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Abstract—The utilization of free, renewable, and available 

solar energy became a focus research area in recent years. 

Sustainable natural photosensitizers in dye-sensitized solar 

cells (DSSCs) are among the hot researched topics in the 

scientific community. Herein, various naturally-sensitized-

photoanode-based DSSCs were studied via statistical and 

machine learning analysis to investigate the possibility to 

achieve relatively high PCEs in naturally-sensitized DSSCs.  

Studied photosensitizer (dye) characteristics included chemical 

structure and bandgap which were correlated to the literature 

reported PCEs. Input parameters used in models classification 

training were: the number of π-bonds (PI), the number of 
anchoring groups (X), HOMO(H)-LUMO(L), and bandgap 

energy (BG), with only 2 responses regarding the statistical 

possibility to achieve high PCEs (Yes/No). Both training/testing 

(80/20)% datasets were carefully chosen to identify the dye 

controlling parameters responsible for increasing PCEs. The 

built trained classification models (decision trees) were tested 

and showed high prediction accuracy. The idea here is to check 

whether a certain dye and its correlated PCE would achieve 

below or above the average PCE. Thus, this allowed us to 

classify the problem according to the selected parameters so 

that the dyes can be correlated to their BGs and the other 

parameters. This work shows the potential of applying 

statistical analysis to natural sensitizers for enhanced charge 

injection (current density) for renewable, cost-effective, and 

sustainable energy production. 
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I. INTRODUCTION 

Natural dyes extracted from different natural sources (e.g. 
anthocyanin, carotenoid, etc.) have been previously proposed 
to be used as sensitizers in dye-sensitized solar cells (DSSCs) 
due to their low cost and environmental friendliness [1]. 
However, the power conversion efficiency (PCE) from 
naturally-sensitized DSSCs is typically in the average range 
(<0.05–1.7%) [2] requiring a thorough understanding of the 
role of pigment’s molecular structure, electronic properties, 
anchoring groups, and conjugated double bonds or free 𝜋-
electrons for improved PCE from enhanced carriers transport 
and decreased recombination [3]–[5]. Photosensitization is 
the basis for designing efficient DSSCs capable of initiating 
electron injection and charge transfer from dye molecules to 
the semiconductor [6]–[8].  

A photosensitizer is considered efficient when it fulfills 
these requirements [9]: (i) intense visible-light absorption, 

(ii) strong chemisorption onto the semiconductor surface, 
(iii) fast electron injection into the semiconductor CB, and 
(iv) involve several =O or –OH groups to anchor dye 
molecules onto semiconductor surface. There are different 
kinds of natural and environmental-friendly photosensitizers 
[1], which can be extracted from light-harvesting complexes 
of anthocyanin, carotenoid, and chlorophyll biomolecules 
[10] emerged as an attempt to substitute the expensive and 
toxic [11] metal-based ruthenium polypyridyl dyes [12]. 

Since the beginning of technology, machines (computers) 
in many trials have been used to learn specific patterns for 
data classification and decision making [13]. Classification 
algorithm distributes variously mixed datasets into categories 
by constructing a model via supervised learning the relation 
between input attributes and an output-dependent parameter 
[14]. A common classification algorithm is known as 
“Decision trees” is well-known for its ability to categorize 
datasets. The method consists of a tree with internal nodes 
used as categories allowing building classification models 
from observations of attributes or predictors (terminal nodes) 
to reach conclusions based on categorized responses [15]. 
Decision trees work great with redundant attributes, provide 
good results in presence of data noise, classify small datasets 
easily, give high accuracy with minimum nodes or features. 
[14]. PCE prediction of DSSCs was earlier studied via multi-
learner ensembles based on clustering and modeling 
approaches for achieving high accuracy and generalization. 
The L-SVM-KNN-WMA based achieved high accuracy 
>91% for PCE prediction [16]. Im et al. applied gradient-
boosted regression trees (GBRT) to predict structural heat of 
formation and bandgap for lead-free perovskites [17]. 
Prediction of dye adsorption on titania and absorption 
capabilities was previously studied via various classification 
methods which accurately indicated spectral shifts in 70–
80% of inspected photosensitizers [18]. 

In this work, we statistically investigate the possibility to 
achieve high PCEs in naturally-sensitized-photoanode-based 
DSSCs using decision trees machine learning [16], [19], [20] 
of dye structural, electronic, and molecular properties. An 
earlier introduced concept in our work [20], called “in-
between randomization”, was then applied for an expansion 
of datasets information from 27 natural sensitizers. Models 
building algorithms were carried out via 4 (dye) predictors 
including the number of π-bonds (PI), the number of 
anchoring groups (X), HOMO(H)-LUMO(L), and bandgap 
energy (BG), with 2 responses for PCEs >1.82% (Yes/No). 



 

 

A “parameters importance” analysis was conducted to 
find the prime factors and controlling variables that would 
enhance dye absorption abilities for maximum performance. 
The idea here is to check whether a certain dye and its 
correlated PCE (already known from the literature) would 
achieve below or above the average PCE. Thus, this allowed 
us to classify the problem according to the selected 
parameters to know the dyes that would produce high PCEs 
and those that would produce low PCE so that they can be 
correlated to their BGs and the other parameters indicated in 
the study methodology. 

II. METHODS AND EQUATIONS 

We collected raw information regarding the performance 
of various redox-liquid and TiO2-based naturally-sensitized 
DSSCs from more than 30 recently published articles (2015–
2020) [2], [21]–[24]. Collected PCEs were then correlated to 
the dye type, structural, electronic, and molecular properties. 
The chemical structures of the studied dyes were then 
carefully gathered and manually evaluated to check for the 
existing number of double conjugated π-bonds and the 
existing number of anchoring or functional groups. Then, we 
looked for the approximated values of bandgap energies of 
every single and different studied dye, where we have taken 
the average value of the reported theoretical bandgaps of 
pigments from the literature. 

The constructed original datasets which contain 27 
different sensitizers were mainly selected from dye classes 
such as carotenoids, protein complexes, flavonoids, cyanins, 
chlorophyll, and chromatophores. The 1.82% was the 
determined averaged performance of the naturally-sensitized 
DSSCs according to the selected dye types, based on TiO2 
photoanode and iodide-triiodide liquid redox. An earlier 
introduced concept [20], called “in-between randomization”, 
was applied for an expansion of datasets by 5-fold. 

The “in-between randomization” allowed us to expand 
the originally constructed datasets to 135 numbers whereas 
that both HOMO and LUMO levels were also expanded with 
the taken errors since (BG=HOMO–LUMO), as in Fig. 1 
(along with factors affecting performance). The original data 
points were plotted after raw sets were expanded via utilizing 
BG values. Notice that we assumed that there were only 4 
dye-associated factors that would impact the performance of 
DSSCs. The expanded datasets were divided into two sets 
(80% training and 20% testing) to accurately establish 
classification models and be able to test their validity and 
prediction accuracy. 

The interpretations of models errors via classification tree 
graphs were then considered to study the parameter's 
importance and select the best models among the different 
established input-parameters trained models. Prime factors or 
primary and secondary controlling variables in each of the 
best models were obtained from tree pruning based on the 
root node and internal nodes from tree branching. This would 
allow measuring the degree of impact of studied predictors 
on PCEs and dye absorption ability for visible-light energy 
and capability to separate generated electron-hole pairs. We 
then estimated the order of magnitude of parameters 
importance, while correlating the importance of existing 
anchoring groups to both PI and BG and respective dye 
impact on the solar cell PCEs. The equation of identif ied 
statistical error from the coefficient of determination (R2) is 
shown in Eq. (1), knowing that the observed value is 

symbolized as  and/or ;  and/or  refers to the 

values predicted by the model; predicted value  is the 
experimentally obtained or observed values from averaging; 

 is the theoretically estimated or predicted values from 

averaging; and  refers to the datasets size or the number of 
experimental observations. 

 

(1) 

 

 

Fig. 1. Raw datasets from literature used in the supervised machine 
learning: (A) Training, (B) Testing; (C) Factors affecting performance.  

 The output of the classifier is set to be correlated to the 

average PCE of 1.82% that the average efficiency found 
from many studied naturally-sensitized DSSCs with the same 

studied dyes. The idea here is to check whether a certain dye 
and its correlated PCE (already known from the literature) 
would achieve below or above the average PCE. Thus, this 

allowed us to classify the problem according to the selected 
parameters to know the dyes that would produce high PCEs 
and those that would produce low PCE so that they can be 

correlated to their BGs and the other parameters indicated in 
the study methodology. The outcome from the classification 
analysis would help scientists to conduct their studies 

according to the found parameters which have a high impact 
on the PCE such as BG and H of the dye molecules. The 

author suggests that dye blending or hybrid natural-synthetic 
dyes should be synthesized based on each dye BG and H to 

better promote the PCE in DSSCs. 

III. STUDY FRAMEWORK 

Training steps were carried out using four different input-
parameters models: PIX-input, BG-input, HLBG-input, and 
PIXBG-input (i.e. mix/match of selected independent 
parameters). The selection of various input parameters is 
important to define controlling factors that would chiefly 
result in changing PCEs based on attributes analysis. 

The classification output (response) was linked to the 
normalized scores which were in the range [0.004 – 4.54], 
and PCEs were identified to be relatively high or low if score 
> 1 (Yes) and score < 1 (No), respectively. In other words, 
the “COUNT IFS” statement was applied in “EXCEL” to 
translate literature PCEs numbers to (Yes=1) and (No=0) 
whereas that average PCE = 1.82 is the boundary limits [i.e. 



 

 

 

Fig. 3. Predictor importance of independent input variables used in decision tree models based on selection of inputs: (A) PIX-input models, (B) BG-
input models, (C) HLBG-input models, (D) PIXBG-input models. 

If PCEs >1.82%, return 1=Yes, else 0=No). By doing a 
numeric-to-character conversion decision analysis, we 
correlated studied PCEs to the various naturally-sensitized 
photoanodes and their pigments. Various trained classifiers 
were then tested statistically to check for their accuracies, 
which in turn showed that only decision trees and SVMs had 
high prediction accuracies. . The adopted study framework is 
shown in Fig. 2. The selection of inputs as independent 
parameters resulted in the possibility of establishing a 
minimum of four unique models: PIX-input models, BG-
input models, HLBG-input models, and PIXBG-input 
models (i.e. mix/match the studied independent parameters). 

 
Fig. 2. Study framework for data collection, training, testing, followed by 

the analysis of the most accurate machine learning predictive models.  

IV. RESULTS AND DISCUSSION 

The classification accuracy results of the different input 
models found from MATLAB analysis are shown in Table I, 
which have approximate 81%, 85%, and 90% accuracies for 
PIX-input, BG-input, and [HLBG, and PIXBG]-input 
models, respectively. Also, the built models' accuracies were 
determined by taking the average accuracy obtained from the 
various decision trees trained models shown in Table I 
(which shows predictions from classification for each of the 
studied input models). 

 
TABLE I. THE PREDICTION ACCURACIES OF DIFFERENT INPUT MODELS FOR 

EVALUATION OF NATURAL DYES PREDICTORS IMPACT ON PCES. 

Predictors  

 
Model 

Decision Trees 

FT MT CT 

PIX 85.2% 85.2% 75% 

BG 85.2% 85.2% 83.3% 

HLBG 91.7% 91.7% 86.1% 

PIXBG 90.7% 90.7% 79.6% 

 

A. Controlling Parameters and Predictor Importance 

Controlling parameters or included inputs used in the 
various built decision tree models have been evaluated via 
predictor importance analysis. Predictor importance is 
nothing but weight fraction corresponding to each parameter 
that would show the impact of a parameter on categorizing 
DSSCs according to the selected dyes and based on the 
system PCE. For instance, PIX-input analysis showed that 
the PI (free dye electrons) is almost as twice important as the 
X (anchoring groups) in indicating whether a dye type would 
effectively increase PCEs or not based on FT and MT that 
were found to be much more accurate than that CT as shown 
in Fig. 3(A). The BG-input model only has BG as an 
independent variable which was found to be of high 
importance in defining dye capabilities, Fig. 3(B). The 
HLBG-input model's analysis confirmed that BG is among 

the top controlling parameters that is 3-fold more 
important than H (HOMO) energy level of the dye, Fig. 
3(C). Yet, HOMO levels must be taken into consideration 
since this is the lowest dye molecular energy level from 
where electrons should be excited to reach L (LUMO) and 
overcome the BG energies to produce excitons (free e-h 
pairs). Moreover, the PIXBG-input model's analysis 
determined that BG/X importance ratio was about 12 as 
shown in Fig. 3(D), which concludes that the order of 
magnitude of parameters importance as BG (1) > H (0.32) > 
PI (0.08) > X (0.04) that should be adopted when analyzing 
natural dye abilities for charge generation/injection to 
achieve high PCEs. 

B. Decision Trees Classification 

According to the classification tree graphs plotted in Fig. 
4 from FT, MT, and CT trained classifiers, it was evident 
that only BG and H are the controlling factors when it comes 
to the HLBG model with only two pruning levels. The first 
controlling parameter or feature (BG) has classified >63% of 
the datasets from HLBG based on the root node and internal 
nodes from tree branches and sub-branches as shown in Fig. 
4(A,B). Conversely, the HOMO level, which is important for 
the dye absorption abilities, is not as critical as the overall 
required energy needed to be expressed in BG. From 
analyzing the generated trees from PIXBG trained models, 
BG was also the prime classifier among the three input 
factors including free electrons and anchoring groups from 
illustrations in Fig. 4(C,D). Both BG and X were the 
controlling factors in the case of using PIXBG, which 
emphasizes that PI is not as important as X in finding dye 
impact on PCEs in DSSCs. Moreover, The BG was found to 
control >85% of datasets for FT/MT (PIXBG) acting as a 
prime parameter. 

 



 

 

 
 
Fig. 4. Classification tree graphs from fine tree (FT), medium tree 

(MT), and coarse tree (CT) trained cl assifiers: (A) FT and MT, (B) 
CT, (C) FT and MT, (D) CT. Note number in the parenthesis 

corresponds to probability to achieve PCE >1.82%. 
 

 

A parameter that would be able to control the 
classification of DSSCs for high or low PCE would 
practically also result in making DSSCs performance highly 
susceptible to that parameter. For instance, the identified 
parameters importance BG (1) > H (0.32) > PI (0.08) > X 
(0.04) can be also thought of as the PCE would be very 
susceptible to DSSCs operated with dyes that have very high 
or very low BGs, whereas that the very low BG would 
increase efficiency and the very high BG would result in low 
PCE due to the high energy requirements for electron 
excitation. 

 

V. CONCLUSION 

We developed high-accuracy predictive models to study 
the impact of dye structural, electronic, and molecular 
properties on the PCE of DSSCs. Statistical analyses were 
carried out via 4 predictors [the number of dye structure 𝜋-
bonds (PI), number of dye anchoring groups (X), 
HOMO(H)-LUMO(L), and bandgap energy (BG)] with 2 
responses for the high PCEs (Yes/No). The HLBG-input and 
PIXBG-input models were found promising with the highest 
accuracies of 91% using FT/MT. The results confirmed that 
BG is among the top controlling parameters with the order of 
magnitude of parameters importance as BG (1) > H (0.32) > 
PI (0.08) > X (0.04). Both BG and X were controlling factors 
when applying PIXBG, which emphasizes that PI is not as 
important as X in impacting PCEs whereas the BG parameter 
was found to control >85% of the datasets (FT/MT). 
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