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SUMMARY

Understanding the optothermal physics of quantum materials will enable the
efficient design of next-generation photonic and superconducting circuits.
Anharmonic phonon dynamics is central to strongly interacting optothermal
physics. This is because the pressure of a gas of anharmonic phonons is tempera-
ture dependent. Phonon-phonon and electron-phonon quantum interactions
contribute to the anharmonic phonon effect. Here we have studied the optother-
mal properties of physically exfoliated WS2 van der Waals crystal via tempera-
ture-dependent Raman spectroscopy and machine learning strategies. This
fundamental investigation will lead to unveiling the dependence of temperature
on in-plane and out-of-plane Raman shifts (Raman thermometry) of WS2 to study
the thermal conductivity, hot carrier diffusion coefficient, and thermal expansion
coefficient.

INTRODUCTION

Temperature-dependent Raman line shift, Raman linewidth, and Raman intensity have been historically

used to probe the anharmonic phonon dynamics in bulk as well as reduced-dimensional semiconducting

and nonmetallic solids.1–6 Understanding anharmonic phonons is critical to understand the thermal prop-

erties including thermal conductivity, thermal expansion, and specific heat of solid-state materials.1,7 In

case of reduced-dimensional sp2-hybridized carbon materials such as graphene and carbon nanotubes,

the temperature-dependent shifting of the Raman G phonon mode has been used as a probe to charac-

terize the thermal transport properties.8 This Raman-based thermometry approach has also been em-

ployed to study thermal transport properties of other reduced dimensional materials including transition

metal dichalcogenides (TMDs).9 TMDs (MX2, where M = Mo, W, Nb, In, Ta, or Ti and X = S, Se or Te) are

a class of layered crystals with weak interlayer van der Waals bonding and strong intralayer covalent

bonding.10,11 In the bulk form, TMDs are indirect bandgap semiconductors and can make a transition to

direct bandgap semiconductors in their monolayer form. While single layers of TMD materials receive sig-

nificant attention owing to their high on/off ratio and high quantum yield, multilayers of TMDs are also of

special interest. This is because of the recent discovery of strongly interacting physics in few-layer WS2
including phonon-assisted indirect bandgap transition lasing in ultra-thin WS2 disc

12 and exciton-phonon

quantum interference in few-layerWS2.
13 Furthermore, few-layer TMDs such as few-layerWS2 exhibit excel-

lent light-matter interactions owing to the van Hove singularity induced enhancement of visible-frequency

absorption.14,15

The central approach taken in this work is combining experimental study using temperature evolution of

Raman spectroscopy and computational analysis using machine learning strategies as shown in Figures 1

and 2. Temperature-dependence of phononmodes is convenient to interpret anharmonicity between pho-

nons and electron-phonon interactions.16–20 These measurements can provide the fundamental parame-

ters of the material properties such as temperature coefficient and thermal conductivity, which are impor-

tant for device applications. Here, a thin film of WS2 is exfoliated from a bulk crystal and transferred onto a

300 nm silicon dioxide (SiO2)-coated silicon (Si) substrate followed by temperature-dependent Raman

spectroscopic measurements in a temperature range of 80–460K. Since the goal of this study is to under-

stand the physics of anharmonic phonon dynamics inWS2 crystals, therefore, the substrate-supported films

are used. We understand that to measure the thermal conductivity of WS2 films, it may be accurate to use

suspended films as the underneath substrate could play an important role in thermal dissipation. We

observed that both the in-plane (E0
2g) and out-of-plane (A1g) Raman vibrational frequencies of WS2 films
iScience 26, 107174, July 21, 2023 ª 2023 The Author(s).
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Figure 1. Schematic of the experimental setup

Process pathways taken in this work to probe the anharmonic phonons in bulk WS2 crystal.
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decrease with temperature rise. Data analysis and machine learning algorithms like multiple linear regres-

sion, decision trees, and random forest are employed to understand the effect of temperature on the

phonon vibrational modes.

RESULTS AND DISCUSSION

Room temperature Raman vibrational modes of few-layer WS2

When a 532 nm laser beam is directed at an exfoliated but nonetheless bulkWS2 crystal staged on a SiO2/Si

substrate as illustrated in Supporting Information Figure S1, the Raman spectrum reveals a number of first-

order, second-order, and combinational first-order second-order phonon modes which we look at in the

following with the help of Figure 3.21 We start by identifying all vibrational modes present at room temper-

ature. At about 171 cm�1 the first mode, LA(M) is recorded. This is the one longitudinal acoustic mode at

the M point of the Brillouin Zone (BZ) which refers to the in-plane collective movement of the atoms.22,23 At

about 185 cm�1, a first-order mode, LA(K) is noted. A1g(M)-LA(M) is found at 225 cm�1 and is a combina-

tional mode of both first-order and second-order vibrational modes. The E0
2g mode is recorded at

346.401 cm�1 and refers to the in-plane vibration of each atom, while the A1g mode is at 415.44 cm�1

and represents the out-of-plane vibration of atoms as shown in Figure 4 inset. There are two more peaks;

one at 297 cm�1 tagged as 2LA(M)-3E2
2(M), and another one at 319.66 cm�1 identified as 2LA(M)-2E2

2g(M).

After the A1g mode, twomore peaks are identified, one at 575 cm�1 tagged as LA(M)+A1g(M),24 and the last

one at 700 cm�1, the 4LA(M).25 Silicon (substrate) peak is also identified at about 522 cm�1. Table 1 is a pre-

sentation of all the Raman vibrational modes identified and tagged in the bulk WS2.

As observed in Figure 3, we have two first-order in-plane (E0
2g) and out-plane (A1g) vibrational modes with

large intensity. These two modes are of particular interest and will be the focus of this study to understand

the effect of temperature on phonon dynamics. This is because both the anharmonicities of phononmodes

and crystal structure thermal expansion are temperature dependent. Therefore, it is critical to investigate

the temperature evolutions of the phonon modes.

The number of layers of the exfoliatedWS2 on the SiO2/Si substrate is estimated to be bulk with the number

of layers more than 5. This is because the difference of peak positions (A1g - E0
2g) from the room temper-

ature Raman spectrum is 69 cm�1 and the intensity ratio of 2LA and A1g Raman peaks is 0.43749 and the

intensity ratio of A1g and E0
2g is 0.425015, which corresponds to bulk crystal.26,27 Calculations on peak

differences (A1g - E0
2g) and the intensity ratios of 2LA and A1g (I2LA/IA1g) and A1g and E0

2g (IA1g/IE’2g) are

provided in Table 2.

Temperature evolutions of phonon vibrations (E’2g and A1g) in few-layer WS2

We studied the temperature dependence of Raman vibrational modes of the WS2 layer exfoliated on

SiO2/Si substrate. The temperature dependence of the E’
2g and A1g peak positions in WS2 was measured
2 iScience 26, 107174, July 21, 2023



Figure 2. Framework of the machine learning analysis

The machine learning algorithms like multiple linear regression, decision trees, and random forest are employed to

understand the effect of temperature on the phonon vibrational modes.
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between 80 K and 460 K as shown in Figure 4. As illustrated in Figure 4 (inset), the A1g vibrational mode is

the vibration of the S atoms across the plane (shown by dotted lines), while the E0
2g is the in-plane vibration

of both theW and S atoms.26,28 These two vibrational modes are crucial in the structural integrity of layered

semiconductor materials hence our focus on their opto-thermal characteristics. Lorentzian fitting of the

Raman spectral intensity was used to plot and identify the peak positions at each temperature point. As

indicated in Figure 4, both modes follow a systematic red shift with an increase in temperature. The full

width at half maxima (FWHM) of the respective peaks exhibited broadening with increasing temperature

(not shown) in line with general expectations. The 3D visualization of temperature evolutions of phonon

vibrations (E0
2g and A1g) in WS2 is presented in the supplemental information Figure S2.

We first analyze the data using linear approximation to understand the observed temperature dependence

of E’
2g and A1g phononmodes. The shift in E’

2g and A1g peaks with change in temperature as shown in these

experiments indicates the effect of temperature in layered WS2 under study. It is observed that from 80 to

460K, a plot of the peak positions of both modes across the temperature range, shows a modal decrease

with increase in temperature. The resulting graph exhibits a tendency to a linear fit. Here we use the known

standard linear equation to explain the experimental observations:2,3,21,29

u = u0 +cT (Equation 1)

where u0 is the extrapolated modal frequency (y-intercept) (at 0 K) and c is the empirical temperature

coefficient.

The temperature coefficient (c) is the linear tendency (slope) characteristic of the graph as seen in Figure 5.

With our experimental data, we were able to establish the c value for the exfoliated layer of WS2. However,

an in-depth analysis of the linear regression (Figure S3) shows a pattern forming between the residuals and

fitted values. This suggests that the Raman shift for E’
2g and A1g modes cannot be purely represented

by linearity in Equation 1. Non-linearity can be introduced into Equation 1 from pure volumetric effects

and pure temperature anharmonicity.29 From 80 to 280K for A1g in WS2 Raman mode, the Newtonian
iScience 26, 107174, July 21, 2023 3



Figure 3. Room temperature Raman spectrum of bulk WS2 crystal

The Raman spectrum of few-layer WS2 at room temperature with an excitation of 532 nm. Inset shows various Raman

modes.
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peak-finding method for low-intensity measurements (<1000 a.u.) potentially fails due to the insufficient

sampling rate of the Raman spectroscopy to capture small changes in the Raman shift. To best represent

the true peak position for A1g from 80 to 280K, we approximate the peak position with a Gaussian distribu-

tion peak fitting method.

The variation in the peak position at low temperature while maintaining constant pressure (Du = u � u0)

can be mathematically represented as follows:29

Du =
�du
dT

�
V
DT +

�du
dV

�
T
DV
Du = cTDT +cVDV (Equation 2)

where, cT = Self energy resulting from phonon-phonon interactions, the anharmonic effect and cV = Vol-

ume factor/contributions to the thermal expansion of the WS2 lattice.

The assumptionmade in this experiment is that there is negligible expansion of the substrate used (SiO2) to

affect the overall thermal expansion of the subject matter. To explore further the volume factor and contri-

bution of thermal expansion (cv ), we use the Grüneisen constant model below:

�du
dV

�
T
DV = u0

0
@exp

0
@� 3g

ZT

0

adT

1
A � 1

1
A (Equation 3)

where, g is the Grüneisen parameter, u0 is the frequency of the vibrational mode at zero Kelvin, and a the

thermal expansion coefficient of a vibrational mode.

From the extrapolation of our experimental data through machine learning algorithms in Figure 5, we were

able to establish frequency at zero Kelvin (0K) as below:

u0

�
E0
2g

�
= 357:0G1:0 cm� 1; and
4 iScience 26, 107174, July 21, 2023



Figure 4. Temperature evolution of Raman spectra of bulk WS2 crystal

(A) Raman spectra WS2 film transferred on SiO2/Si with a function of temperature (80–460K). Color and line style indicate

the temperature from (80–460K) and vertical lines indicate the redshift from the peaks of Raman Shift 80/280K–280K and

460K for E0
2g and A1g. (B) Schematic of E0

2g and A1g Raman vibrational modes.
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u0

�
A1g

�
= 421:1G0:6 cm� 1

A 2019 report30 provided the following thermal expansion coefficients for both vibrational modes of WS2,

which we will apply in the Grüneisen constant model:

a
�
E0
2g

�
= 1:4033 10� 5K� 1
a
�
Alg

�
= 0:0743 10� 5 K� 1

Finally, the Grüneisen constant for the two bulkWS2 vibrational modes are presented as follows, courtesy of

Ding et al. 2015.31

ðgÞE 0
2g = 0:92
ðgÞA1g = 2:17

Applying all the values into the model in the following:

cVDV = u0

0
@exp

0
@� 3g

ZT

0

adT

1
A � 1

1
A (Equation 4)

We establish that the pure volume effects for each vibrational mode is as shown in the following:

For E0
2g: cVDV = u0

�
e� 3:872283 10� 5 K� 1 T � 1

�

For A1g: cVDV = u0

�
e� 0:460283 10� 5 K� 1 T � 1

�

Figure 6 presents the variation of volume expansion coefficient with temperature derived from both E0
2g

(black) and A1g (blue) Raman vibrational modes.
Machine learning analysis

Machine learning analysis further proves we can dive deeper into analyzing the experimental data we have

and furthermore, to see if it gives us any form of correlation to the experimental results.32–35 This will invari-

ably prove that predictions can be made from the data to increasingly solidify the case that phononic vi-

brations depend on volume expansion and temperature. Insights on how the data we obtained from our

experiments can be used to further make future predictions and decisions moving forward are demon-

strated.36 We have employed here three machine learning models such as linear regression, decision
iScience 26, 107174, July 21, 2023 5



Table 1. Various Raman vibrational modes for bulk WS2 at room temperature

Vibrational mode (cm�1) Identity Reason

171 LA(M) Longitudinal acoustic mode at M-point of BZ

185 LA(K) First-order mode

225 A1g(M)-LA(M) Combinational mode

297 2LA(M)-3E2
2g(M) Second-order mode

319.66 2LA(M)-2E2
2g(M) Strongest 2ND order Raman Peak

346.401 E’2g(G) In-plane vibration of each atom

415.44 A1g(G) Out-of-plane modal vibration

575 LA(M)+A1g(M) Second-order mode

700 4LA(M) Combinational mode
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tree regressor, and random forest regressor and compared their results to see which of these models pro-

vide accurate predictions. The detailedmachine learning codes are provided in the supporting information

section 4.

Linear regression

Linear regression is a machine learning algorithm based on supervised learning.37 It performs a regres-

sion task. Regression models a target prediction value based on independent variables. Linear regres-

sion performs the task to predict a dependent variable value (y) based on a given independent variable

(x). So, this regression technique finds out a linear relationship between x (inputs) and y (output). A set of

data consisting of n series of x and y values is given, where x is the independent variable which is the

temperature in the range 80–460 K, and y is the dependent variable which is the variable that needs

to be predicted (volume expansion). In other words, there is only one unique feature that is represented

by x, and the target is represented by y. Considering a linear relation between variable x and variable y,

we can write:

y = mx +b (Equation 5)

Here, m is the slope of the line, while b is the intercept at the y axis. In reality, because of noise or mismatch

between data and model, there is an error V. Therefore, the modified linear equation is:

y = mx +b +V (Equation 6)

This model tries to minimize the sum of the mean squared errors (MSE) for the given datasets and this

is the aim of linear regression. Since linear regression problem searches for a suitable model in the

form of y = mx +b+V, a candidate slope, m and intercept, b are chosen first. For each recorded

(x, y) pair, square of (y-mx-b) which is equal to square of V, is added to the total error. The line having

the smallest total error is the best fit line. Figure 6 describes the linear regression-based predicted

values of variation of volume expansion with temperature for both the E’
2g (black) and A1g (blue)

vibrational modes. Table 3 provides the R2 values for the volume expansion predictions for the linear

regression model.

Decision tree regressor

A decision tree is a machine learning technique. Typically, this method is used for classification tasks, but

there is a possibility of applying it for a regression task. A decision tree method is an open and easy-to-un-

derstandmethod. For a given training vector x˛ Rn (where n is a number of features) and a training label y˛
Rl (i = 1,2,.l represents a number of labels) the regression tree algorithm recursively portions the features

domain into smaller regions (separate classes). It is important to choose the correct metrics for the best

data split and determining when a tree node should become a terminal.
Table 2. Peak differences and intensity ratios analysis for selected vibration modes

2LA (cm�1) E’2g (cm�1) A1g (cm�1) A1g-E0
2g (cm�1) I2LA/IA1g IA1g/IE’2g

319.66 346.401 415.44 69.143 0.43749 0.425015

6 iScience 26, 107174, July 21, 2023



Figure 5. Dependence of phonon frequencies on temperature

Variation of Raman vibrational frequencies (E0
2g and A1g) with temperature. Color indicates the Raman shift for E0

2g (black,

left y axis) and A1g (blue, right y axis). Dashed lines indicate the linear regression.
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Since in this work a decision tree algorithm is used for a regression task, then the target is a continuous or

quantitative value. Thus, for node m, which represents a region Rm with Nm observations, MSE or mean

absolute error (MAE) are possible regression criteria to minimize impurity function (H). As for determining

locations for future data splits, a test size of test_size = 0.2, and a random state random_state = 11 were

implemented on the model. Minimization of an error can be done by using mean values of the terminal no-

des forMSE andwe can focus on getting a high R2 or accuracy score to confirm the efficiency of themodel in

prediction. Here, the decisions made are based on the nodes with the lowest MSE values. Figure 7 high-

lights how the data is split according to the sample size and MSE value. Table 3 provides the R2 values

for the volume expansion predictions for decision tree regressor model.
Random forest regressor

Random Forest is a supervised learning algorithm. It builds an ensemble of decision trees, usually trained

with the bagging method. The main idea of the bagging method is that a combination of learning

models increases the overall accuracy of the desired outcome and result. Random forest builds multiple

decision trees and merges them together to get a more accurate and stable prediction.38 A good advan-

tage of random forest is that it can be used for both classification and regression problems, which form
Figure 6. Dependence of volume expansion coefficient on temperature

Variation of volume expansion coefficient with temperature derived from both E0
2g (black) and A1g (blue) Raman

vibrational modes.

iScience 26, 107174, July 21, 2023 7



Table 3. Accuracy scores for each of the machine learning models employed in this study

RFR Model DT Model Linear Regression

R2 R2 R2 MSE RMSE

E’2gCv A1g E’2gCv A1g E’2gCv A1g E’2gCv A1g E’2gCv A1g

98.44 98.98 93.08 93.11 99.98 99.98 0.00000646 0.00000000197 0.00245 0.0000444
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the majority of current machine learning systems. Here, we focus more on a regression problem that

seeks to predict a discreet and quantitative result from a set of given inputs. Random forests seek to

affect such correlation reduction by a further injection of randomness. Instead of determining the optimal

split of a given node of a (constituent) tree by evaluating all allowable splits on all covariates, as is done

with single tree methods (decision trees) or bagging, a subset of the covariates drawn at random, is

employed.

A random forest is a collection of tree predictors h (x; qk), k = 1.. .K where x represents the observed input

(covariate) vector of length p with associated random vector X and the qk are independent and identically

distributed random vectors. Here, we try to focus on the regression setting for which we have a numerical

quantitative outcome Y but make some points of contact with classification (categorical outcome) prob-

lems. The observed (training) data are assumed to be independently drawn from the joint distribution of

(X, Y) and comprise n (p +1) tuples (x1, y1),. . .,(xn, yn).

Here our x,which is the observed input, represents our independent variable (temperature range 80 - 460K)

and our dependent variable which is the desired prediction outcome. Random forest regressor with

a max_depth of ‘‘4’’ was used in this computation. A test size of test_size = 0.2, and a random state

random_state = 11. One may suspect that the computational complexity of an ensemble of, say, 100 trees,

is probably 100 times that of a single tree. This is actually not true. The random forest algorithm can be very

efficient, especially when the number of descriptors is very large. The efficiency of the algorithm, compared

to that of growing a single decision tree, comes from two differences between the two algorithms. Table 3

shows the accuracy score of the RFR model. Cross-validation is a technique in machine learning used to

assess a model and test its performance and accuracy. It involves reserving a specific sample of a dataset

on which the model is not trained. Later on, the model is tested on this sample to evaluate it. The original

data sample is randomly divided into several subsets. The machine learning model trains on all subsets,

except one. After training, the model is tested by making predictions on the remaining subset.

We can see from Figures 8A and 8B how the Training score and Cross Validation vary with increasing

training size. Here we notice in Figure 8A, at a training size of 2, the Training score and Cross validation

are at 1 and -40, respectively. Moving further forward, we can see that as the training size increase to 6

and more, no other significant change occurs with the two scores. The same thing can be said of Figure 8B.

At a training size of 10 and more, no further changes can be seen within the scores. Table 3 shows the R2

accuracy score for all the models, the mean square error and the root-mean-square error for the linear

model.
Figure 7. Decision tree classification

Decisions made are based on the nodes with the lowest MSE values.
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Figure 8. Random forest training and cross validation

(A) Training and Cross Validation for A1g and (B) Training and Crossing Validation score for E0
2g.
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Conclusion

In this study, we have demonstrated thermal-induced anharmonic phonon dynamics in WS2 van der Waals

crystal. We found that both the first-order phonon vibrational modes E0
2g and A1g follow a systematic red

shift with an increase in temperature and the FWHM of the respective peaks exhibited broadening with

increasing temperature. We developed a linear regression ML model to train, test, and predict these fre-

quencies at different temperatures within the range of our experiment. We can conclude that the RFR

model with the highest accuracy score is the best fit to make predictions within the nature of the dataset

we have acquired. By taking peak intensity and frequency information and temperature into consideration

at the same time, a high accuracy rate is obtained. The method developed in this work can also be used for

other 2D materials and can provide a valuable reference for material characterization in several fields. This

fundamental study will lead (i) to unveil the dependence of temperature and laser power on in-plane and

out-of-plane (E’2g and A1g) Raman shifts of TMDs in order to study the thermal conductivity, hot carrier

diffusion coefficient, and thermal expansion coefficient and (ii) to understand the functionalities of TMD-

based optoelectronic devices at extreme conditions.

Limitations of the study

In our study, the sampling rate of the Raman spectroscopy limits the resolution of the Raman shift at low

temperature. We have employed Gaussian peak fitting to approximate the peak, but finer-tuned statistical

and optimization procedures could improve the Raman peak positions at low temperatures.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Other

WS2 Milipore Sigma 808806-1EA

Software and algorithms

Linear regression statsmodels: Econometric and statistical modeling with python39 https://www.statsmodels.org/stable/api.html

Decision tree regressor Scikit-learn: Machine Learning in Python40 https://scikit-learn.org/stable/index.html

Random forest regressor Scikit-learn: Machine Learning in Python40 https://scikit-learn.org/stable/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and reasonable request for resources will be handled by our lead contact Sanjay

Behura (sbehura@sdsu.edu).
Materials availability

This study did not generate new unique materials. All chemicals were obtained from commercial resources

and used as received.

Data and code availability

d All data reported in this paper will be shared by lead contact upon reasonable request.

d This paper does not report original code.

d Any additional information from this paper can be requested from the lead contact.
METHOD DETAILS

Temperature-dependent Raman spectroscopy

Thin layers of WS2 are exfoliated from high-quality layered bulk crystal using mechanical exfoliation

methods and then transferred onto SiO2-coated Si substrates. The transferred WS2 layer on SiO2/Si is

then studied using temperature-dependent Raman spectroscopy. The temperature from 80K to 460K at

a 20K interval was varied to study the phonon vibrational modes using 532 nm laser excitation as presented

in Figure 1. The laser intensity and laser power are �6000 a.u. [E’2g] and �2500 a.u. [A1g], and 10 mW,

respectively. The temperature of the mounted samples was controlled by a liquid nitrogen cooled stage.

The use of inelastic scattering-based Raman spectroscopy is conventionally accepted in the structural,

optical, and electronic characterization of layered materials. Furthermore, the temperature dependent

phonon vibrational mode investigations provide an additional dimension to the Raman spectroscopy

tool as the pressure of a gas of anharmonic phonons is temperature dependent. As shown in Figure 1,

the scattered light from the temperature-controlled sample chamber is acquired tomodel the temperature

evolutions of phonon vibrations followed by building a machine learning framework to study the optother-

mal properties of few-layer WS2.
QUANTIFICATION AND STATISTICAL ANALYSIS

Machine learning

The data gained from the experimental procedures was saved in .csv format and analyzed using the Linear

regression model. It was noticed that at a certain point, there was a linear relationship between the fre-

quencies and the temperature. For these experiments, 19 data points were collected from a temperature

range of 80 — 460K at 20K intervals. Pandas, NumPy, and seaborn libraries from Jupyter lab was used. Fre-

quencies (E’2g and A1g) were seen as the dependent variables which are the same variable that need to be

predicted. Here, Y = ‘‘E’2g and A1g’’ and X = ‘‘Temperature’’. Model-selection module was imported from
12 iScience 26, 107174, July 21, 2023
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sklearn for training and testing data. For the training and test data, a test size of 0.2 was used and a random

state of 11 was used as well. The linear regression model was imported from linear_model library on

Jupyter lab. The model was fit into the variables y and x as the Frequency and Temperature, respectively.

This model was implemented independently of E’2g and A1g. The data sets were split into testing and

training sets with a test_size of 0.2. Twomore machine learning models were employed to determine which

model will provide the best accuracy score for our data set. Random forest regressor with a max depth of ‘5’

and Decision Tree regressor with a max depth of ‘4’. The libraries were imported to Jupyter lab, and the

modules were also imported to implement this. Our data set was imported to python and a linear

regression model was run with data values of temperature and frequencies separately using python

library statsmodel.api. The summary generated an intercept and slope value. For E’2g the intercept and

slope are 422.2 and -0.023, respectively with adjusted R2 value of 0.844. For A1g the intercept and slope

are 357.0and -0.032, respectively with adjusted R2 value of 0.798. For the volume expansion on vibrational

mode A1g, intercept and slope are -0.000235 and -0.001973, respectively. Similarly, for vibrational mode

E’2g we have -0.01348 and -0.01366, respectively.
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