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Abstract-Fly ash powders produced from pulverized carbon are 

a promising renewable and sustainable replacement for Ordinary 
Portland Cement (OPC) in concrete. However, quantifying the 

desired compressive strength threshold requires defining the 

ratio of Fly Ash (FA) to fine aggregates (S). This study presents 

two novel machine learning models to predict the mechanical 

properties of FA-based Alkali-Activated Cementitious Materials 

(AACMs) using supervised regressors. The two models, SLR and 

MGSVM, showed high prediction accuracy (~95%) based on raw 

compressive strength training datasets from AACMs with mixed 

proportions of FA/S (0, 5, 10, 15, 20, 25, and 30%) for 28 days of 

curing. Maximum compressive strength of ~67.5MP was 

observed at approximately 20% FA/S (spline interpolation), 

suggesting the attainment of high mechanical stability. Having 

more than 30% FA/S indicates a high probability of recovering 
the original strength of 61MPa for pristine AACMs. The non-

linear stress or strain patterns against FA/S confirmed the 

applicability of stress-strain relationships and elasticity laws. The 

pozzolanic properties of FA facilitate interaction with Ca(OH)2 

for aggregation linked to the non-linear behavior. This study 

provides generalized design models for correlating the mix 

proportions in OPC-substituted AACMs to the optimum 
compressive strength. 

Keywords-regression; machine learning; compressive strength; 

fly ash; mechanical stability; cementitious materials 

I. INTRODUCTION  

Concrete consists of Ordinary Portland Cement (OPC), 
aggregates, water, and some other materials and chemical 
additives, such as superplasticizers. OPC, as the primary 
binding material, plays a crucial role in determining concrete’s 
properties [1]. Mineral admixtures are natural pozzolans (i.e. 
form cementitious compounds in a finely divided form in 
presence of water, combined with calcium hydroxide) like coal 
Fly Ash (FA) or fine aggregates (S), which can be obtained 
commercially from thermal power plants [2, 3]. The 
compressive strength of FA-based concrete was found to be 
strongly correlated with the Blaine value [4], the pozzolanic 
reaction or cure age (high Ca(OH)2 and the reaction of 
SiO2+Al2O3 in FA induce reaction rates), resulting in non-

linear relationships [5] and forming hydrate deposits (the 
decreased Ca(OH)2 content and low Ca

2+ concentration 
increase the deposition of C3S and cement hardness) [6-8]. 
Physical parameters, including Blaine (surface area) and 
particle size, along with other chemical processing parameters, 
such as C3S, C2S, C3A, C4AF, and SO3 contents, are some of 
the factors determining the compressive strength after 28 days 
of curing [9-11]. The compressive strength of FA concrete was 
predicted in [12] using the "Particle Model" according to the 
classification and the chemical information of FA particles. 
Very high precision was obtained from the model with R2=0.99 
to predict the compressive strength of 20% and 40% FA 
substitution (mass replacement) of cementitious materials with 
different curings from 3 to 180 days. This particle model 
applied Machine Learning (ML) classification algorithms, 
which classified FA particles into 9 different groups [13-14], 
allowing to build models and carry out regression analysis at 
different curing times giving empirical prediction models. 
These models were able to predict the compressive strength of 
FA concrete for 26 various FA sources (Class C and Class F 
based on ASTM C618 [15] for concrete mixtures made of 
OPC). It should be noted that ASTM C618 ASEM was 
previously published as a widely accepted method to compare 
the performance of different FAs [16]. Type I Portland cement 
consists mostly of CaO (~63%), SiO2 (~21%), and Al2O3 
(~4.6%) with other trace elements. The ratio of water-to-
cementitious material of 0.45 is a common practice when 
testing mixture proportions with a 20% or 40% FA replacement 
content. The identified strength performance of the mixtures 
based on 2000 particles of existing 11 elements (Si, Al, Fe, Ca, 
Mg, S, Na, K, Ti, P, and Sr) showed that the Particle Model 
was capable of building accurate predictive equations [16-18].  

In [19], the Unconfined Compressive Strength (UCS) of 
coal FA-based cement-based pastes, mortars, and concrete was 
predicted using ML models, showing a negligible mean square 
error of 5MPa according to mixtures following the European 
Standards (35% for cement and 55% for concrete). These 
models described experimental data with UCS ranges of 32.5–
52.5MPa and 12–60MPa based on the European limits on 
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cement and concrete respectively. Mix composition data were 
trained for the generalization of the model [20] from Neural 
Network Analysis (NNA) and based on the defined input and 
output variables and the nonlinear relationships, concluding 
that the least influencing variables on strength were additives, 
being water or aggregates and cement, while the products and 
compositions of different amounts of FA were the detrimental 
variables. The development of sustainable concrete mixtures 
with optimal compressive strengths was also studied in [1, 21-
25] by combining linear regression with SVM and Artificial 
Neural Networks (ANNs), resulting in successful and precise 
models focused on the reduction of environmental impacts of 
concrete from information like aging time, contents, and ratios 
between contents. 

This study examined the impact of adding FA powders or S 
as a sustainable full replacement of OPC in concrete from 
collected experimental datasets on the compressive strength of 
FA-based Alkali-Activated Cementitious Materials (AACMs). 
An ML analysis was applied with supervised training and 
testing of mixed proportions data, using SLR and MGSVM 
regression trainers from MATLAB toolboxes, for building 
accurate strength predictive models for 28-days cured AACMs. 
The reliability and validity of the built models were evaluated 
using residual analysis to identify the models with minimum 
statistical error. The compression results obtained from data 
fitting and the prediction analysis using trained models were 
utilized to find the ideal FA/S ratio to maximize the 
compressive strength and mechanical stability. Furthermore, 
changes in the mechanical properties were studied at high 
mixing ratios to check the effect of FA pozzolanic properties 
on particle aggregation and provide a generalized design model 
for OPC-substituted AACMs with optimum compressive 
strength. 

II. METHODS AND FRAMEWORK 

All AACM composite mixtures were prepared at room 
temperature at 20±1°C and 65±5% relative humidity and then 
were cured in steam condition. The studied parameters were 
slag cement (SL), with a constant quantity as the core binder 
for the full replacement of OPC, combined with FA by partial 
replacement with S according to the previously mentioned 
ratios. Alkali activator (AL) to slag cement ratio (AL/SL) of 
20% and 50% water/slag cement ratio (W/SL) were used for all 
mixes to create an economically desirable performance with the 
complimentary benefits of meeting the sustainable 
development of high-performance systems [26-30]. The studied 
mixture proportions of AACMs can be found in [26-28, 31], 
and the datasets were gathered from previous experimental 
works [26, 27, 31]. The collected datasets for 28-day curing 
included FA/S of 0, 5, 10, 15, 20, 25, and 30% to evaluate the 
optimum favorable mixture designs that improve the 
mechanical stability of AACMs after steam curing with 
constant ratios of AL and W to SL as the core binder. ML 
analysis was applied using supervised training and testing of 
mixed proportions data through the SLR and MGSVM 
regression trainers from MATLAB toolboxes to build accurate 
strength predictive models. The original datasets containing 21 
values were expanded to 105 using the earlier introduced 
concept of "in-between randomization" [32-35], by correlating 

randomly generated strength values between the three 
measured samples of each mixing ratio to the same FA/S 
proportion. This 5-fold expansion approach allows better ML 
training and testing analysis. The datasets were then divided 
randomly into two groups: 80% for training and 20% for 
testing to check the validity and reliability of the models in 
predicting the compressive strength. The supervised regression 
analysis was initiated from a selection of training data points 
(84) and testing data points (21) of the already curated and built 
datasets, based on raw experimental results (7 data points with 
3 trials each). The model’s validity was examined using the 
testing datasets and by applying residual analysis to identify 
models with minimum statistical errors. The collected datasets 
included only FA/S as an independent input parameter and 
compressive strength as the only dependent variable, based on 
raw datasets taken from earlier works of AACMs with 28-day 
steam curing [26, 27, 31, 36, 37]. 

Various supervised regression learners from MATLAB’s 
toolbox [38] were selected for training and testing. Linear and 
tree regression models as well as SVM and Gaussian Process 
Regression Models (GPRM) with a 50-fold CV were used to 
identify the optimal compression strength [38-41]. The training 
datasets consisted of four 84×1 matrices representing the input 
parameters and the compressive strength output. The 
compression results obtained from data fitting and prediction 
analysis were utilized to find the ideal FA/S ratio with the 
maximum compressive strength. Furthermore, changes in the 
mechanical properties were studied at high mixing ratios to 
check the effect of the pozzolanic properties of FA on particle 
aggregation. It should be noted that each sample number was 
correlated with gradual-increasing ratios associated with the 
mixing proportions of FA/S 0, 5, 10, 15, 20, 25, and 30%, and 
their corresponding compressive strengths from experiments 
for both training and testing data points, which were originally 
forked from the raw datasets. 

It is quite common to measure a models' validity and 
prediction ability using various statistical metrics, including 
coefficient of determination (R2), Mean Square Error (MSE), 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and residual analysis. These metrics were respectively 
calculated using their mathematical definitions [42-44]:  

R� = �∑ ���,
��̅�
���,
��̅�
�
�� ��
∑ ���,
��̅�
��
�� ×∑ ���,
��̅�
��
��
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���,
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�     (2) 

RMSE = �∑ ���,
���,
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��
�     (3) 

MAE = ∑ ���,
���,
��
��
�     (4) 

Residual = #$ − #&    (5) 
where #$,'  and #$ are the observed values, #&,'  and #&are the 
predicted by the ML model values, #̅$ is the average of the 
experimentally obtained values, #̅&  is the average of the 
predicted values, and ( is the dataset size. RMSE and MAE 
allow the demonstration of more accurate prediction results, 
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where more similarities arise between the trendlines of both 
experimental and predicted samples with higher R2 [45]. Once 
the regression learners were trained, the statistical metrics 
obtained from the different models were compared. Then, the 
best models (e.g. SLR, fine trees, MGSVM, ensemble boosted 
trees, ensemble bagged trees, squared exponential Gaussian 
process regression) were selected by checking if R2>0.7. Only 

models that met the previous conditions were further examined 
to compare their predicted response patterns. Finally, the 
MGSVM (R2>0.95) model was chosen for further analysis 
against the SLR (R2>0.68). Figure 1 depicts the process of 
selecting the optimal supervised ML models for the accurate 
prediction of strengths correlated to FA/S. 

 

 
Fig. 1.  Flowchart for developing and selecting the optimal ML models for accurate prediction of compressive strength correlated with FA/S ratio. 

III. RESULTS AND DISCUSSION 

A. Impact of Adding FA/S 

The impact of adding FA/S content to the studied AACMs 
was identified from the datasets. The selected testing data 
points showed a similar pattern, while an inspection of the 
experimental results shown in Figure 2(A) confirms the 
reliability of the built ML models for accurate predictions. The 
cementitious materials showed a maximum compressive 
strength of ~67.5MP at ~20% FA/S ratio according to the raw 
data, as well as the spline interpolation fitting analysis using 
ORIGIN as illustrated in Figure 2(B). Without added FA or S, 
it appears that the cement cannot withstand high compressions 
greater than 61MPa, indicating the relatively poor mechanical 
strength before the addition of FA/S. However, increasing the 
FA/S ratio by more than 30% increases the probability of 
reaching a point where the original compression strength of 
61MPa can be recovered, which is similar to the case of having 
pristine cement without additives.  

Interestingly, these results were proved through 
experiments, supervised ML, and regression fitting. Combining 
a core binder with a higher FA/S replacement ratio of up to 
20% resulted in improved compressive strength by forming a 
denser binder matrix, which confirmed more released heat and 
higher initial mix temperature. However, the replacement ratios 
of FA/S over 25% reduced the composites’ compressive 
strength due to the lack of accessibility for hydration, as 
lowering produced heat inhibited dense binder formation, 

influencing the pozzolanic reactions and AACMs mechanical 
properties. Raw data suggest the addition of higher FA rates 
than those of fine aggregates to achieve high mechanical 
stability, as much as closer to the optimal point of ~20% FA/S 
ratio for the maximum mechanical and compression stability of 
the cementitious materials, as shown in Figure 2. This could be 
achieved using training/testing dataset ranges of 0-300kg/m3 
and 900-1200kg/m3 for FA and S additives, respectively. 

 

 

Fig. 2.  Relationships between the FA and S content as mixed proportions 
against the compressive strength of AACMs: (A) Comparison between the 
selected trained/tested datasets used in the supervised ML, (B) experimental 
data of FA/S ratio against compression fitted by spline interpolation using 
ORIGIN. 

B. Compression Predictions from SLR and MGSVM 

SLR and MGSVM showed unexpectedly high prediction 
accuracy for the observed pattern, as shown in Figure 3, 
compared to the other MATLAB supervised regression 
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learners. The selection of training and testing data points from 
the already curated and built datasets, based on the raw data 
experimental results, led to the acquisition of training and 
testing trendlines of various samples against the observed 
compressive strength, as shown in Figures 3(A) and (B), 
respectively. Similar regression trends were generated when 
testing the model’s validity. It is worth noting that the sample 
number is correlated with gradual-increasing ratios associated 
with the various FA/S ratios and their corresponding 
compressive strengths. Since both SLR and MGSVM were 
capable of producing results very close to the experimentally 
observed pattern, they were both considered as the possible 
optimal available supervised models to predict the changing 
pattern of the experimental datasets, including training and 
testing data points originally forked from the raw datasets. 

 

 

Fig. 3.  Results with SLR and MGSVM and their comparison with the 
experiment  

C. Exceedance Probability for SLR and MGSVM 

The exceedance probability is the probability that a certain 
value will be exceeded in a predefined future period [46, 47]: 

* = +
,�-./    (6) 

where n is the total number of compressive strengths, m is the 
ranking from highest to lowest of observed, trained, and tested 
data separately. The observed (training) or predicted (testing) 
outputs were utilized to statistically characterize the 
compressive strength of AACMs, as shown in Figure 4. The 
values observed exceeded various percentages of the specified 
compressive strength. A 5% exceedance probability from both 
SLR and MGSVM models means that a high compressive 
strength could exist and be exceeded by only 5% of all sampled 
records, whereas a 95% exceedance probability from sampled 
records is characterized with low compressive strength. 

 

 
Fig. 4.  Observed vs. predicted compressive strength showing the 
exceedance probability of the ML models.. 

D. Predictions Accuracy and Statistical Errors 

A comparison between the training and testing datasets was 
used to build the ML regression prediction models, as shown in 
Figure 5. The statistical analysis allowed checking the 
prediction accuracy of the built models. Most of the observed 
versus the predicted training dataset points, either from SLR or 
MGSVM models, were very close to the exact approximated 
compressions values and close to the drawn diagonal dotted 
line shown in Figure 5(A). Similarly, the same pattern was 
observed for the testing datasets, as shown in Figure 5(B).  

 

 
Fig. 5. Observed vs. predicted compressive strength of AACM composites 
showing the prediction accuracy of the built ML models: (A) training, (B) 
testing. 

These results imply the correctness and the reliability of the 
model to be used for predicting the experimentally obtained 
compression results, without the need to conduct further 
experiments when dealing with similar cementitious materials. 
Note that regardless of the number of used data for testing, one 
would get similar accurate model results if a minimum of 84 
experimental data points were used in the model training 
session to ensure the model’s capability of producing high 
predictions. The statistical error parameters obtained for each 
built model, including RMSE, R2, MSE, and MAE, are shown 
in Table I. 

TABLE I.  STATISTICAL ERRORS OF REGRESSION MODELS 

Model 
FA/S = [0, 5, 10, 15, 20, 25, and 30%] 

SLR MGSVM 

RMSE 298.59 117.39 
R2 0.68 0.95 
MSE 89158 13781 
MAE 230.64 84.75 
SLR=Stepwise-Linear-Regression, MGSVM=Medium-Gaussian-SVM; Cross-Validation (CV): 
50-fold. Considering that reliable models should have minimum MSE or RMSE with R2 > 0.70. 

 

E. Residual Analysis, Stress/Strain in FA-Based Composites 

Residual statistic analysis is a method to check the 
reliability of the built ML models for their potential adoption 
by the scientific community. The compression strength results 
of the prediction analysis were compared, according to their 
calculated residuals which showed a very low residual range of 
±1, indicating the high precision of the supervised models as 
shown in Figure 6. The closer the determined residual points to 
the origin-line, the better the model accuracy becomes, 
indicating very low statistical errors. Thus, it seems that the 
MGSVM outperformed the SLR trained model due to its 
closer-to-the-zeroth-line points observed in the residual 
analysis. Moreover, the tested results residuals were almost 
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identical to those obtained from the training datasets, and this is 
only possible if the required compression of the AACMs 
composites is for samples with mixed proportions or ratios of 
FA/S in the range 0–30%. Such extrapolation may be possible 
if a huge selection of data points is available, which can be 
achieved from the in-between randomization and getting 
leverage of the inevitable experimental errors to create dataset 
inputs correlated to the same output ranges, yielding in much 
larger training datasets expanded for the possibility of 
predicting compression in mixed proportions with FA/S ratios 
beyond 30%. However, supervised ML models are ideal when 
analyzing inputs within the same provided experimental dataset 
constraints to ensure the correctness of the results without the 
need to conduct the experimental work. 

 

 

Fig. 6. Residual statistical analysis showing SRL and MGSVM accuracy: 
(A) Training datasets showing the low residual range of ±1 indicating high 
accuracy of the models, (B) testing datasets confirming the models’ ability to 
estimate experimental results with similar trained model high accuracy of ±1. 

The average stress and strain values were estimated using 
stress-strain relationships and elasticity laws for various FA/S 
ratios, confirming patterns that would follow non-linear 
behaviors of a polynomial function of third-order and second-
order for stress and strain, respectively, as shown in Figure 
7(A). Furthermore, the approximate impact of high 
compression, or even stretch after the applied force is released 
on the material, on the designed FA-based composites was 
determined, shown as changes in the matrix length from the 
Hook’s law analysis shown in Figure 7(B). However, both 
stress and strain were found to follow a linear pattern when 
plotted against compressive strength, observed from the various 
FA/S ratios, as shown in Figures 7(C) and (D) respectively. 
This indicates the possibility of directly applying common 
stress-strain relationships for the designed composites for 
further compression investigations. 

F. Novelty, Contribution, and Significance of the Results 

Several ML models were used to predict the mechanical 
properties of FA-based AACMs. The two presented models, 
SLR and MGSVM, showed a high prediction accuracy of 
~95%. Maximum compressive strength of ~67.5MPA was 
observed at ~20% FA/S (spline interpolation), which suggests 
the attainment of high mechanical stability. A FA/S greater 
than 30% indicates a high probability of recovering the original 
strength of 61MPa from pristine AACMs. This analysis 
showed the promise of using FA for a sustainable full 
replacement of OPC in concrete validated by SLR and 
MGSVM. The non-linear patterns of observed stress and strain 
against FA/S ratios were confirmed and linked to the 

pozzolanic properties of FA, facilitating interactions with 
Ca(OH)2 for aggregation. A novel theoretical analysis was 
suggested to investigate changes in mechanical properties of 
various FA-based compositions and the impact of FA 
pozzolanic properties on particle aggregation to provide 
generalized design models for correlating mix proportions to 
optimum compressive strength. 

 

 
Fig.7. Impact of computed compressive strength on the stress and strain 
behavior of the FA-based AACMs: (A) Average stress and strain values for 
various FA/S ratios determined from stress-strain relationships and elasticity 
laws showing that the expected behaviors of stress and strain follow a 
polynomial function of third-order and second-order respectively. (B) The 
calculated changes in matrix length observed at high-stress values show the 
impact of possible compression or stretch of the composites according to 
Hook’s law. (C)-(D) The obtained linear relationships between both stress and 
strain vs. the experimentally observed compressive strength. 

IV. CONCLUSION 

This study presented two high-accuracy predictive models 
from collected experimental datasets on the compressive 
strength of FA-based AACMs. The applied ML analysis was 
conducted using a supervised training and testing procedure on 
various proportions of fly ash (FA) to fine aggregate (S) ratios 
of 0, 5, 10, 15, 20, 25, and 30%. The analysis showed the 
promise of using FA as a sustainable full replacement of OPC 
in concrete and was validated with SLR and MGSVM 
regression trainers for 28-days of steam curing samples. This 
study aimed to evaluate the most optimum favorable mixture 
designs that would improve AACMs’ mechanical stability and 
maximum compressive strength. The built models predicted the 
mechanical properties of FA-based AACMs with high 
prediction accuracy (~95%) using MGSVM regressions that 
outperformed SLR-trained models due to their closer-to-the-
zeroth-line points observed in residual analysis, translated as 
minimum statistical errors. The concept of "in-between 
randomization" was applied by taking advantage of inevitable 
experimental errors for expansion of raw datasets by 5-fold to 
obtain a better ML analysis, using strength as output and mix 
ratios as input. The results revealed a maximum compressive 
strength of ~67.5 MP at ~20% FA/S, obtained from data fitting 
using trained models, suggesting an optimal ratio for an 
economic desired compressive strength threshold and the 
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attainment of high mechanical stability of the AACMs. The 
non-linear patterns of the observed average stress and strain 
against FA/S ratios, but with linear patterns against strength, 
were confirmed indicating the applicability of stress-strain 
relationships and elasticity laws for the built composites. The 
pozzolanic properties of FA that facilitate interaction with 
Ca(OH)2 for aggregation were linked to non-linear 
relationships. Furthermore, the approximated impact of high 
compression on the designed composites was realized from the 
introduced changes in the matrix length from Hook’s law. This 
study suggests a novel theoretical analysis to investigate the 
changes in the mechanical properties of various compositions 
based on FA and the impact of FA pozzolanic properties on 
particle aggregation. Such works could offer generalized design 
models for optimum compressive strengths needed in 
engineering construction applications. 
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