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A B S T R A C T   

Understanding natural photosensitizers characteristics in dye-sensitized solar cells (DSSCs) is necessary to ach-
ieve high power conversion efficiency (PCE). Here, we statistically investigate the possibility to achieve relatively 
high PCEs in naturally-sensitized-photoanode-based DSSCs using decision trees and support vector training of 
dye structural, electronic, and molecular properties. We studied the chemical structure and bandgap of 27 
sensitizers, correlated to the literature reported PCEs while applying “in-between randomization” for datasets 
expansion. Training and testing algorithms were carried out via 4 (dye) predictors including the number of 
π-bonds (PI), anchoring groups (X), HOMO(H)-LUMO(L), and bandgap energy (BG), with 2 responses for the 
possibility to achieve PCEs >1.82% (Yes/No). Both HLBG-input and PIXBG-input models were found promising 
with the highest accuracies of ∼ 92% using trees classifiers and ∼ 96% with support vector classification, 
respectively. Testing datasets were chosen to check for built models accuracy and similarities were evident 
between the models’ results (PIX, BG, HLBG, and PIXBG). Residual analysis showed trees models had the min-
imum statistical errors with narrow violons (± 0.25 ranges). Despite that the existence of more anchoring groups 
allows firm molecules attachment to semiconductors for enhanced charge injection, the HLBG-input analysis 
confirmed that BG is the foremost controlling parameter (∼ 3-fold > H), with BG/X importance ratio of 12 
leading to the parameter’s importance: BG (1) > H (0.32) > PI (0.08) > X (0.04). This work shows the potential 
of adopting trained classifiers for analyzing natural sensitizer’s abilities to inject and separate generated electron- 
hole pairs for producing renewable, cost-effective, and sustainable energy.   

1. Introduction 

The current worldwide trends show the increasing population’s de-
mand for renewable and clean energies which can be met by securing 
utilization of highly efficient and environmental-friendly solar cells 
[1–6]. Photosensitization is the basis for designing efficient 
dye-sensitized solar cells (DSSCs) capable of initiating electron injection 
and charge transfer from dye molecules to the semiconductor [7–9]. 
There are many different kinds of natural and environmental-friendly 
photosensitizers [10], which can be extracted from light-harvesting 
complexes of anthocyanin, carotenoid, and chlorophyll biomolecules 
[4] emerged as an attempt to substitute the expensive and toxic [11] 
metal-based ruthenium polypyridyl dyes [12]. Natural dyes extracted 
from different natural sources (e.g. anthocyanin, carotenoid, flavonoid, 
aurone, chlorophyll, tannin, betalain obtained from fruits, flowers, 
leaves, seeds, barks, and various parts of plants or other biological 
sources) [13] have been previously proposed to be used as sensitizers in 
DSSCs due to their low cost and environmental friendliness [10]. 

However, the power conversion efficiency (PCE) from 
naturally-sensitized DSSCs is typically in the average range 
(<0.05–1.7%) [14–16] and requires a thorough understanding of the 
role of pigment’s molecular structure, electronic properties, anchoring 
groups, and conjugated double bonds or free π-electrons for improved 
PCE from enhanced carriers transport and decreased recombination 
[17–19]. 

A photosensitizer is considered efficient for DSSCs when it fulfills 
these requirements [20]: (i) intense visible-light absorption, (ii) strong 
chemisorption onto the semiconductor surface, (iii) fast electron injec-
tion into the semiconductor CB, and (iv) involve several =O or –OH 
groups to anchor dye molecules onto the semiconductor surface. The 
pigment’s molecular structure, properties (i.e. hydro-
philicity/hydrophobicity, solubility, surface chemistry, and stability of 
dye molecules), surface morphology, self-assembly, aggregation ten-
dency, anchoring groups, and electrolyte interaction with photosensi-
tizers are some of the basic parameters that need to be well understood 
to optimize DSSCs performance through using commercial and/or 
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natural photosensitizers [21]. Uniformly dispersed dyes in an optimal 
solvent prevent dye agglomeration and enhance dye/semiconductor 
surface interactions required for the attachment of dye acceptor seg-
ments, reducing series resistance and improving electron injection. 

Enhanced photoanode sensitization is attainable by stacking semi-
conducting materials [22–24] with different bandgaps, or more viably 
by utilizing low-bandgap energy cosensitizers [25–28]. Hug et al. (2014) 
[21] collected available data for natural dyes utilized in DSSCs. Bixin, 
crocetin, crocin, betaxanthin, betalains, angostin, rutin, neoxanthin, 
violaxanthin, and lutein were among the investigated natural sensitizers 
extracted from plant-based sources. More importantly, anthocyanin and 
carotenoids (e.g. β-carotene) have been identified as one of the prom-
ising natural dyes with many studies on their application in 
naturally-sensitized DSSCs for photons-to-electrons conversion [21]. 
Carotenoids are highly light-sensitive pigments [21] due to their con-
jugated double π-bonds structure with an optimal chain length of seven 
[29] giving an approximated light-absorption range of 400–500 nm 
[30]. The highest observed performance with single carotenoids in 
DSSCs was 2.6% with optimal structure length consisting of double 
conjugated bonds [31]. 

The use of dye blends from the combination of carotenoids/chloro-
phylls derivatives can increase the efficiency up to 4.2% as found in 
earlier works from testing modified chlorophyll/ β-carotene, modified 
chlorophyll/lutein, modified chlorophyll/violaxanthin, and modified 
chlorophyll/neoxanthin [32]. Rutin [20] from mangosteen pericarp 
extract showed the highest efficiency of 1.17% while extract of rhoeo 
spathacea showed an efficiency of 1.49% [33]. Further, sicilian prickly 
pear extract (betaxanthin) was determined to be capable of achieving 
high efficiency of 2.06% [34]. Proteins pigment complexes (PPCs) might 
be good alternatives to carotenoids since they have a higher absorption 
coefficient, wider absorbance range (300–1100 nm), and higher con-
version efficiency [35]. Under 1 sun radiation (100 mW/cm2), the DSSCs 
performance have been estimated from reported photovoltaic properties 
from several natural photosensitizers extracted from plants and other 
biosources: black rice (anthocyanin) 3.27% [14], capsicum (carotenoid) 
0.58% [14], erythrina variegata flower (carotenoid, chlorophyll) 2.06% 
[14], rosa xanthine (anthocyanin) 1.63% [14], kelp (chlorophyll) 1.18% 
[14], zinc phthalocyanines 4.6% [36] and 6.4% [37], cyanine 4.8% [38] 
and 7.62% [39], rose bengal (xanthenes) in ZnO-based DSSCs 1.56% 
[40], coumarin in TiO2-based DSSCs 7.7% [41] and 9% [42]. 

Moreover, natural pigments have many advantages over commercial 
metal-synthetic dyes for DSSCs. Natural pigments from plant and/or 
bacteria sources are promising candidates to be integrated into DSSCs 
which can be simply installed as rolls in many daily used items such as 
handbags and clothing as well as building walls, windows, and inte-
grated bio-photovoltaics [43,44]. Advantages of using natural pigments 
from natural sources include [30,35,43,44]:  

(i) Plants, bacteria, and their proteins and carotenoids are abundant 
and cost-effective.  

(ii) Dye extraction is easy, feasible, and can be also utilized on large 
scales (scalable).  

(iii) Biodegradable, renewable, and sustainable which makes them 
very convenient.  

(iv) Noncarcinogenic, environmental-friendly, and pose no health 
concerns to humans.  

(v) Absorb most of the light energy due to wide absorption spectra 
(multi wavelengths). 

In this work, we statistically investigate the possibility to achieve 
relatively high PCEs in naturally-sensitized-photoanode-based DSSCs 
using decision trees and support vector machines (SVMs) machine 
learning [45–47] of dye structural, electronic, and molecular properties. 
An earlier introduced concept in our work [46], called “in-between 
randomization”, was then applied for an expansion of datasets including 
information on the structural, electronic, and bandgap of 27 natural 

sensitizers. Models building algorithms were carried out via 4 (dye) 
predictors including the number of π-bonds (PI), the number of 
anchoring groups (X), HOMO(H)-LUMO(L), and bandgap energy (BG), 
with 2 responses for PCEs >1.82% (Yes/No). Collected data were then 
divided into training and testing datasets to check for the classification 
accuracy of the four established input-parameters models: PIX-input, 
BG-input, HLBG-input, and PIXBG-input. Residual analysis, quartile 
range (QR) and inter-quartile range (IQR) methods, and confusion 
matrices were applied to find the best models with minimum statistical 
errors (outliers) based on the 1.5 IQR range-median decision rule. Lastly, 
we conducted a “parameters importance” analysis complemented with 
classification tree graphs to find the prime factors and controlling var-
iables that would enhance dye abilities to absorb more of the 
visible-light energy (photons) and separate generated electron-hole 
pairs for maximum performance of the photoanode composite in DSSCs. 

2. Machine learning for solar cells and renewable energies 

Since the beginning of the technology and information age, machines 
(computers) in many trials have been used to learn specific patterns 
from provided data following certain algorithms to create what is called 
machine learning for data classification and decision making [48]. 
Grouping similar data together is also known as data mining (knowledge 
management) based on gathered data from literature [49]. Classification 
algorithm distributes variously mixed datasets into categories by con-
structing a model from learning the relation between input attributes 
and an output-dependent parameter (response) [50]. It is much easier to 
infer such relationships between inputs and outputs via supervised 
learning which correlates each input object to the desired output value 
to create unique vectors that can be used in new mapping predictions 
[48]. 

Decision Trees: A decision tree is a tree with internal nodes that are 
nothing but tests (based on input data patterns) and with leaf nodes used 
as categories (of these patterns). In short, tree builds classification 
models from observations of datasets attributes or predictors (repre-
sented in branches as a decision or terminal nodes) to reach conclusions 
about the target classification based on categorized responses (repre-
sented in leaf nodes) [51]. Classification trees are found to be predict-
able for outcomes and decisions and can resolve problems of data 
shortage or incompleteness [52]. A roots node of a tree is the parent of 
all existing sub-nodes, with nodes for attributes, each link (branch) 
shows a decision (rule) and each leaf shows an outcome [52–54]. A 
decision tree is a hierarchical representation of knowledge that works 
efficiently with discrete data for data separating sequence until a Bool-
ean outcome at the leaf node is achieved [50]. It is an iterative process 
that splits the data into partitions with the continuous splitting to select 
the split that minimizes the sum of the squared deviations from the mean 
in the two separate partitions, applied to each of the new branches [51, 
55,56]. Decision trees work great with redundant attributes, provide 
good results in presence of data noise, classify small datasets easily, give 
high accuracy with minimum nodes or features [48–50]. There are 
different types of decision tree algorithms including the common ones as 
iterative dichotomies 3 (ID3), the successor of ID3 (C4.5), classification 
and regression tree (CART), and conditional inference trees (CTREE) 
[50]. 

Support Vector Machines: Support Vector Machines (SVMs) analysis 
was first identified by Vladimir Vapnik and his colleagues in 1995 [57] 
as a nonparametric statistical regression technique relying on kernel 
function and parameters selection. SVM is also capable of building the 
nonlinear boundaries among the classes suitable in almost all classifi-
cation tasks. SVMs work by searching for a particular line or decision 
boundary (hyperplane) for separating the datasets or classes while 
avoiding extra overfitting [48]. Cross-validation learning and gradient 
descent learning are some of the primary methods which are commonly 
used for kernel optimization and parameters selection. Considering a 
mixed kernel function strategy would result in models with decent 
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learning ability for generalization purposes [58]. Both predictor pa-
rameters and response values must be selected and analyzed carefully, 
respectively, from the training detests. Such selection would ensure 
having models with minimum errors and highest accuracy from finding 
a flat function f(x) with ε as the maximum deviation from yi for each 
training point x [59]. In other words, the function should have at most 
ε-deviation from the target from convex optimization based on three 
constraints and a tradeoff complexity. Typically, we need to find 
regression function: f : RD→R: 

y= f (x) = ωT φ(x) + b (1) 

Knowing the following definitions, ω is a weight vector, φ(x) is a 
selected function for data mapping of x from a low dimension to a high 
dimension space, and b is an up or down numeric value. SVMs regression 
adopts ε-insensitive function, where training data are assumed to follow 
a linear trendline with an accuracy associated with the ε value. Thus, 
function minimization can be optimized by converting the problem to an 
objective function as shown in the following [60]: 

min
1
2
ω2 +

C
2
∑m

i=1

(
ξ2

i + ξ*
i

2) (2) 

Under constraints: 

ωT φ(xi) + b − yi ≤ ε + ξi , i = 1, 2, …, m
yi − ωT φ(xi) − b ≤ ε + ξ*

i , i = 1, 2, …, m
ξi , ξ*

i ≥ 0 , i = 1, 2, …, m
(3)  

where ξi , ξ*
i is the relaxation factor, which should be equal to 0 when 

there is no error in the fitting. The performance of support vector 
regression is affected by the error penalty parameter C, which is the 
degree of punishment that is used to process the mistakenly divided 
sample. C is a tradeoff between the algorithm complexity and degree of 
mistakenly classified samples. In other words, C is the penalty factor, 
which is used as the weight between the error and the optimization 
objective. The first term (left term) of the function shown in Eq. (2), for 
optimization purposes, allows generalizing the model from the 
improved fitting smoothness. The second term (right term) of the 
function shown in Eq. (2) reduces the error and that when C > 0, there 
will be errors in the estimated regression with penalty indicated by the 
error ε [58]. There should be an appropriate selection of the model that 

determines the most suitable kernel function for the data characteristics 
[60]. This would ensure accurate data training based on the constructed 
kernel function type and its relevant parameters [58]. 

Odabas et al. [61] applied machine learning tools and decision trees 
to analyze the impact of materials selection and deposition methods on 
the stability of organo-lead halide perovskite solar cells. Constructed 
datasets were gathered from 404 cells stability profiles over time under 
various testing conditions. Decision trees were built to deduce rules and 
guidelines that would serve in fabricating long-term stable perovskite 
solar cells [61]. Another work investigated the factors related to cell 
fabrication from 800 publication database; statistical tools including 
decision tree classification determined major trends or patterns and 
significance of factors for generalizing models for building efficient cells 
[62]. PCE prediction of DSSCs was earlier studied via multi-learner en-
sembles (GBDT, RF, SVM-KNN-WMA, L-SVM) based on clustering and 
then modeling approach for achieving high accuracy and generalization. 
The L-SVM-KNN-WMA based on the optimal subset of clustering was the 
optimal method for small datasets with high accuracy >91% for PCE 
prediction of all-organic DSSCs [47]. Machine learning allows manipu-
lating datasets for predicting unknowing relationships as explained by 
Im et al. who applied gradient-boosted regression trees (GBRT) to pre-
dict structural heat of formation and bandgap from electronic structures 
for designing new lead-free perovskites [63]. Prediction of dye adsorp-
tion on titania and absorption capabilities was previously studied via 
various classification methods which accurately indicated spectral shifts 
in 70–80% of inspected photosensitizers [64]. 

3. Methods and study framework 

We collected raw information regarding the performance of various 
redox-liquid and TiO2-based naturally-sensitized DSSCs from more than 
30 recently published articles (2015–2020) [16,21,30,35,65–92], (see 
Table S1 in the Supplementary, noting that similar studies with the same 
kind of natural dye and/or results were dropped yielding in 27 raw 
datasets). The PCEs were confirmed to have resulted from experiments 
only (not from theoretical calculations) for reliable analysis. Whenever 
previous authors reported both voltages and currents, we have 
double-checked PCEs. Collected PCEs from the different DSSCs with 
various natural sanitizers were then correlated to the dye type, struc-
tural, electronic, and molecular properties. The chemical structures of 
the studied dyes were then carefully drawn and manually evaluated to 

Fig. 1. Raw datasets (expanded) information taken from previous literature for the number of dye free π-electrons (PI), functional groups (X), HOMO (H), LUMO (L), 
and bandgap (BG) energy levels used in the supervised machine learning analysis for building accurate prediction models: (A) Training datasets, (B) Testing datasets, 
(C) Factors affecting DSSCs performance based on dye characteristics. 
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check for the existing number of double conjugated π-bonds and the 
existing number of anchoring or functional groups attached to the prime 
pigment structure. Then, we looked for the approximated values of 
bandgap energies of every single and different studied dye, where we 
have taken the average value of the reported theoretical bandgaps of 
pigments from literature [76–86] (bandgaps were not necessarily ob-
tained from the same article that reported the DSSCs performance; 
however, in fact, most of the bandgap energies were taken from other 
theoretical related works on HOMO-LUMO levels) [4]. 

After gathering dyes structural and electronic information and esti-
mating the number of free electrons (π-bonds), anchoring groups, and 
bandgaps, we have constructed original datasets which contain 27 
different sensitizers mainly selected from dye classes such as caroten-
oids, protein complexes (LH2 and RC), flavonoids as cyanins (anthocy-
anins, betacyanin), chlorophyll, and chromatophores. Moreover, HOMO 
and LUMO energy levels were collected and added to the constructed 
datasets as a one-more-combined input parameter with the HOMO- 
LUMO data brought from the same theoretical works that reported the 
determined theoretical bandgaps of variously selected natural sensi-
tizers. Thus, machine learning analysis made on the selected dyes in 
DSSCs had 4 predictors (independent parameters) including the number 
of π-bonds (PI), the number of anchoring groups (X), HOMO(H)-LUMO 
(L), and bandgap energy (BG), with 2 responses for PCEs >1.82% (Yes/ 
No). We used both HOMO/LUMO and bandgap as two separate pre-
dictors because we wanted to investigate more about absolute energy 
levels of both HOMO and LUMO and their association with the TiO2 
valence/conduction bands and their impact on electron excitation, in-
jection, and forward transport. Such analysis would allow us to compare 
obtained results with the energy levels of the semiconductor in future 
studies so that one would come up with further discussion and maybe 
specific predictive models that would relate HOMO/LUMO to PCEs in 
TiO2-based DSSCs. The 1.82% is the determined averaged-performance 
of the naturally-sensitized DSSCs according to the selected dye types, 

based on TiO2 photoanode and iodide-triiodide liquid redox (except for 
the chromatophores-sensitized, PSI-sensitized, and BR-solids-sensitized 
solar cells that had different cell structures). 

Then, an earlier introduced concept from our previous related and 
recently published work [46], called “in-between randomization”, was 
applied for an expansion of datasets by 5-fold. Simply, we took leverage 
of inevitable errors from reported experimental [16,30,35,66–70,88, 
92–99] and theoretical results [76–86,100–108] by considering errors of 
± 1% and ± 2% in PCEs of the cell and their associated dye bandgaps for 
generating further numbers in the datasets. This allowed us to expand 
the originally constructed datasets to 135 numbers whereas both HOMO 
and LUMO levels were also expanded with the taken errors since (BG =
LUMO–HOMO), as in Fig. 1 (along with factors affecting performance). 
It is worth mentioning that PI and X values should have no errors since 
they solely depend on the well-known and fixed dye molecular struc-
tures and previously identified bonds and attached functional or 
anchoring groups. The expanded datasets were divided into two sets 
(80% training and 20% testing) to accurately establish classification 
models and at the same time to be able to test the established model’s 
validity and prediction accuracy. The ultimate goal was to statistically 
investigate the possibility to achieve relatively high PCEs in 
naturally-sensitized-photoanode-based DSSCs using decision trees and 
SVMs machine learning. Training steps were carried out using four 
different input-parameters models: PIX-input, BG-input, HLBG-input, 
and PIXBG-input (i.e. mix/match of selected independent parameters). 
The selection of various input parameters is important to define con-
trolling factors that would chiefly result in changing PCEs based on at-
tributes analysis. 

We conducted training analysis steps with trials and errors of the 
other existing machine learning classification models from the MATLAB 
toolbox which had shown low predictions accuracies of <63%. 
Accordingly, we selected the best-identified classification methods 
(decision trees and SVMs) for the training of the constructed and 

Fig. 2. Study framework showing the starting step of data collection, training, testing, followed by selection and analysis of the most accurate machine learning 
predictive models. 
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expanded datasets (Table S2). Testing datasets consisted of 27 sensi-
tizers information (PI, X, HOMO-LUMO, and BG), and their PCEs 
translated into a relatively high or low performance based on data 
normalization from dividing by the found averaged-performance. The 
classification output (response) was linked to the normalized scores 
which were in the range [0.004–4.54], and PCEs were identified to be 
relatively high or low if score >1 (Yes) and score <1 (No), respectively. 
In other words, the “COUNT IFS” statement was applied in “EXCEL” to 
translate literature PCEs numbers to (Yes = 1) and (No = 0) whereas that 
average PCE = 1.82 is the boundary limits [i.e. If PCEs >1.82%, return 1 
= Yes, else 0 = No). By doing this numeric-to-character conversion 
decision analysis, we have been able to correlate every studied PCE to 
the various naturally-sensitized photoanodes and their pigments. 
Various trained classifiers were then tested statistically to check for 
selected models’ accuracies, which in turn showed that only decision 
trees and SVMs had high prediction accuracies. 

Residual, QR, and IQR methods were then used for outlier in-
vestigations of recorded responses from the trained models for training 
and testing datasets. Such analysis guided us towards models with 
minimum statistical errors (minimal deviations from actual observa-
tions) based on 1.5 IQR range-median decision rule and confusion 
matrices. The adopted study framework is shown in Fig. 2. Note that the 
various selection of inputs as independent parameters resulted in the 
possibility of establishing a minimum of four unique models: PIX-input 
models, BG-input models, HLBG-input models, and PIXBG-input models 
(i.e. mix/match the studied independent parameters). 

The interpretations of models errors via confusion matrices and 
classification tree graphs were then considered to study the parameter’s 
importance and select the best models among the different established 
input-parameters trained models. Prime factors or primary and sec-
ondary controlling variables in each of the best models were obtained 
from tree pruning based on the root node and internal nodes from tree 
branching. This would allow measuring the degree of impact of studied 
predictors on PCEs and dye absorption ability for visible-light energy 
and capability to separate generated electron-hole pairs. We then esti-
mated the order of magnitude of parameters importance, while corre-
lating the importance of existing anchoring groups to both PI and BG and 
respective dye impact on the solar cell PCEs. The equations of identified 
statistical errors from the coefficient of determination (R2) and residual 
are shown in Eq. (4) and Eq. (5), respectively. Knowing that the 
observed value is symbolized as xo,i and/or xo; xp,i and/or xp refers to the 
values predicted by the model; predicted value xo is the experimentally 
obtained or observed values from averaging; xp is the theoretically 
estimated or predicted values from averaging; and n refers to the 

datasets size or the number of experimental observations. 

R2 =

[∑n
i=1

(
xo,i − xo

)(
xp,i − xp

)]2

∑n
i=1

(
xo,i − xo

)2
×
∑n

i=1

(
xp,i − xp

)2 (4)  

Residual= xo − xp (5) 

From the originally constructed datasets from literature, the visual-
ized changes in PCEs can be seen in the created bubble charts illustrated 
in Fig. 3 for every studied pigment class. The relative size of the bubbles 
translates variations in PCEs of various studied TiO2-based/iodide- 
triiodide-liquid-redox-based naturally-sensitized DSSCs as a function of 
PI, X, and BG of the selected dyes. Keeping both PI and X within the same 
figure and sharing the same y-axis shows how both predictors are 
correlated to BG based on the different studied natural dyes associated 
numbers of free electrons and anchoring groups (i.e. the goal is to 
identify the optimal combination of BG, PI, X that would result in the 
highest PCEs or largest bubble sizes corresponding to each dye category. 
For example, tiny bubble size (18) in Fig. 3(D) indicates a very low ef-
ficiency at BG = 1.5 eV, PI = 18, X = 0 for the “Mixed + Unclassified” 
pigments. 

The optimal ranges that would yield the highest PCEs are defined by 
gray dotted boxes as a function of BG, PI, and X for every dye class. A 
larger bubbles size indicates the ability of a dye to achieve a relatively 
high PCE when compared to the other investigated dyes within the same 
pigment class. For example, cyanin dyes category [including rutin (RU), 
betaxanthin (BE), anthocyanin (AN), zinc phthalocyanines (ZP), cyanine 
(CYA), betalains (BET)] shown in Fig. 3(A) confirms that efficient DSSCs 
results from preferably having cyanins with the following characteristics 
PI = 10–19, X = 0–4 and BG = 1.1–1.68 eV to achieve PCEs>5.5%. 
However, recommended dye characteristics in carotenoids class [from 
the following: xanthophylls carotenoids: yellow (XC-Y), xanthophylls 
carotenoids: red (XC-R), xanthophylls carotenoids: pure orange (XC- 
PO), xanthophylls carotenoids: raw orange (XC-RO), xanthophylls ca-
rotenoids: cocktail (XC-C), lycopene carotenoids (LC), carotenoid 
(CAR)] were inferred from Fig. 3(B) suggesting that carotenoids with 
approximately 11 free electrons and only one anchoring groups [PI =
11, X = 1] would yield in the highest PCEs>0.475% subjected to BG =
5.23 eV. Alternatively, dyes from protein complexes [e.g. light- 
harvesting complex II (LH2-1), reaction centers (RC), light-harvesting 
complex II (LH2-2), RC photosystem I trimer (PSI), bacteriorhodopsin 
protein (BR-P), bacteriorhodopsin protein – Solid (BR-PS)] have shown 
that highest cell performance (PCEs>0.49%) was evident when the PPCs 
structural and electronic characteristics were in the following ranges PI 
= 9–13, X = 2–4, and BG = 1.8–3.46 eV, as shown in Fig. 3(C). Mixed 

Fig. 3. Bubble charts for visualizing changes 
in PCEs of various studied TiO2-based/io-
dide-triiodide-liquid-redox-based naturally- 
sensitized DSSCs showing the impact of in-
dependent inputs selected for the machine 
learning analysis of dye structural and elec-
tronic properties including number of 
π-bonds (PI), number of anchoring groups 
(X), and bandgap energy (BG): (A) Cyanin 
dyes (PCEs = 1.33% ∼ 6.21%), (B) Carot-
enoids (PCEs = 0.008% ∼ 0.475%), (C) 
Protein complexes (PCEs = 0.08% ∼ 0.57%), 
(D) Mixed and unclassified pigments (PCEs 
= 0.04% ∼ 8.35%). Gray dotted-boxes refer 
to the optimal ranges that would yield in the 
highest PCEs.   
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dyes [e.g. chlorophyll a + carotenoids (CC-1), bacteriorhodopsin pro-
teins and bacterioruberin carotenoids (BRs), carotenoid + chlorophyll 
(CC-2), A. amentacea + P. pterocarpum (AP) from anthocyanin, carot-
enoid, and chlorophyll] and unclassified pigments [e.g. chromatophores 
(CHR), chlorophyll (CHL), xanthenes (XAN), coumarin (COU)] from 
Fig. 3(D) have shown that they can theoretically achieve the highest 
efficiency of PCEs>7.8% probably with the following constraints PI =
4–10, X = 3, and BG = 1.98–3.57 eV. Such high-efficiency observations 
found for dyes with low free electrons from mixed and unclassified dyes 
might be explained by the fact that high numbers of free electrons in 
association with π-bonds could increase excitation competitions be-
tween free electrons. Visible-light incident allows excited electrons to 
transport through anchoring groups (e.g. carboxyl) and pigment com-
ponents via donor-π-acceptor (D-π-A) segments or donor-acceptor- 
substituted π-conjugated bridge to the semiconductor [109]. Carbox-
ylic groups attached to acceptor segments of dye molecules provide firm 
chemical attachment to semiconductor surface and rapid electron in-
jection for reduced recombination; however, xanthene-based de-
rivatives (e.g. rhodamine) might have shown less PCEs with more X 
because of their difficult quenching once covalently bonded to the TiO2 
surface which increases the unfavorable fluorescence that reduces 
conjugation donation power and decreases light absorption to the 
near-IR region [110–112]. Fig. 4 shows PCEs changes according to the 
studied predictors for the different dye types. Fig. 5 and Fig. 6 shows 
selected and studied natural dyes (sensitizers) molecular structures and 
their existing number of free electrons and anchoring groups used in 
model building (refer to Table S1 in the Supplementary for the 

constructed raw datasets of the studied dye categories and specific dye 
names with their determined structural and electronic characteristics). 

4. Results and discussion 

As discussed, tree training or SVMs algorithms were carried out via 4 
predictors with 2 responses regarding the statistical possibility to ach-
ieve relatively high PCEs (Yes/No). The different four input models were 
built from training datasets including one or more of the following 
predictors: the number of dye structure π-bonds, number of dye 
anchoring groups, HOMO-LUMO, and bandgap energies. Experimental 
and/or previous theoretical observations were taken as a benchmark or 
a baseline to compare our built model’s accuracy in predicting the 
impact of dye structural, electronic, and molecular properties on the 
power conversion efficiency of naturally-sensitized DSSCs, or specif-
ically on the performance of the photoanode composite and its ability to 
absorb visible-light energy (photons) and separate generated electron- 
hole pairs. 

The trained datasets of earlier observations from the literature were 
taken into consideration for checking the classification accuracy of the 
built models including decision trees and SVMs. The various selection of 
inputs as independent parameters resulted in the possibility of estab-
lishing a minimum of four unique models: PIX-input models, BG-input 
models, HLBG-input models, and PIXBG-input models (i.e. mix/match 
the studied independent parameters). Comparisons of various models’ 
predictions of the different trained data points with the earlier experi-
mental or theoretical results are shown in Fig. 7. It is quite clear that FT, 

Fig. 4. Variations in observed PCEs (y-axis) 
of various studied TiO2-based/iodide-triio-
dide-liquid-redox-based naturally-sensitized 
DSSCs correlated to the four studied inde-
pendent inputs (PI, X, HOMO(H)-LUMO(L), 
BG) selected for the machine learning anal-
ysis and from using different dyes according 
to the studied pigment classes (x-axis) which 
were taken from literature: (A) Cyanin dyes 
(PCEs = 1.33% ∼ 6.21%), (B) Carotenoids 
(PCEs = 0.008% ∼ 0.475%), (C) Protein 
complexes (PCEs = 0.08% ∼ 0.57%), (D) 
Mixed and unclassified pigments (PCEs =
0.04% ∼ 8.35%). Stacked areas interpret 
information of PCE, PI, X; and clustered 
columns are for HOMO, LUMO, BG.   

Fig. 5. Studied natural sensitizers (dyes) and their theoretically determined characteristics from dye molecular structures showing existing number of free electrons 
(PI) and anchoring groups (X) which were used in training machine learning models: (A) Cyanin dyes category, (B) Carotenoids. 
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MT, and FGSVM from the four unique input models had shown almost 
identical patterns and predictions to those original observations found 
previously according to the utilized raw data from the literature [4]. The 
CT models’ results were found to have decent predictions placing it in 
the second rank from the top or among the best models that would 

predict actual observations. However, both MGSVM and CGSVM 
showed the worst classification accuracy to determine DSSCs with 
relatively high PCEs from the four unique input models. 

There were similarities between the four models regarding the pre-
diction responses (Yes/No), where the adjusted Yes = 2 and No = 1 are 

Fig. 6. Studied natural sensitizers (dyes) and their theoretically determined characteristics from dye molecular structures showing existing number of free electrons 
(PI) and anchoring groups (X) which were used in training machine learning models: (A) Protein complexes category, (B) Uncategorized and mixed dye complexes, 
(C) Chromatophores. 

Fig. 7. Earlier experimental observations of training datasets compared with theoretical predictions identified from the trained classification models including 
decision trees and support vector machines (SVMs) using various selection of inputs as independent parameters: (A) PIX-input models, (B) BG-input models, (C) 
HLBG-input models, (D) PIXBG-input models. 
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Fig. 8. Earlier experimental observations of testing datasets compared with theoretical predictions identified from the trained classification models including de-
cision trees and support vector machines (SVMs) using various selection of inputs as independent parameters: (A) PIX-input models, (B) BG-input models, (C) HLBG- 
input models, (D) PIXBG-input models. 

Fig. 9. Residual against datasets range within 1.5 IQR for outliers detection of the studied earlier experimental observations of training datasets compared with 
theoretical trees and SVMs trained-model predictions using various selection of inputs as independent parameters: (A) PIX-input models, (B) BG-input models, (C) 
HLBG-input models, (D) PIXBG-input models. 
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from original datasets normalization (i.e. adding one to the following 
numeric-to-character conditions: Yes = 1, and No = 0). The PIX-input 
and BG-input models showed average prediction accuracy ∼ 85% with 
FT and/or MT trained classifiers and maximum accuracy ∼ 93% with 
FGSVM classification as illustrated in Fig. 7(A and B). Further, much 
more accurate predictions were possible from using the promising 
HLBG-input and PIXBG-input models, whereas that prediction accuracy 
can reach up to ∼ 92% using FT and/or MT trained classifiers and ∼ 96% 
with FGSVM classification as shown in Fig. 7(C,D) and Fig. S1 in the 
Supplementary. Such high prediction accuracies of the latter two dis-
cussed models were possible from introducing +3 predictor variables or 
controlling parameters into the classifiers MATLAB code (toolbox). This 
would result in models with better judgment abilities (the case for 
HLBG-input and PIXBG-input models) to show the promising dyes or 
pigments structures and electronic energies that would allow achieving 
relatively high PCEs in DSSCs. 

In short, SVMs trained models were preferred over decision tree 
classifiers only if fine gaussian classification (FGSVM) is the applied 
classifier; otherwise, FT and MT tree models were found to be good 
enough to outperform the other SVMs classifications. To further prove 
our conceptual analysis, identified predictions were tested using trained 
models applied to selected testing datasets as shown in Fig. 8. The 
testing datasets were taken from the original (raw) data obtained from 
the literature and after carrying out the “in-between randomization” 
step for datasets expansion for training/testing steps. The only 27-point 
testing datasets showed results with very close predictions to those re-
sponses obtained from the trained models’ training datasets analysis. 
Similarities between the same-model (PIX, BG, HLBG, and PIXBG) re-
sults for trained and tested datasets were evident as shown in Fig. 7(A- 
D), and Fig. 8(A-D), respectively. This confirms the earlier conclusions 
that FGSVM classification, as well as FT and MT tree classifiers, are 
effective in models training when using +3 predictors as controlling 

parameters for the estimation of whether a dye solar cell will be efficient 
enough or not using a dye (pigment) with similar characteristics of one 
of the studied dye specific characteristics. 

Conducted residual versus range analysis for the four different input 
models showed that the least range of residual (close to the zeroth line) 
was found for FT, MT, and FGSVM results from PIX, HLBG, and PIXBG 
models with an exception for the BG-input model as shown in Fig. 9 and 
Fig. 10 training and testing datasets, respectively. These identified small 
ranges within 1.5 IQR indicate and confirm the three highly accurate 
statistical models which have the minimum detected outliers on a 
selected dataset. The distribution of the dataset’s residual based on the 
normalized results (Yes = 1 and No = 0) shows the model deviations 
whereas those minimal deviations from actual observations are noticed 
when ranges are small (i.e. maximum value minus minimum value in the 
dataset is less which would mean much less spread of residuals indi-
cating fewer prediction errors). 

The previously well-known quartile range “QR Method” can be un-
derstood and applied from visualizing a box plot where the median is the 
center point, Q1 and Q3 are the lower and upper borders, respectively, of 
the inter-quartile range (IQR). The lower/first quartile is then from the 
minimum point up to the Q1 border that is for the 25th percentile (i.e. 
25% of the data lies between minimum and Q1), and the upper/third 
quartile is then from the minimum point up to the Q3 border that is for 
75th percentile (i.e. 75% of the data lies between minimum and Q3). 
Accordingly, the IQR can be determined from the difference between Q3 
and Q1 (IQR = Q3 – Q1) which can produce decision ranges of various 
used datasets to detect outliers according to obtained ranges for residual 
from every model type. Any data point which was found to be set outside 
the identified ranges is considered as an outlier, knowing that both 
lower bound and upper bound are calculated with a scale of 1.5 as (Q1 – 
1.5 × IQR) and (Q3 – 1.5 × IQR), respectively [113]. This is equivalent to 
considering outliers only for any data which lies beyond 2.7 of standard 

Fig. 10. Residual against datasets range within 1.5 IQR for outliers detection of the studied earlier experimental observations of testing datasets compared with 
theoretical trees and SVMs trained-model predictions using various selection of inputs as independent parameters: (A) PIX-input models, (B) BG-input models, (C) 
HLBG-input models, (D) PIXBG-input models. 
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Fig. 11. Predictor importance of various involved independent input variables (or controlling parameters) that were used in building the three different decision tree 
models based on the unique selection of inputs as independent parameters: (A) PIX-input models, (B) BG-input models, (C) HLBG-input models, (D) PIXBG- 
input models. 

Fig. 12. Observed and predicted number of dye free π-electrons (PI) correlated with the existing functional groups (X), according to both the training datasets and 
their corresponding testing datasets obtained from the various trained FT tree models (input/response) and based on selection of different inputs as independent 
parameters: (A) PIX-input models, (B) BG-input models, (C) HLBG-input models, (D) PIXBG-input models. 
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deviation (σ) from the mean (μ) on either side of a normal distribution 
“bell curve” [113–115]. Hence, Gaussian distribution for outlier detec-
tion is relevant when the 1.5 IQR range-median decision rule is applied, 
which would allow us to check for the data outlier and draw conclusions 
about the accuracy of the built trained models. 

Note that the first x-axis values (observed) in both Figs. 9 and 10 
reserved the minimum residual since observed residual from experi-
ments should be shown close to the zeroth line for the experimental 
results which were taken as our baseline. That is if we consider obser-
vations from earlier literature correct with minimal errors, residuals of 
the observed must align with the zero-line indicating minimum errors. 
We plotted the observed results concerning Yes/No responses minus 
itself showing the range from 0 to ± 0.1 (considering error ± 2%) where 
most of the studied dyes >50% were found to not have the ability to 
achieve a relatively high PCE >1.82%. The reason behind selecting FT, 
MT, and FGSVM as the best models appears from the narrow violons 
with small ± 0.25 ranges of residual from the four models. On the 
contrary, CT and MGSVM were found with larger errors numerically 
defined by violins with ± 0.5 ranges of residual indicating undesired 
doubled prediction errors for the dye abilities in DSSCs. CGSVM showed 
the worst accuracy among the built models with – 0.75 < residual <+1. 
Similarities between trained and tested datasets violins are evident from 
Figs. 9 and 10, respectively. 

Controlling parameters or included inputs used in the various built 
decision tree models have been evaluated via predictor importance 
analysis. For instance, PIX-input analysis showed that the PI (free dye 
electrons) is almost as twice important as the X (anchoring groups) in 
indicating whether a dye type would effectively increase PCEs or not 
based on FT and MT that were found to be much more accurate than that 
CT as shown in Fig. 11(A). The BG-input model only has BG as an in-
dependent variable which was found to be of high importance in 
defining dye capabilities, Fig. 11(B). The HLBG-input model’s analysis 

confirmed that BG is among the top controlling parameters that is ∼ 3- 
fold more important than H (HOMO) energy level of the dye, Fig. 11(C). 
Yet, HOMO levels must be taken into consideration since this is the 
lowest dye molecular energy level from where electrons should be 
excited to reach L (LUMO) and overcome the BG energies to produce 
excitons (free e-h pairs). Moreover, the PIXBG-input model’s analysis 
determined that BG/X importance ratio was about 12 as shown in Fig. 11 
(D), which concludes that the order of magnitude of parameters 
importance as BG (1) > H (0.32) > PI (0.08) > X (0.04) that should be 
adopted when analyzing natural dye abilities for charge generation/ 
injection to achieve high PCEs. 

The correspondent number of free π-electrons estimated in the 
different studied dyes have been plotted against the number of existing 
anchoring groups in the dye structure from both the training and testing 
datasets as shown in Fig. 12. It was observed that the four input models 
from FT classification have been able to predict the number of either 
electrons or functional groups existing in various pigments very close to 
the experimental or theoretical observations reported in the literature, 
where (Yes/No) responses refer to dyes ability to efficiently absorb 
visible-light energy and produce excitons to be separated and trans-
ported towards the photoanode semiconductor for the achievement of 
maximum PCEs>1.82% from naturally-sensitized DSSCs. The good 
replication of the patterns and the relationships between anchoring 
groups and PI electrons is proof of the built FT model’s reliability for the 
prediction of dye performance and its role in DSSCs. It is more probable 
to achieve high PCEs from using dye with the following characteristics 
[X = 2–6 & PI = 4–8], [X = 0–6 & PI = 10–12 or PI > 18]. 

To further analyze the impact of the dye bandgap on the DSSCs 
performance, the plotted charts of observation versus response patterns 
shown in Fig. 13 were used to correlate bandgaps to the available 
anchoring groups in the different studied dye structures. The generated 
plots were for the optimum trained FT model which has shown 

Fig. 13. Observed and predicted dye bandgap (BG) energy levels correlated with the existing functional groups (X), according to both the training datasets and their 
corresponding testing datasets obtained from the various trained FT tree models (input/response)and based on selection of different inputs as independent pa-
rameters: (A) PIX-input models, (B) BG-input models, (C) HLBG-input models, (D) PIXBG-input models. 
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minimum residuals according to the violin-box plots from Figs. 9 and 10. 
Again, trained models were able to produce similar-to-the-observations 
patterns predicted from the testing datasets confirming good prediction 
accuracy. No specific relationship can be obtained for the optimum 
bandgap and X [mix/match]; however, it seems that dye molecules 
would maximize the cell performance with [X = 3–4.5 and BG =
1.5–2.5], or with [X = 0–3 and BG = 1–2 or 4–5] as illustrated in Fig. 13 
from the four input FT trained models. Further, confusion matrices of the 
trained FT decision trees and FGSVM supervised machine learning 
classifiers are shown in Fig. 14 and Fig. 15, respectively from the four 
input models. 

The three FT decision trees from PIX, HLBG, and PIXBG input models 
showed the minimum statistical errors as per the results obtained from 
their confusion matrices shown in Fig. 14, with false responses less than 
10 out of 108 training data points (i.e. >91% accuracy). However, the 
remaining created BG-input model from FT classification had the highest 
deviation from true responses with ± 15% errors indicating that 
bandgap of dyes cannot be taken as a sole independent parameter in 
defining the dye capabilities to improve PCEs in naturally-sensitized 
DSSCs. These results are comparable to the determined accuracies 
from MATLAB classification analysis as shown in Table 1, which 
calculated approximate 85% and 91% accuracies for BG-input and [PIX, 
HLBG, and PIXBG]-input models, respectively. 

The FGSVM from PIX, HLBG, and PIXBG input models showed the 
highest accuracies with >94% among the various classifications utilized 
from the MATLAB machine learning toolbox. The reason behind this 

high accuracy is due to the models’ abilities to predict true class re-
sponses as shown in Fig. 15. Nevertheless, the BG-input model achieved 
less than 85% as previously discussed. 

Both HLBG and PIXBG input models have been proven to be the 
optimal decision tree classification for determining the dye impact on 
the overall performance of DSSCs based on the sensitizer’s bandgap and 
HOMO energy levels as well as existing free electrons ready for excita-
tion. According to the classification tree graphs plotted in Fig. 16 from 
FT, MT, and CT trained classifiers, it was evident that only BG and H are 
the controlling factors when it comes to the HLBG model with only two 
pruning levels (see Figs. S2–S5 in the Supplementary). The first con-
trolling parameter or feature (BG) has classified >63% of the datasets 
from HLBG based on the root node and internal nodes from tree 
branches and sub-branches as shown in Fig. 16(A and B). Conversely, the 
HOMO level, which is important for the dye absorption abilities, is not as 
critical as the overall required energy needed to be expressed in BG. 
From analyzing the generated trees from PIXBG trained models, BG was 
also the prime classifier among the three input factors including free 
electrons and anchoring groups from illustrations in Fig. 16(C and D). 
Both BG and X were the controlling factors in the case of using PIXBG, 
which emphasizes that PI is not as important as X in finding dye impact 
on PCEs in DSSCs. Moreover, The BG was found to control >85% of 
datasets for FT/MT (PIXBG) acting as a prime parameter. 

The relationships between the various studied features (predictors) 
and their impact on PCEs of DSSCs have been plotted in Fig. 17. There 
were 27 natural sensitizers and their data was gathered from literature 

Fig. 14. Confusion matrices of the trained FT decision trees supervised machine learning models with highest accuracy showing prediction versus true responses 
(Yes/No) for a specific studied dye class or pigment type and whether it can achieve a relatively high PCE (>1.82%) in naturally-sensitized DSSCs: (A) PIX-input 
models, (B) BG-input models, (C) HLBG-input models, (D) PIXBG-input models. 
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(corresponding dye reference numbers can be found in Table S1 and 
Table S2 in the Supplementary). As expected, it is preferable to utilize 
dyes with the following characteristics: (i) can be sensitized easily from 
their low BG energy <3.57 eV, (ii) contains a reasonable number of 
π-conjugated bonds or free electrons (PI = 4–12) for less competition 
between free electrons for excitation, and (iii) with optimally a mini-
mum number of anchoring groups of X = 3–5 for perfect dye attachment 
onto the semiconductor surface and provided charge pathways which 
would ensure smooth charge injection and forward electron transport. 

The more the number of included features in classification training 
for model building, the more prediction accuracy we get from the model 
as shown in Fig. 18(A). The numbers shown in x-axis [1, 2, 3*, 3**] of 
Fig. 18(A) refers to # of features according to the different studied input 
models [BG, PIX, HLBG, PIXBG], respectively, whereas that accuracies 
were calculated from taking the average accuracy obtained from both 
decision trees and SVMs trained models shown in Tables 1 and 2 (shows 
determined prediction accuracies from classification training for each of 
studied input models). On average, it has been estimated that decision 
trees would outperform SVMs models by approximately a maximum 
+20% better accuracy based on average data analysis, Fig. 18(B). 
Nonetheless, FGSVM is the best overall model that can be adopted for 
the highest accuracy >95.4% for relating PCEs of DSSCs to sensitizers 
characteristics. 

5. Conclusion 

We developed high-accuracy predictive models to study the impact 
of dye structural, electronic, and molecular properties on the PCE of 
naturally-sensitized DSSCs. Models training was carried out via 4 pre-
dictors [the number of dye structure π-bonds (PI), number of dye 
anchoring groups (X), HOMO(H)-LUMO(L), and bandgap energy (BG)] 
with 2 responses for the relatively high PCEs (Yes/No). Most of the 
studied dyes >50% were found to not have the ability to achieve PCE 
>1.82%. It was estimated that decision trees would outperform SVMs by 
a maximum +20% better accuracy based on average data analysis. 
Conducted residual and confusion matrices analysis showed that 

Fig. 15. Confusion matrices of the trained FGSVM support vector machines supervised machine learning models with highest accuracy showing prediction versus 
true responses (Yes/No) for a specific studied dye class or pigment type and whether it can achieve a relatively high PCE (>1.82%) in naturally-sensitized DSSCs: (A) 
PIX-input models, (B) BG-input models, (C) HLBG-input models, (D) PIXBG-input models. 

Table 1 
The input models for evaluation of natural dyes impact on PCEs with their 
predictors and prediction accuracies from classification training (expanded 
datasets)a.  

Predictors 
Model 

Decision Trees Support Vector Machines (SVMs) 

FT MT CT FGSVM MGSVM CGSVM 

PIX 85.2% 85.2% 75% 93.5% 80.6% 63% 
BG 85.2% 85.2% 83.3% 85.2% 71.3% 63% 
HLBG 91.7% 91.7% 86.1% 93.5% 68.5% 66.7% 
PIXBG 90.7% 90.7% 79.6% 95.4% 87% 63%  

a The HLBG-input model’s analysis confirmed that BG is among the top con-
trolling parameters that is ∼ 3-fold more important than H (HOMO) of the dye. 
The PIXBG-input model’s analysis determined that BG/X importance ratio was 
about 12, which concluded the order of magnitude of parameters importance as 
BG (1) > H (0.32) > PI (0.08) > X (0.04).  

H.A. Maddah                                                                                                                                                                                                                                    



Optical Materials 128 (2022) 112343

14

minimum statistical errors (± 0.25 ranges) were found from FT, MT, and 
FGSVM models with almost identical patterns to original observations 
and with the highest accuracies of ∼ 92% and ∼ 96% for FT/MT and 
FGSVM, respectively. The HLBG-input model’s analysis confirmed that 
BG is among the top controlling parameters that is ∼ 3-fold more 
important than H (HOMO) of the dye, indicating the absolute energy 
level (HOMO) is not as critical as BG for the dye absorption abilities in 
TiO2-based DSSCs. Moreover, the PIXBG-input model’s analysis deter-
mined that BG/X importance ratio was about 12, which concluded the 
order of magnitude of parameters importance as BG (1) > H (0.32) > PI 
(0.08) > X (0.04). In summary, it is preferable to utilize dyes with the 
following characteristics: (i) can be sensitized easily from their low BG 
energy <3.57 eV, (ii) contains a reasonable number of π-conjugated 
bonds or free electrons (PI = 4–12) for less competition between free 

electrons for excitation, and (iii) with optimally a minimum number of 
anchoring groups of X = 3–5 for perfect dye attachment onto the 
semiconductor surface and provided charge pathways to ensure smooth 
charge injection and forward electron transport. The built supervised 
classification models would allow the scientific community to further 
study the impact of dye molecules and their absorption characteristics/ 
capabilities on the performance of the photoanode composites for effi-
cient and long-lasting naturally-sensitized solar cells. 
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Fig. 17. Determined relationships between selected and studied dye features (predictors) and their impact on the performance of DSSCs according to different 
natural photosensitizers: (A) Free electrons (PI) vs. PCE, (B) Anchoring groups (X) vs. PCE, (C) HOMO and LUMO energy levels vs. PCE, (D) Bandgap (BG) energy 
vs. PCE. 

Fig. 18. Impact of selected number of features (based on input models) on the classification training accuracy: (A) Total average accuracy, (B) Specific average 
accuracy from decision trees and SVM. Note that [1, 2, 3*, 3**] refers to # of features from [BG, PIX, HLBG, PIXBG], respectively, and accuracies were calculated 
from taking the average accuracy; *considering H and L to be two features instead of a one combine predictor, **here we have 3 distinct features as PI, X, and BG. 

Table 2 
The input models for evaluation of natural dyes impact on PCEs with their 
predictors and prediction accuracies from classification training (unexpanded 
datasets)a.  

Predictors 
Model 

Decision Trees Support Vector Machines (SVMs) 

FT MT CT FGSVM MGSVM CGSVM 

PIX 51.9% 51.9% 51.9% 63% 63% 63% 
BG 74.1% 74.1% 74.1% 74.1% 59.3% 63% 
HLBG 66.7% 66.7% 66.7% 70.4% 55.6% 63% 
PIXBG 63% 63% 63% 63% 59.3% 63%  

a The HLBG-input model’s analysis confirmed that BG is among the top con-
trolling parameters, but is equivalent to the importance of H (HOMO) of the dye. 
The PIXBG-input model’s analysis determined that PI and X have no contribu-
tions (not logical), concluding the order of magnitude of parameters importance 
as BG (0.5) > H (0.5) > PI (0) > X (0). 
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