gathered 

and manually evaluated to check for the existing number 

of double conjugated π-bonds and the existing number of 

anchoring or functional groups. Then, we looked for the 

approximated values of bandgap energies of every single 

and different studied dye, where we have taken the average 

value of the reported theoretical bandgaps of pigments 

from the literature. 

The constructed original datasets which contain 27 

different sensitizers were mainly selected from dye classes 

such as carotenoids, protein complexes, flavonoids, 

cyanins, chlorophyll, and chromatophores. The 1.82% was 

the determined averaged performance of the naturally-

sensitized DSSCs according to the selected dye types, 

based on TiO2 photoanode and iodide-triiodide liquid 

redox. An earlier introduced concept [21], called “in-

between randomization”, was applied for an expansion of 

datasets by 5-fold. Simply, we took leverage of inevitable 

errors from reported experimental and theoretical results 

by considering errors of ±1% and ±2% in PCEs of the cell 

and their associated dye bandgaps for generating further 

numbers in the datasets. This allowed us to expand the 

originally constructed datasets to 135 numbers whereas 

that both HOMO and LUMO levels were also expanded 

with the taken errors since (BG=HOMO–LUMO), as in 

Fig. 1 (along with factors affecting performance). The 

expanded datasets were divided into two sets (80% 

training and 20% testing) to accurately establish 

classification models and be able to test their validity and 

prediction accuracy. 

The interpretations of models errors via classification 

tree graphs were then considered to study the parameter's 

importance and select the best models among the different 

established input-parameters trained models. Prime factors 

or primary and secondary controlling variables in each of 

the best models were obtained from tree pruning based on 

the root node and internal nodes from tree branching. This 

would allow measuring the degree of impact of studied 

predictors on PCEs and dye absorption ability for visible-

light energy and capability to separate generated electron-

hole pairs. We then estimated the order of magnitude of 

parameters importance, while correlating the importance 

of existing anchoring groups to both PI and BG and 

respective dye impact on the solar cell PCEs. The equation 

of identified statistical error from the coefficient of 

determination (R2) is shown in Eq. (1), knowing that the 

observed value is symbolized as 𝑥𝑜,𝑖 and/or 𝑥𝑜; 𝑥𝑝,𝑖 and/or 

𝑥𝑝 refers to the values predicted by the model; predicted 

value �̅�𝑜 is the experimentally obtained or observed values 

from averaging; �̅�𝑝  is the theoretically estimated or 

predicted values from averaging; and 𝑛  refers to the 

datasets size or the number of experimental observations. 

 

(1) 

 
Figure 1. Raw datasets from literature used in the supervised machine 
learning: (A) Training, (B) Testing; (C) Factors affecting performance. 

III. STUDY FRAMEWORK 

Training steps were carried out using four different 

input-parameters models: PIX-input, BG-input, HLBG-

input, and PIXBG-input (i.e. mix/match of selected 

independent parameters). The selection of various input 

parameters is important to define controlling factors that 

would chiefly result in changing PCEs based on attributes 

analysis. 

The classification output (response) was linked to the 

normalized scores which were in the range [0.004 – 4.54], 

and PCEs were identified to be relatively high or low if 

score > 1 (Yes) and score < 1 (No), respectively. In other 

words, the “COUNT IFS” statement was applied in 

“EXCEL” to translate literature PCEs numbers to (Yes=1) 

and (No=0) whereas that average PCE = 1.82 is the 

boundary limits [i.e. If PCEs >1.82%, return 1=Yes, else 

0=No). By doing a numeric-to-character conversion 

decision analysis, we correlated studied PCEs to the 

various naturally-sensitized photoanodes and their 

pigments. Various trained classifiers were then tested 
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statistically to check for their accuracies, which in turn 

showed that only decision trees and SVMs had high 

prediction accuracies. The adopted study framework is 

shown in Fig. 2. The selection of inputs as independent 

parameters resulted in the possibility of establishing a 

minimum of four unique models: PIX-input models, BG-

input models, HLBG-input models, and PIXBG-input 

models (i.e. mix/match the studied independent 

parameters). 

 

Figure 2. Study framework for data collection, training, testing, 

followed by the analysis of the most accurate machine learning 
predictive models. 

IV. RESULTS AND DISCUSSION 

The classification accuracy results of the different input 

models found from MATLAB analysis are shown in Table 

I, which have approximate 81%, 85%, and 90% accuracies 

for PIX-input, BG-input, and [HLBG, and PIXBG]-input 

models, respectively. Also, the built models' accuracies 

were determined by taking the average accuracy obtained 

from the various decision trees trained models shown in 

Table I (which shows predictions from classification for 

each of the studied input models). 

TABLE I. THE PREDICTION ACCURACIES OF DIFFERENT INPUT MODELS 

FOR EVALUATION OF NATURAL DYES PREDICTORS IMPACT ON PCES 

Predictors  

 

Model 

Decision Trees 

FT MT CT 

PIX 85.2% 85.2% 75% 

BG 85.2% 85.2% 83.3% 

HLBG 91.7% 91.7% 86.1% 

PIXBG 90.7% 90.7% 79.6% 

 

A. Controlling Parameters & Predictor Importance 

Controlling parameters or included inputs used in the 

various built decision tree models have been evaluated via 

predictor importance analysis. For instance, PIX-input 

analysis showed that the PI (free dye electrons) is almost 

as twice important as the X (anchoring groups) in 

indicating whether a dye type would effectively increase 

PCEs or not based on FT and MT that were found to be 

much more accurate than that CT as shown in Fig. 3(A). 

The BG-input model only has BG as an independent 

variable which was found to be of high importance in 

defining dye capabilities, Fig. 3(B). The HLBG-input 

model's analysis confirmed that BG is among the top 

controlling parameters that is ~3-fold more important 

than H (HOMO) energy level of the dye, Fig. 3(C). Yet, 

HOMO levels must be taken into consideration since this 

is the lowest dye molecular energy level from where 

electrons should be excited to reach L (LUMO) and 

overcome the BG energies to produce excitons (free e-h 

pairs). Moreover, the PIXBG-input model's analysis 

determined that BG/X importance ratio was about 12 as 

shown in Fig. 3(D), which concludes that the order of 

magnitude of parameters importance as BG (1) > H (0.32) > 

PI (0.08) > X (0.04) that should be adopted when analyzing 

natural dye abilities for charge generation/injection to 

achieve high PCEs. 

B. Decision Trees Classification 

According to the classification tree graphs plotted in Fig. 

4 from FT, MT, and CT trained classifiers, it was evident 

that only BG and H are the controlling factors when it 

comes to the HLBG model with only two pruning levels. 

The first controlling parameter or feature (BG) has 

classified >63% of the datasets from HLBG based on the 

root node and internal nodes from tree branches and sub-

branches as shown in Fig. 4(A, B). Conversely, the HOMO 

level, which is important for the dye absorption abilities, is 

not as critical as the overall required energy needed to be 

expressed in BG. From analyzing the generated trees from 

PIXBG trained models, BG was also the prime classifier 

among the three input factors including free electrons and 

anchoring groups from illustrations in Fig. 4(C, D). Both 

BG and X were the controlling factors in the case of using 

PIXBG, which emphasizes that PI is not as important as X 

in finding dye impact on PCEs in DSSCs. Moreover, The 

BG was found to control >85% of datasets for FT/MT 

(PIXBG) acting as a prime parameter. 

 

Figure 3. Predictor importance of independent input variables used in decision tree models based on selection of inputs: (A) PIX-input models, (B) 
BG-input models, (C) HLBG-input models, (D) PIXBG-input models. 
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Figure 4. Classification tree graphs from fine tree (FT), medium tree (MT), and coarse tree (CT) trained classifiers: (A) FT and MT, (B) CT, (C) FT 
and MT, (D) CT. Note number in the parenthesis corresponds to probability to achieve PCE >1.82%. 

 

Figure 5. Bubble charts for visualizing changes in PCEs in TiO2-based/iodide-triiodide-liquid-redox-based naturally-sensitized DSSCs showing the 

impact of independent inputs: (A) Cyanin dyes, (B) Carotenoids, (C) Protein complexes, (D) Mixed and unclassified pigments. 

From the originally constructed datasets from literature, 

the visualized changes in PCEs can be seen in the created 

bubble charts illustrated in Fig. 5 for every studied pigment 

class. The relative size of the bubbles translates variations 

in PCEs of various studied TiO2-based/iodide-triiodide-

liquid-redox-based naturally-sensitized DSSCs as a 

function of PI, X, and BG of the selected dyes. A larger 

bubbles size indicates the ability of a dye to achieve a 
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relatively high PCE when compared to the other 

investigated dyes within the same pigment class. For 

example, cyanin dyes category [including rutin (RU), 

betaxanthin (BE), anthocyanin (AN), zinc phthalocyanines 

(ZP), cyanine (CYA), betalains (BET)] shown in Fig. 5(A) 

confirms that efficient. 

DSSCs that are based on cyanins with the following 

characteristics PI=10–19, X=0–4, and BG=1.1–1.68 eV 

would achieve PCEs>5.5%. However, recommended dye 

characteristics in carotenoids class [from the following: 

xanthophylls carotenoids: yellow (XC-Y), xanthophylls 

carotenoids: red (XC-R), xanthophylls carotenoids: pure 

orange (XC-PO), xanthophylls carotenoids: raw orange 

(XC-RO), xanthophylls carotenoids: cocktail (XC-C), 

lycopene carotenoids (LC), carotenoid (CAR)] were 

inferred from Fig. 5(B) suggesting that carotenoids with 

approximately 11 free electrons and only one anchoring 

groups [PI=11, X=1] would yield in the highest 

PCEs>0.475% subjected to BG=5.23 eV. Alternatively, 

dyes from protein complexes [e.g. light-harvesting 

complex II (LH2-1), reaction centers (RC), light-

harvesting complex II (LH2-2), RC photosystem I trimer 

(PSI), bacteriorhodopsin protein (BR-P), 

bacteriorhodopsin protein - Solid (BR-PS)] have shown 

that highest cell performance (PCEs>0.49%) was evident 

when the PPCs structural and electronic characteristics 

were in the following ranges PI=9–13, X=2–4, and 

BG=1.8–3.46 eV, as shown in Fig. 5(C). Mixed dyes [e.g. 

chlorophyll a + carotenoids (CC-1), bacteriorhodopsin 

proteins and bacterioruberin carotenoids (BRs), carotenoid 

+ chlorophyll (CC-2), A. amentacea + P. pterocarpum (AP) 

from anthocyanin, carotenoid, and chlorophyll] and 

unclassified pigments [e.g. chromatophores (CHR), 

chlorophyll (CHL), xanthenes (XAN), coumarin (COU)] 

from Fig. 5(D) have shown that they can theoretically 

achieve the highest efficiency of PCEs>7.8% probably 

with the following constraints PI=4–10, X=3, and 

BG=1.98–3.57 eV. Such high-efficiency observations 

found for dyes with low free electrons from mixed and 

unclassified dyes might be explained by the fact that high 

numbers of free electrons in association with 𝜋-bonds 

could increase excitation competitions. Visible-light 

incident allows excited electrons to transport through 

anchoring groups (e.g. carboxyl). 

V. CONCLUSION 

We developed high-accuracy predictive models to study 

the impact of dye structural, electronic, and molecular 

properties on the PCE of DSSCs. Tree training algorithms 

were carried out via 4 predictors [the number of dye 

structure 𝜋-bonds (PI), number of dye anchoring groups 

(X), HOMO(H)-LUMO(L), and bandgap energy (BG)] 

with 2 responses for the high PCEs (Yes/No). The HLBG-

input and PIXBG-input models were found promising with 

the highest accuracies of 91% using FT/MT. The results 

confirmed that BG is among the top controlling parameters 

with the order of magnitude of parameters importance as 

BG (1) > H (0.32) > PI (0.08) > X (0.04). Both BG and X 

were controlling factors when applying PIXBG, which 

emphasizes that PI is not as important as X in impacting 

PCEs whereas the BG parameter was found to control >85% 

of the datasets (FT/MT) and altogether would ensure 

smooth charge injection and forward electron transport. 
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