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Abstract—There has been a growing trend for developing 

predictive solar-desalination models. However, forecasting 

productivities of solar stills of different designs remains a 

challenge. Herein, we developed predictive machine learning 

(ML) models for predictions of a double-slope still productivity 

based on experimental results. Trained datasets were taken 

from earlier designed passive and/or active solar stills used to 

treat brackish/wastewater with 45% TDS. FGSVM, EBoT, and 

SEGPR regression models showed the least possible MSE’s 

(<138) indicating their reliability to accurately predict distillate 

amounts in double-slope still designs. The highest accuracy of 

SEGPR trained model with (R2=1) and very low RMSE<8 

shows its promise in predicting the performance of such 

similar solar-desalination systems. The novelty of this work is 

associated with paving the way towards creating a unified 

theoretical model that would provide the key to maximize still 

efficiencies and distillate-water outputs from supervised ML 

models allowing tuning of the correct parameters. 
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I.  INTRODUCTION 

The utilization of solar radiation for solar-desalination 
systems and/or power conversion, in general, is still not 
widely industrialized due to the relatively high installation 
costs and low conversion rates. There should be innovative 
research on the application of supervised machine learning 
(ML) and cross-validation (CV) techniques. This would help 
in materials selection [1], solar harvesting [2], and solar-
desalination via developing novel technology methodologies 
capable of comprehensively analyzing the available patents 
and literature datasets. Such created algorithms facilitate the 
advancement of current solar-desalination technologies for 
the commercialization of large-scale solar stills, benefiting 
the community as well as companies' technical R&D centers 
and business interests [3]. In the late 19th century, various 
studies [4], [5] discovered the use of  “solar stills” as a 
promising and emerging water distillation technology. The 
advantage of solar stills is that they only utilize solar 
radiation as an abundant, free, environmentally friendly, and 
easily employed thermal energy source for seawater 
desalination and/or industrial water purification applications 
[4], [5]. The produced distilled water is potable high-quality 
water due to the complete removal of total dissolved solids 
(TDS), inorganic, and organic contaminants [6]. 

Solar intensity, wind velocity, air temperature, water-
glass temperatures, water surface area, basin/absorber area, 
feed temperature, glass cover angle and transparency, and 
water level in the tank (feed flowrate) are some of the critical 
parameters controlling the performance and productivity of a 
solar still [7]. Wang et al. [8] observed that saltwater 
temperature, basin temperature, and solar radiation are the 
most important predictors (40.87, 32.43, and 18.2%, 
respectively), for productivity prediction of tubular solar 
still.  

There has been a growing trend for using ML and AI 
models for modeling and simulation in environmental and 
energy engineering. Mashaly et al. [9] utilized an artificial 
neural network (ANN) approach for the construction of a 
mathematical model as a useful and valuable tool for the 
prediction of solar still productivity. Passive solar still fed 
with agricultural drainage water was studied for prediction of 
its instantaneous thermal efficiency. The model predicted 
experimental results accurately, with minimum errors 
confirmed from the coefficient of determination (R2=0.96) 
[9]. However, forecasting the potential productivities of 
different designed solar stills remains a challenge to be 
modeled via built-in and pre-existing ML toolboxes. This is 
because productivity depends on many parameters that need 
to be considered both implicitly and explicitly, to ensure 
model adequacy [9]. ML is an alternative way of dealing 
with complex nonlinear problems [10] such as prediction of 
the solar still productivity [11], rather than using 
conventional numerical with complex modeled systems or 
inaccurate regression models [12]. Based on experimental 
data, the conventional methods utilized for prediction of the 
still performance include: (i) numerical models based on 
solutions of differential equations of heat and mass transfer 
[13], [14], (ii) regression models capable of predicting the 
relationship between multi-dependent variables (inputs) and 
the independent output [15], [16], and (3) trained models 
constructed from ML and artificial intelligence (AI) built-in 
toolboxes used for energy and solar-desalination systems 
[17], [18]. 

Srivastava et al. [19] found an evident relationship 
between water temperatures and distilled output as a function 
of solar insolation, which impacted water levels and 
temperature. Random forest (RF) and ANN non-linear ML 
techniques were previously applied to tubular solar still [8] 
to generate prediction models estimating water productivity. 
ANN model achieved optimal predictions with very high 



accuracy confirmed from determination coefficients (R2 > 
0.997), which were found to be much higher than MLR 
models. Such models hold the promise in forecasting 
productivity and effectively design solar stills for the highest 
distillate outputs [20]. 

This study aims to develop an accurate predictive model 
based on supervised ML tools (MATLAB) and previous 
experimental results for predictions of a double-slope still 
productivity. Collected data are taken from previously 
conducted experiments in double-slop solar still utilized for 
the treatment of (i) brackish water with high contents of 
sodium carbonates (40% soap solution), or (ii) wastewater of 
reverse osmosis (RO) plant with 45% TDS; with/without 
reflectors and/or phase change materials (PCM) [21]. Input 
variables include basin (TB), glass (Tg), and water (Tw) 
temperatures, as well as average water-glass temperature 
difference (Tw–Tg), were correlated to the water distillates. A 
thorough comparison between the different trained/tested 
model results has been established to assess the performance 
of the developed models. The most reliable and promising 
models with high efficiency ranging from 79% to 95% are 
then selected for further analysis to choose the optimum 
model for performance forecasting. 

II. METHODS AND EQUATIONS 

Stepwise Linear Regression: Stepwise linear regression 
(SLR) works by regressing multiple variables while 
removing the weakest variables with low impact on the 
studied (predicted) parameter, following the general formula 

shown in Eq. (1); where  is the predicted (dependent) 

parameter,  (  = 1, 2, … , n) is the predictor (independent 

variable),  is the intercept,  (  = 1, 2, …, n) is the 
coefficient on the ith predictor [9]. 

The ordinary least squares (OLS) method [22] identifies 

the optimal values of  from finding the parameters that 
minimize the sum of the squared errors (MSE), as shown in 

Eq. (2), where  is the actual value and  is the predicted 
value [23]. 
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Decision Trees and Ensemble: The decision tree builds 

regression models from observations of datasets attributes or 
predictors (represented in the branches as a decision or 
terminal nodes) to reach conclusions about the numerical 
target variable continuous values (represented in the leaf 
nodes). It breaks down datasets into smaller and smaller 
subsets while simultaneously an associated decision tree is 
incrementally developed. Regression trees are designed to 
approximate real-valued functions built through a process 
known as binary recursive partitioning [24]. 

Solar still datasets were gathered from previous 
experimental work [21] and that the collected datasets 

included measurements of the still basin, glass cover, and 
water temperatures against water distillates.  

Collected datasets covered six different solar still 
experiments (with or without reflectors and/or PCM) 
conducted at Solapur (Maharashtra), India; using a double-
slope design and a basin area of 0.62 m2 with a highest 

recorded efficiency 42.1% [21]. The original datasets 
containing 48 numbers have been expanded to 144 numbers 
from correlating the same distillate outputs to ±0.1 of the 
original Tw, Tg, and TB values (from taking advantage of 
non-considerable, but inevitable experimental errors). The 
curated datasets were then divided randomly into two 
groups: 80% for training and 20% for testing  

Various supervised ML regression learners from the 
toolbox in MATLAB [25] have been selected in 
training/testing labeled datasets. Defined depended variables 
(inputs) include: (i) basin temperature (TB); (ii) average 
water temperature (Tw); (iii) inner-side glass temperature 
(Tg_in); (iv) outer-side glass temperature (Tg_out); (v) average 
glass temperature (Tg); and (vi) water-glass temperature 
difference (Tw–Tg). The only investigated output data is 
water distillate, which has been correlated to the inputs.  

The training datasets (80% from curated data) consist of 

seven matrices of [123 1], each matrix represents an input 
parameter or the distillate output. Testing datasets had the 
same inputs and were taken as 20% from the curated data to 
predict already known distillate outputs for checking trained 
model accuracy. 

To assess the accuracy of the prediction models, the 
coefficient of determination (R2), the mean square error 
(MSE), the root mean square error (RMSE), and the mean 
absolute error (MAE), were calculated using Eqs. (3)–(6), 
respectively [26]–[28]. RMSE and MAE values (ranging 

from 0 to ) allow us to demonstrate more accurate 
prediction results, where the higher R2 values show the 
greater similarities between observed and predicted values 
[9]. 

The selection of the best models was carried out by 
checking whether the R2>0.7, and thereby by predicting 
distillates of testing datasets. Only those models which met 
the R2>0.7 condition were kept for further analysis. Lastly, 
the FGSVM (R2>0.95) trained model was chosen for in-
depth analysis against the SLR (R2>0.68) to show the 
promise behind selecting support vector machines as 
regressors compared to stepwise linear regressors. Figure 1 
shows a flowchart illustrating the development and selection 
of optimal supervised ML models for accurate prediction of 
distillates correlated with Tw–Tg. 
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Figure 2. Comparison between [observed vs. predicted] distillate 

values using FGSVM and SLR models: (A) and (B) from training 
datasets; (C) and (D) from testing datasets. 

 

 
 

Figure 3. Comparison between [observed vs. predicted] distillate 
values using FT, MT, EBoT, EBaT, and SEGPR models with their 

obtained residuals: (A) and (B) from training datasets; (C) and (D) 

from testing datasets. 
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where  and/or  is the observed value;  and/or 

 is the predicted value;  is the averaged observed 

values;  is the averaged predicted values; and  is the 

number of observations. 

 

 
Figure 1. Flowchart for development of supervised machine learning (ML) 

models for prediction of distillates correlated with water-glass temperature. 

III. RESULTS AND DISCUSSION 

Both FGSVM and SLR regression models have been 
utilized to estimate solar still distillates. The trained FGSVM 
model showed high accuracy of prediction as compared to 
the SLR model due to its higher R2 and lower statistical 
errors (RMSE and MAE), as shown in Figure 2(A) and 
Figure 2(B). Testing datasets have also confirmed the model 

validity in predicting water distillates Figure 2(C). Testing 
results showed that the FGSVM model correctly predicted 
most of the distillate outputs with only two outliers, Figure 
2(D). Conversely, the SLR model had many outliers and was 
not considered as a good model built from training 80% of 
the datasets. 

Moreover, the other supervised ML trained models (e.g. 
FT, MT, EBoT, EBaT, SEGPR) suggest that the different 
tried models have not perfectly predicted distillate outputs 
(as compared to the observed distillates, yellow line in 
Figure 3(A)), except for the SEGPR trained model which 
was able to correctly predict each distillate value owing to it 
is ideal (R2=1) and very low RMSE<8. The other models 
including the FT, MT, and EBaT trained models had the 
most outliers due to their more scattered values of [predicted 
vs. observed], indicated by the predicted values found to be 
away from the linear ideality or the plotted linear line 
[observed:predicted]=[1:1], Figure 3(B). 

According to the testing datasets analysis, SEGPR and 
EBaT models showed the least number of outliers in their 
distillate prediction for the testing datasets, Figure 3(D). 
These results were also in agreement with the observed 
model trends over the tested pattern sequence as shown in 
Figure 3(C). None of the trained models were able to predict 
the last few points of the testing datasets because of the 
already observed deviation in the training models. Despite 
that the perfect predictions of SEGPR training model, the 
model was still unable to accurately predict the observed 
distillates in the testing datasets due to differences in the 
recognized patterns. 

The correlation between Tw–Tg and the water distillates is 
initiated from the plotted training trends of dependent 
(distillate) and independent (Tw–Tg) parameters, as shown in 
Figure 4(A). Typically, distillate outputs should be 
proportionally related to Tw–Tg. This has been observed from 
the trained datasets in Figure 4(A) with only three outliers at 



 
 
Figure 4. The observed relationship between the independent variable 

(Tw–Tg) and the dependent variable (distillate) found in (A) training 
and (B) testing datasets. 

the overestimated Tw–Tg=23 C corresponding to the low 

distillate outputs of 1100 mL. However, the rest of the 
training pattern was accurate showing the expected 
proportionality, which was validated using the trained 
models for the testing datasets generating similar a pattern as 
shown in Figure 4(B). It was noticed that distillate outputs 
increase after Tw–Tg took place with the distillate curve 
being super-positioned by 2 points (or 2 hrs from 14:00 to 
16:00). This delay for the highest outputs, based on the 
testing analysis, might be attributed to the fact that the water 
evaporation/condensation process takes some time to be 
accelerated at higher temperatures. Once the Tw–Tg is at its 
peak, it will take some time to reach the dew point for vapor 
condensation. Ideally, it is desired to have a very high Tw and 
very low Tg to promote hewg from the high-temperature 
gradient, influencing evaporation and condensation rates, and 
water productivity. 

Calculated statistical errors of various applied regression 
models used in the prediction of water distillates are shown 
in Table I. FGSVM, EBoT, and SEGPR showed the least 
possible mean square errors indicating the reliability of these 
ML models for accurate predictions of future datasets from 
double-slope passive or active solar stills. 

 
 
TABLE I. STATISTICAL ERRORS OF VARIOUS APPLIED REGRESSION MODELS 

FOR THE PREDICTION OF TW–TG AND WATER DISTILLATES* 

Error  

 

Model 

Trained Machine Learning Models 

SLR FT MT FGSVM EBoT EBaT SEGPR 

RMSE 298.59 174.25 296.4 117.39 138.18 241.22 7.70 

R2 0.68 0.89 0.69 0.95 0.93 0.79 1.00 

MSE 89158 30362 87902 13781 19093 58186 59.29 

MAE 230.64 102.98 205.7 84.75 96.09 187.18 4.03 

*SLR=Stepwise-Linear-Regression, FT=Fine-Trees, MT=Medium-Trees, FGSVM=Fine-Gaussian-

SVM, EBoT=Ensemble-Boosted-Trees, EBaT=Ensemble-Bagged-Trees, SEGPR=Squared-

Exponential-Gaussian-Process-Regression; Cross-Validation (CV): 50-fold; Reliable models are 

considered with R2 > 0.90 that show the minimum MSE or RMSE. 

 

IV. CONCLUSION 

We developed novel energy-based predictive models via 
applying supervised ML on previous experimental datasets. 
Training datasets were collected from previously carried 
experiments in passive and/or active double-slope solar still 

(with a basin area of 0.62 m2 and maximum 42.1%) for 
the treatment of brackish/wastewater with 45% TDS. Water-
glass temperature difference (Tw–Tg) was correlated to water 
distillates using input variables which were simply taken as a 
basin (TB), glass (Tg), and water (Tw) temperatures, which 
were trained/tested corresponding to their experimentally 
observed water distillates (output). The FT, MT, and EBaT 
trained models had the most outliers showing low accuracy 
of regression trees models in finding the relationship 
between Tw–Tg and productivities. However, FGSVM, 
EBoT, and SEGPR showed the least possible MSE 
indicating the reliability of these ML models for accurate 
predictions. The trained FGSVM model showed high 
accuracy of prediction with only two outliers as compared to 
the SLR model with many outliers. We estimated the highest 
accuracy for SEGPR trained model owing to it is ideal 
(R2=1) and very low RMSE<8. The novelty of this work is 
associated with paving the way towards creating energy-
based theoretical models for the prediction of solar-
desalination still outputs and their corresponding convective, 
evaporative, and radiative heat transfer coefficients. 
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