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Abstract The limited freshwater resources and 
increasing demand for clean water require minimizing 
organic contamination in wastewater. High levels of 
biochemical oxygen demand (BOD) in water reduce 
available oxygen, harm ecosystem biodiversity, and 
degrade water quality. Here, regression-based analyti-
cal models are suggested to minimize organic contam-
ination by estimating desired dissolved oxygen (DO) 
and dilution factors (df) correlated to the organic 

decomposition. Training datasets of defined independ-
ent inputs (i) ultimate biochemical oxygen demand 
(UBOD), (ii) minimum  BODT (BODM), (iii) average 
 BODT (BODA), (iv) COD, (v)  O2 consumption (X), 
and (vi) time (T) were collected and/or calculated 
based on literature. Results showed that there should 
be specified oxygen dosing amounts dependent upon 
 BOD5 levels, noting that  BOD5 and  DO5 are inversely 
proportional (proportionality might differ based on the 
microbial concentration). An increase in df is predom-
inated by  BOD5, with df≈9.2 for storm (STM), df≈12 
×  103 for industrial (IND), and df≈18.5–28.5 for 
domestic (DOM) wastewaters. Mixing/matching 
between the input features used in training regressors 
including medium trees (MT) and ensembles boosted 
trees (EBT) showed high accuracy > 94% for predic-
tor combinations: (i) MT-[UBOD-X], MT-[UBOD-X-
T-COD], and EBT-[UBOD-X-T-COD] for  DO5 pre-
dictions, and (ii) EBT-[BODM-BODA] and 
EBT-[BODM-BODA-UBOD-X-T-COD] for df pre-
dictions, knowing the general term XX-[a-b-c-d-e-f] 
has XX = regressor and a,b,c,d,e,f = predictors for the 
training parameters used as inputs. The models are 
capable of predicting changes in  DO5 against BOD 
with deviations 5–10%, whereas a suggested correc-
tion factor ±

(

UBOD
i

BODM
i

)

�

 further reduced this deviation 
to < 5%, where i = 0, 1, 2…6 refers to the BODM 
datapoint and its corresponding UBOD with the con-
stant α = f(i). The optimized collective models (cubic 
equations derived for df and  DO5 from BODM that is 
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an exponent function in UBOD) would enable effluent 
quality evaluation to manage organic contamination, 
bridging the gap between science and industry best 
practices.

Keywords Organic contamination · Wastewater · 
Dissolved oxygen · Quality control · Regression

Introduction

The quantity of oxygen needed by microorganisms to 
decompose organic matter is known as the biochemi-
cal oxygen demand (BOD). Using experimentally 
observed BOD levels from sample tests, which are 
directly related to microbial contamination, organic pol-
lution in freshwater bodies can be determined (Maddah, 
2016a, 2016b, 2016c; Maddah, 2018a; Vörösmarty 
et al., 2010). Due to the deterioration of the worldwide 
“sanitation problems,” current population estimates 
have raised concerns about surface water quality due to 
the presence of organic wastes. The increase in organic 
waste is because of the growing demand for dairy 
products and meat consumption (Wen et  al., 2017). 
Untreated wastewater and sanitary problems arising 
in surface water bodies (e.g., rivers) are mainly due 
to organic wastes which result in accelerating climate 
change. This is because untreated discharge into rivers 
can directly increase the rate of greenhouse gas (GHG) 
emissions from downstream rivers (Kim et  al., 2019). 
Warming (2020) has stated that “untreated wastewater 
running directly out into the environment generates a 
GHG footprint roughly 3 times higher than that of the 
GHG footprint when the same wastewater is treated 
in a traditional wastewater facility” (Warming, 2020). 
Such consequences necessitate a reduction in dis-
charge volumes of wastewaters or solving the discharge 
issues by improving our diluting capabilities. Chemical 
wastes and organic discharges will have a significant 
impact on the global economy requiring unprecedented 
advancement in treatment and monitoring technology 
to deal with the projected BOD rates on a worldwide 
scale (Maddah, 2016a, 2016b, 2016c; Maddah, 2020; 
Maddah et al., 2017; Maddah & Chogle, 2015; Maddah 
& Shihon, 2018; Wen et al., 2017).

Previous research in Europe predicted a rise in 
organic pollution, particularly in the southern nations 
where the majority of rivers no longer function as 
diluents due to wastewater discharge in water-scarce 

areas with no diluting capacity (Voß et  al., 2012). 
However, this is dependent upon the organic’s con-
centration of the receiving water which must be the 
same or higher than the organic’s concentration of 
the river water where the discharge can be diluted. 
Reduced river dilution capacity and probable water 
quality deterioration are expected to have a greater 
impact on Eastern Europe and the Black Sea, accord-
ing to the study (Maddah, 2021a; Maddah et  al., 
2018; Voß et al., 2012). For BOD testing, the stand-
ard 5-day interval for measuring the  BOD5 parameter 
is employed by Europe. This is because of the length 
of time it takes for river water to flow from its source 
to its delta in the UK (outlet end meeting a bay or 
an ocean). In 1936, the committee “American Pub-
lic Health Association,” known as APHA, suggested 
using the BOD parameter as a reference indication to 
evaluate the biodegradation of chemicals and hazard-
ous substances (Nagel et al., 1992).  BOD5 to chemi-
cal oxygen demand (COD) represents the biodegrad-
able proportion of effluent;  BOD5/COD can also be 
employed for sizing a wastewater treatment facility 
(Adedeji & Olayinka, 2013; Langeveld et  al., 2012; 
Łapiński & Wiater, 2018; Maddah, 2016a, 2016b, 
2016c; Nagel et al., 1992).

BOD5 is the quantity of oxygen utilized by bacte-
ria and other microorganisms in a water medium for 
5 days at a standard temperature of 20°C for aerobic 
decomposition. As a result, the  BOD5 is an indirect 
measure for assessing existing organic or chemical 
wastes that are biodegradable in water in the pres-
ence of oxygen, expressed in mg  O2/L (Abdulla et al., 
2016; Alagha et  al., 2020; Al-Sulaiman & Khudair, 
2018; Lewis, 2006). The amount of 5-day dissolved 
oxygen  (DO5) in mg/L necessary for the biodegrada-
tion of organics is indicated by  BOD5. The progres-
sion of the decomposition of organic waste deter-
mines the significance of the  DO5 parameter where 
the oxygen is totally or partially utilized by bacteria to 
break down the organic matter (Adedeji & Olayinka, 
2013; Langeveld et  al., 2012; Łapiński & Wiater, 
2018; Maddah, 2018b).

The most common and recent BOD measure-
ment method is the dilution method, which is based 
on the APHA standards. These standards have been 
certified by the US Environmental Protection Agency 
(USEPA) including the manometric system which has 
been widely used in many sewage plants for over 75 
years (Hach et  al., 1997). The USEPA, on the other 
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hand, has not certified the latter approach for waste-
water analysis, even though it has authorized the 
manometric method in some circumstances owing to 
a lack of data consistency and improvement in related 
laboratory procedures (Attiogbe et al., 2009).

The same elements that impact DO also affect 
BOD. By 2050, high BOD-containing wastewater 
will affect the health condition of at least 2.5 billion 
people (if organics are not treated and BOD levels are 
not kept under control) (Voß et al., 2012). High BOD 
concentrations in water (i.e., attributed to DO = 5 
mg  O2/L) reduce oxygen availability, pollute aquatic 
habitats (limiting aquatic life), impact ecosystem bio-
diversity, deteriorate water quality, and contaminate 
freshwater (Al-Sulaiman & Khudair, 2018; Voß et al., 
2012). Topsoil leaves, woody debris, animal dung, 
and effluents from pulp and paper mills are all sources 
of BOD (Abdulla et al., 2016; Alagha et al., 2020; Al-
Sulaiman & Khudair, 2018; Lewis, 2006). Anthro-
pogenic causes of high BOD loadings to freshwater 
and/or watershed systems include home and livestock 
(animal) waste, industrial discharge, agricultural pol-
lutants, and combined or mixed sewage overflows. 
BOD concentrations decrease as they travel through 
the stream network due to continual microbial break-
down. This results in river self-purification and self-
revitalization, as well as the diluting of BOD-contain-
ing wastewater before it reaches the oceans. However, 
this mechanism is constrained by the fact there will 
be no additional BOD further downstream as per the 
Streeter-Phelps model (Voß et al., 2012).

The higher the BOD concentration, the faster the 
oxygen in the stream is lost depending on the water 
temperature (Lewis, 2006). This implies that larger 
marine animals will have less oxygen available for 
aerobic use in the existence of high BOD. Conse-
quently, dissolved oxygen in water will be lower 
causing marine life to suffocate. In other words, the 
discharge of wastewater with high BOD would harm 
marine life in two ways: (i) organics are mostly toxic 
when consumed, and (ii) high BOD depletes dis-
solved oxygen that is required for the survival of 
aquatic life. Organic wastes in water can induce a 
surge in BOD at wastewater treatment facilities, feed-
lots, food-processing companies, and urban stormwa-
ter runoff (Abdulla et al., 2016; Alagha et al., 2020; 
Al-Sulaiman & Khudair, 2018; Lewis, 2006).

There have been several predictive models 
that were built for the estimation of  BOD5 and/or 

dissolved oxygen. Multi-linear regression (MLR) 
was applied by Qasaimeh and Al-Ghazawi (2020) to 
10-year data of Irbid wastewater treatment plant to 
correlate effluent parameters including TSS and COD 
to  BOD5 (or  DO5) (Qasaimeh & Al-Ghazawi, 2020). 
The MLR approach allows correlating the variables 
of interest to build accurate models using indica-
tors (inputs) or quality parameters data. The predic-
tion of  BOD5 is possible without the need to conduct 
experiments of the standard 5-day test. Such predic-
tion models would enhance the control and automa-
tion of biological treatment. The high model accu-
racy with a coefficient of determination (R2) > 0.94 
showed that the model  BOD5 = 0.5TSS + 0.052COD 
+ 10.1 can be incorporated into wastewater treatment 
plants (WWTPs) for monitoring  BOD5 changes in the 
effluents (Qasaimeh & Al-Ghazawi, 2020). Another 
work applied artificial neural networks (ANNs) in the 
prediction of the influent  BOD5 with top-performing 
models achieved R2 > 0.75. The ANNs’ models ena-
bled controlling the effluent quality in WWTPs and 
were viable to be used as soft sensors for on-time 
controlling. Data-driven simulation showed that BOD 
models outperformed COD and TSS models in opti-
mizing the plant performance. The monitoring of 
associated quality parameters included influent COD, 
temperature, and conductivity as input parameters. 
The order of significance of the input parameters was 
found as follows: COD > temperature > conductivity 
> TSS > pH, indicating the importance of COD in 
predicting  BOD5 (Alsulaili & Refaie, 2021).

Qambar et  al. (2022) proposed machine learn-
ing (ML)-based approaches using Askar and Al Dur 
WWTPs dataset to predict municipal wastewater 
influent  BOD5. Their models are built using deci-
sion trees, random forest, adaptive boosting, gradient 
boost, and extreme gradient boosting algorithms. The 
built models were robust and achieved R2 = 1 (overfit-
ting might be a possibility). Therefore, high-accuracy 
models were used for real-time prediction of  BOD5 to 
mitigate environmental risks and ensure an effective 
treatment process (Qambar et al., 2022). Rustum et al. 
(2007) developed a prediction of the effluent  BOD5 of 
a primary clarifier based on the Kohonen self-organ-
izing map (KSOM) and multi-layered perceptron arti-
ficial neural networks (MLP-ANN) in MATLAB. A 
six-input model involved COD and TSS which were 
correlated to the output  BOD5 in the Seafield WWTP 
in Edinburgh, UK (Rustum et  al., 2007). Similarly, 
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Obaid et  al. (2015) suggested regression equations 
using MLR analysis methods to show the relation-
ship between population and rainfall with maximum 
and average  BOD5 in the sewer networks of Karbala 
city center. The results showed that  BOD5 concentra-
tion rises by 9–19 mg/L for an increase in rainfall by 
1 mm during festival periods and 4–17 mg/L for each 
increase of 10,000 population (Obaid et  al., 2015). 
Khusravi (2013) studied kinetic models to combine 
Monod’s kinetic equation and plug flow pattern in 
wastewater stabilization ponds (WAPs). The kinetic 
models estimated  BOD5 removal coefficients and the 
decrease rate of organic materials where BOD/COD 
> 0.5 indicates the biodegradability of organic mate-
rials (Khusravi, 2013).

Al-Ghazawi and Alawneh (2021) utilized ANNs 
to develop predictive models for the quality of treated 
effluent for irrigation from Wadi Arab WWTP. The 
feed flow rate, temperature, pH,  BOD5, COD, TSS, 
and  NH4-N were the input parameters for each ANN 
model, whereas a sensitivity analysis showed that the 
accuracy is dependent on the selected inputs and the 
mix/match. The models were highly sensitive to pH 
and slightly sensitive to influent TSS (Al-Ghazawi & 
Alawneh, 2021). Szelag et al. (2017) used a data min-
ing approach to propose models that would be able 
to predict influent quality indicators including BOD, 
COD, TSS, total nitrogen (TN), and total phosphorus 
(TP). Three-year daily data were used from a WWTP 
located in Rzeszów to train the models according to 
the collected data of the quality indicators. Such mod-
els built via ANN can simulate TSS, TN, and TP by 
applying support vector machines (SVM), random 
forests (RF), and multivariate adaptive regression 
splines (MARS). The models were found to be via-
ble for quality monitoring and controlling for reliable 
operation from the simulated results. The models’ 
results were compared to the measured influent qual-
ity to adopt hybrid models that recorded minimum 
prediction errors (Szelag et  al., 2017). Furthermore, 
Asami et al. (2021) adopted data mining and ANN to 
build  BOD5 models for the WWTP of Ramin thermal 
power covering 3 years (2013–2015) daily dataset. 
The model R2 of 0.95 was observed for the prediction 
of either  BOD5 or COD to reduce the cost of moni-
toring based on the model’s reliability and high gen-
eralization capability. In the  BOD5 modeling, it was 
determined that DO, COD, TSS, temperature, and 
turbidity at the influent in a WWTP were the most 

important parameters affecting  BOD5 (Asami et  al., 
2021).

In the present study, the aim was to establish ana-
lytical predictive models that would be able to predict 
DO and/or dilution factors (df) for wastewaters to 
minimize organic contamination. The goal is to sta-
tistically investigate the possibility of constructing 
highly accurate models that can estimate  DO5 and df 
in biologically active wastewaters. Levels of BOD or 
COD are defined by the concentrations of organics 
correlated to the DO or df which would allow con-
trolling existing organics. Determination of the aver-
age laboratory df was carried out from ∆DO based on 
the  O2 consumption (X) = 60–70%. This would allow 
wastewater engineers to estimate the corresponding 
outputs  (DO5 and df) from knowing  BOD5, COD, 
 DO0, and  O2 consumption (X) information for train-
ing in MATLAB (mix/match of selected independ-
ent parameters). Accurate machine learning models 
were built from the independent variables (inputs) 
including (i) ultimate biochemical oxygen demand 
(UBOD), (ii) minimum  BODT (BODM), (iii) aver-
age  BODT (BODA), (iv) COD, (v)  O2 consumption 
(X), and (vi) time (T) to estimate  DO5 and df. Resid-
ual analysis and inter-quartile range (IQR) based on 
the 1.5IQR range-median decision rule would guide 
researchers towards models with minimum statistical 
errors to establish useful correlations.

Methodology and equations

Data collection and curation

The data collection of domestic wastewater was car-
ried out by gathering information from Al-Diwaniyah 
Wastewater Treatment Plant, Wastewater Treatment 
Plants of Jordan and North Sewage Treatment Plant 
in Dhahran, Eastern Province, Saudi Arabia (Abdulla 
et al., 2016; Alagha et al., 2020; Al-Sulaiman & Khu-
dair, 2018). Such organic contamination can be inves-
tigated or linked to the  BOD5 level in collected sam-
ples by changing organic loading rates and designed 
hydraulic, or operating conditions. The  BOD5 
investigation should be done after measuring qual-
ity parameters such as pH, turbidity, total suspended 
solids (TSS), and COD for the successful predic-
tion of potential risks of effluent’s organic pollution 
to protect the environment. The curated raw datasets 
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can be found in Table S1 through Table S5 in the 
Supplementary (Abdulla et  al., 2016; Alagha et  al., 
2020; Al-Sulaiman & Khudair, 2018; Lewis, 2006; 
Maddah, 2021b; Maddah et al., 2020).

The Kumasi Abattoir, Coca-Cola, and GGL plants 
in Ghana (Kumasi Metropolis, the capital of Ashanti) 
served as a database for the curation of industrial 
wastewater datasets (Al-Sulaiman & Khudair, 2018; 
Attiogbe et  al., 2009). The  DO5 level of the water 
was measured in earlier works by the Azide modifica-
tion of Winkler’s method before and after incubation 
for 5 days at 20°C using sampling techniques. After 
the selection of a reasonable dilution factor (df), the 
estimated DO differences would reveal the sample’s 
 BOD5 levels. To ensure consistent analysis, the sam-
ples’ pH levels were maintained in the range of 6.5–8 
for ideal biochemical oxidation (APHA, AWWA, 
WEF, 2012). The  BOD5 and COD data of industrial 
wastewater were then collected from the same three 
facilities. The dilution factors were calculated using 
the average  BOD5/COD of each wastewater facility. 
Datasets have been gathered from various stormwa-
ter sources located in several locations. The author 
gathered the stormwater quality from completed 
stormwater runoff sampling (from previous stud-
ies) in the streets, highways, surfaces, and parking 
lots. The samples were collected from various catch-
ments in three different countries (Bialystok, Poland, 
Abeokuta, Nigeria, and Luxembourg). The parameter 
 (BOD5) was studied and correlated to the initial dis-
solved oxygen  (DO0) and the utilized dilution factors. 
The curated raw datasets can be found in Table S1 
through Table S5 in the Supplementary (Adedeji & 
Olayinka, 2013; Langeveld et  al., 2012; Łapiński & 
Wiater, 2018).

BOD estimation

Assessing BOD necessitates taking a minimum of 
two measurements: (i) for current (immediate) or 
 DO0 and (ii) for the residual quantity of final 5-day 
dissolved oxygen  (DO5) following incubation of 
water samples in the lab for 5 days. Such tests would 
allow estimation of the quantity of oxygen uti-
lized by microbes throughout the incubation time to 
break down the organic matter contained in the sam-
ple (Abdulla et  al., 2016; Alagha et  al., 2020; Al-
Sulaiman & Khudair, 2018; Lewis, 2006).

Earlier BOD sample investigations of diverse 
wastewater types, including domestic (household), 
industrial, and storm (surface) wastewaters, served 
as a database based on the literature data. No com-
bination or separation of wastewater was considered 
or required because each study dealt with a one-type 
plant of wastewater. The calculated minimum and 
average constant reaction rates (k1) guided the author 
towards the average values of k1 = 0.14, 0.731, and 
0.16  day−1 for domestic (DOM), industrial (IND), 
and storm (STM) wastewaters, respectively. The min-
imum reaction rates (k1, min) and average reaction rates 
(k1, avg) would quantify organic decomposition rates to 
calculate the corresponding minimum and average 
 BODT values at their UBOD. The minimum  BODT 
(BODM) was calculated from k1, min and the aver-
age  BODT (BODA) was calculated from k1, avg using 
Eq. (1), (see Table S3 through Table S5 in the Sup-
plementary). The reaction rates were taken to be dif-
ferent constants (average) for the various wastewater 
types considering three wastewater treatment plants 
for each wastewater (i.e., each wastewater type would 
have similar wastewater characteristics). UBOD and 
COD values (from the three different plants for each 
wastewater type) were kept constant over the stud-
ied time (60 days) since they were found not to be 
impacted by pH, organic-to-inorganic content, nutri-
ents, and existing oxygen. However, BODM and 
BODA factors change over time and were determined 
based on the literature (Abdulla et al., 2016; Adedeji 
& Olayinka, 2013; Alagha et al., 2020; Al-Sulaiman 
& Khudair, 2018; Attiogbe et  al., 2009; Langeveld 
et  al., 2012; Łapiński & Wiater, 2018) from k1, min 
and k1, avg, respectively, and the corresponding UBOD 
substituted in Eq. (1).

Dissolved oxygen

As per the generalized  DO0 averages from the litera-
ture (Anggraini & Herdiansyah, 2019; Lewis, 2006; 
Metcalf & Eddy, 2003), it was found that  DO0 at 
20°C = 9.1 mg/L for  BOD5 (for domestic and indus-
trial wastewaters) and  DO0 at 26.3°C = 8.1 mg/L 
for  BOD5 (for storm wastewater). The previously 
conducted analysis followed a selected DO from  O2 
consumption (X) = 60–70% in Eq. (2) which was 

(1)BODT = UBOD
(

1 − e−k1T
)
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determined from the initial dissolved oxygen  (DO0). 
Notations in Eq. (2) are defined as the following: 
P is the volumetric fraction of wastewater or the 
fraction of wastewater sample volume to total com-
bined volume (i.e., waste sample volume divided 
by BOD incubation-bottle volume). The ΔDO cor-
responds to organic decomposition associated with 
oxygen consumption (X) in water that is the initial 
dissolved oxygen minus the final dissolved oxygen. 
 DO5 refers to the dissolved oxygen in water after 
the incubation period (5 days) compared to  DO0 
which is the initial dissolved oxygen in water before 
the incubation period. The 5-day BOD is attributed 
to the measurement of dissolved oxygen that would 
be utilized by microorganisms in the biochemi-
cal oxidation of organic matter. BOD and DO are 
interrelated because a specific quantity of oxygen 
is required to biologically stabilize organic matter 
giving an approximation to the necessary size of a 
wastewater facility.

The organic decomposition attributed to the  O2 
consumption (X) = 60–70% was selected since it 
has been successfully applied for the modeling of 
oxygen saturation levels in wastewater at a sludge 
treatment facility in Indonesia. It was found that the 
standard  DO0 has a maximum oxygen concentration 
of 9.1 mg/L and a minimum oxygen concentration 
of 7.5 mg/L at 20°C and 30°C, respectively, but the 
exact DO might differ depending upon the type of 
wastewater and the water temperature (Anggraini & 
Herdiansyah, 2019; Lewis, 2006; Metcalf & Eddy, 
2003).

Dilution factor

The average  BOD5/COD ratios were then computed, 
and these values were subsequently utilized to find 
the typical laboratory dilution factors (df). The esti-
mated df from Eq. (3) was computed from the known 
 BOD5, COD,  DO0, and the determined  DO5 at X = 
65% (average) by using Eq. (2).

After acquiring  BOD5, COD,  DO0, and  O2 con-
sumption (X) information (inputs for training) as 
shown in Table S1 through Table S5 (in the Supple-
mentary) and Table 1, the desired outputs  [DO5 and 
df] were calculated. This enabled the curation of the 
original datasets which contain 108 data points in 
which the literature reported raw data of industrial 
and domestic wastewaters and stormwater. The col-
lection of both BODM and BODA was carried out 
as per the definition of  BODT. The  BODT shows the 
impact of time on BOD where time T = 0, T = 5, and 
T = 30 days would give BODM,  BOD5 (or BODA), 
and UBOD, respectively, from the literature data 
(Abdulla et  al., 2016; Adedeji & Olayinka, 2013; 
Alagha et  al., 2020; Al-Sulaiman & Khudair, 2018; 

(2)
BOD ≈

ΔDO

P
=

DO0 − DO5

P
⟺ DO5 = XDO0

(3)df =

BOD5

COD

|

|

|avg
× CODavg

DO0 − DO5 (mg∕L)

Table 1  The reported and/or calculated values for BOD-related parameters and other important wastewater characteristics for the 
various studied wastewater types

*Ratio or number only, unitless. pH with (*) was assumed to be in the range 6.5–8 since no given values were reported in the litera-
ture and such values were taken per the recommendations from (APHA, AWWA, WEF, 2012) for consistent analysis
Abbreviations: BODM is minimum  BODT, BODA is average  BODT (or  BOD5)

Type metric* Domestic wastewater Industrial wastewater Storm wastewater

Diwaniyah Jordan North Kumasi Coca-Cola GGL Poland Luxembourg Nigeria

BODM (mg/L) 107 4.25 48 10,000 75 10,00 5 5 94.50
BODA (mg/L) 192 147 72 120,000 909.5 20,500 27.5 30 39.40
UBOD (mg/L) 354 290 144 230,000 1744 40,000 50 90 66.35
COD (mg/L) 428 304.28 179 240,000 1851 56,678 279.5 138 192.84
TSS (mg/L) – 103 887 – – – 235 – 158
BODA/COD* 0.45 0.48 0.40 0.50 0.49 0.36 0.1 0.22 0.34
pH* 6.5–8* 7.91 7.44 7.25 6.5–8* 6.5–8* 8.1 6.5–8* 9.1
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Attiogbe et al., 2009; Langeveld et al., 2012; Łapiński 
& Wiater, 2018). Both BODM and BODA were cor-
related to the organic decomposition rate attributed to 
the  O2 consumption (X) = 60–70% based on the well-
known inverse proportionality that exists between 
BOD and  O2 consumption (X) value. The developed 
models’ accuracy in predicting  DO5 and df was then 
tested by randomly assigning 67% of the selected 
datasets to “training” and 33% to “testing”.

Machine learning (training)

Various supervised ML regression learners in MAT-
LAB (Mathworks., 2017) were selected in train-
ing/testing the labeled datasets. Ensembles and tree 
regression models as well as support vector machines 
(SVMs) were utilized to establish the trained mod-
els. A cross-validation (CV) of 5-fold was applied 
to identify the optimal model for training (Baştanlar 
& Ozuysal, 2014; Kotsiantis, 2007; Mathworks., 
2017; Simeone, 2018). Defined independent vari-
ables (inputs) included (i) UBOD, (ii) BODM, (iii) 
BODA, (iv) COD, (v)  O2 consumption (X), and (vi) 
time (T). The two investigated outputs were  DO5 and 
df (Maddah et al., 2020). Training analysis would dis-
play the association between BOD-related parameters 
for the analyzed wastewater types based on BODM 
and df, BODM against both UBOD and  BOD5, and 
 DO5 against both BODM and  BOD5 at X = 65% ± 
5%. Such proposed models might allow wastewater 
engineers to select the optimal df for sampling analy-
sis (after testing the viability of obtained trendlines). 
This would enable adjusting the operating conditions 
according to the desired DO corresponding to the 
feed  BOD5/COD ratio for maximum organic decom-
position. The DO level that is investigated here is 
the dissolved oxygen that exists in the wastewater 
before being processed in a WWTP. Thus, it should 
not be the DO value after aeration but the DO before 
the aeration. With aeration advanced technology, 
one would be able to quantify how much oxygen is 
added to expedite the degradation process of organ-
ics. It is worth mentioning that COD is a parameter 
used to determine the ratio  (BOD5/COD) to quantify 
existing inorganics (chemicals) with respect to avail-
able organics. Figure 1 shows the step-by-step study 
framework starting with datasets collection, followed 
by utilized regressors, and statistical analysis methods 
for models creation.

Training steps were carried out using four input-
parameters models: (i) [UBOD-X], [T-COD], 
and [UBOD-X-T-COD] for  DO5 output; and (ii) 
[BODM-BODA], [UBOD-X], [T-COD], [UBOD-
X-T-COD], and [BODM-BODA-UBOD-X-T-COD] 
for df output (i.e., combining or contrasting cho-
sen independent factors, knowing the general term 
[a-b-c-d-e-f] has a,b,c,d,e,f = predictors or input 
features for the training. To develop controlling ele-
ments that would primarily lead to modifying  DO5 
or df predictions based on wastewater characteris-
tics analysis, it is important to use a variety of input 
parameters. The logic of this selection was made 
based on finding the most common factors that 
would play a key role in impacting both DO and df. 
According to the literature (Abdulla et  al., 2016; 
Adedeji & Olayinka, 2013; Alagha et al., 2020; Al-
Sulaiman & Khudair, 2018; Attiogbe et  al., 2009; 
Langeveld et  al., 2012; Łapiński & Wiater, 2018), 
BOD,  O2 consumption (X), COD, and time are the 
prominent factors that would contribute to notice-
able changes in DO and df. Other factors like pH, 
salinity, and alkalinity might have an indirect impact 
and could be further investigated in future studies. 
Therefore, for choosing the best-identified regres-
sors, training analysis steps were performed using 
existing supervised regression models in MATLAB. 
The mixing of inputs was arbitrary to choose the 
best-trained models capable of predicting experi-
mental results at high accuracy. The model’s accu-
racy was determined from prediction errors that are 
the deviation of the model results from the experi-
ments. Trained models were checked and compared 
among each other from their determined statistical 
errors to keep only the accurate models that satis-
fied a coefficient of determination (R2) > 0.90 for 
further analysis of response patterns and residuals. 
Equations (4) and (5), respectively, represent the 
detected statistical errors from the R2 and residual.

xo, i and/or xo: the observed values from 
experiments

xp, i and/or xp: the predicted values from the model

(4)R
2
=

�
∑n

i=1

�

xo,i − xo
��

xp,i − xp
��2

∑n

i=1

�

xo,i − xo
�2

×
∑n

i=1

�

xp,i − xp
�2

(5)Residual = xo − xp
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xo : the observed value from experiments by aver-
aging the returned estimations

xp : the theoretically estimated or predicted values 
from the model by averaging

n: dataset size or the number of experimental 
observations (dataset range)

Residual analysis (QR method)

To identify the most effective models and explore 
outliers from the trained models, the inter-quartile 
range (IQR) decision rule, residual analysis, quartile 
range (QR), and 1.5IQR range-median approaches 
were used. Based on the 1.5IQR range-median 
choice criteria, the analysis identifies models with 
the least statistical errors (least discrepancies) or 
least deviation of the model’s predictions from those 

values found from the laboratory analysis (Chaud-
hary, 2019). The “QR method” is used to visualize 
a box plot where the median is the center point, the 
first quartile  (Q1) has 25% of the data between the 
minimum and  Q1, and the third quartile  (Q3) has 
75% of the data between the minimum and  Q3. In 
light of the acquired ranges for residuals from each 
model type, the IQR may be calculated from the 
difference between  Q3 and  Q1 (IQR =  Q3−Q1) to 
identify outliers. The lower limit and upper bound 
are computed with a scale of 1.5 as  (Q1−1.5×IQR) 
and  (Q3−1.5×IQR), respectively. Any data point 
that was discovered to be situated beyond the speci-
fied ranges is regarded as an outlier (Chaudhary, 
2019). This is the same as just taking into account 
outliers for data that deviates more than 2.7 stand-
ard deviations (σ) from the mean (μ) on either side 

Fig. 1  Study framework starting with datasets collection, 
defining input and output parameters, and selection of X cor-
related with BDOM and BODA for regression analysis of 
training and testing datasets to select the best models based on 
different wastewater types. Acronyms: UBOD, ultimate bio-
chemical oxygen demand; BOD, biochemical oxygen demand; 
COD, chemical oxygen demand; X,  O2 consumption; T, time; 

 DO5, 5-day dissolved oxygen; df, dilution factor; BODM, max-
imum biochemical oxygen demand; BODA, average biochemi-
cal oxygen demand; CV, cross-validation; SVMs, support 
vector machines; MT, medium trees; FGSVM, fine Gaussian 
support vector machines; EBT, ensembles boosted trees; IQR, 
inter-quartile range
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of a normal distribution “bell curve” (Barbato et al., 
2011; Chaudhary, 2019; Moska et al., 2020). There-
fore, when the 1.5IQR range-median decision rule is 
used, the Gaussian distribution for outlier identifica-
tion is relevant. In other words, the 1.5IQR analysis 
would enable us to check for data outliers and make 
judgments about the correctness of the developed 
trained models.

The five (or six with BODM) selected independ-
ent variables (inputs) and their corresponding val-
ues had a spike in BOD and/or COD for 12 out of 
70 points in the normalized results, Fig. 2 (the figure 
also shows the defined factors affecting  DO5 and df). 
This is because of the presence of industrial waste-
water in both training and testing datasets [with high 
 BODT~230 g/L and high COD >240 g/L]. COD is 
normally higher than BOD because more organic 
compounds can be chemically oxidized than biologi-
cally oxidized. Knowing that the greater the pollution, 
the higher the COD and BOD. Industrial wastewater 
is in the high-to-ultra-high range of pollution of > 
3 to 15 g/L of BOD, which is equivalent to approxi-
mately > 6 to 30 g/L of COD (NIHON KASETSU 
CO, 2023). According to Jain and Singh (2003), 
industrial wastewater may have COD up to 60 g/L, or 
can be only around 5 g/L, depending on the type of 
industry (Jain & Singh, 2003). In the author’s earlier 

study (Maddah, 2022), COD for industrial wastewater 
was found to be very high (56 g/L to 240 g/L) because 
of the type of industry. Storm, industrial, and domes-
tic wastewaters had an average range of  BOD5/COD 
ratios of 0.1~0.35, 0.36~0.5, and 0.4~0.48, respec-
tively. Obtaining the average  BOD5/COD range is 
very useful since it can be used as an indicator tool 
that would help experimentalists accomplish accurate 
sampling analysis.

The selection of various input parameters is impor-
tant to define controlling factors that would chiefly 
result in changing  DO5 and df based on the conducted 
attributes analysis. The goal is to statistically investi-
gate the impact of each independent variable to estab-
lish useful correlations: (i) BODM against UBOD, 
and (ii) BODM (or  BOD5) against  DO5 and df for 
wastewater engineers.

Model formulation

A formulation of various models is suggested 
based on UBOD = f(BODM) and that would give 
BODT = f (BODM)

(

1 − e−k1T
)

 ; each model is for 
one of the studied wastewater types. Again from Eq. 
(1), the following correlations between BODM and 
UBOD were obtained from the fitting analysis and 
resulting in the following:

Fig. 2  The identified similar patterns of selected data points used in machine learning analysis. A Training and B testing; C the 
defined input parameters correlated with the two outputs  DO5 and df based on data from different studied wastewater types
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Domestic wastewater,

Constraints,

Industrial wastewater,

Constraints,

Storm wastewater,

Constraints,

BODM numbers do not cover the whole expected 
range for domestic, industrial, and storm waste-
waters. The introduced constraints for the BODM 
would ensure a good approximation of UBOD 
based on the fitting analysis. The model equations 
can be used to calculate UBOD from BODM or vice 

(6)BODM = e18−0.13UBOD+2.7×10
−4UBOD2

(7)
2.7 × 10

−4UBOD2
− 0.13UBOD + 18 − lnBODM = 0

BODM < UBOD

150 mg∕L < BODM < 350 mg∕L

(8)BODM = 3.44 × 10
−8e

−34994

UBOD−1802.7

(9)

ln

(

BODM

3.44 × 10
−8

)

UBOD − 1802.7 ln

(

BODM

3.44 × 10
−8

)

+ 34994 = 0

(10)
UBOD =

[

1802.7 ln

(

BODM

3.44 × 10
−8

)

− 34994

]

∕

ln

(

BODM

3.44 × 10
−8

)

BODM < UBOD

0 mg∕L < BODM < 160,000 mg∕L

(11)BODM = e29−0.8UBOD+0.0058UBOD
2

(12)
0.0058UBOD2

− 0.8UBOD + 29 − lnBODM = 0

BODM < UBOD

20 mg∕L < BODM < 90 mg∕L

versa as long as the given constraints are met. This 
has been backed up by the fitting analysis and alge-
braic rearrangement regardless of having BODM 
in a large range (i.e., industrial wastewater) or in a 
small range (i.e., stormwater).

Results and discussion

Benchmarking of  DO5 against the  O2 consump-
tion (X) was established from the fitted linear trend-
lines for both training and testing datasets as shown 
in Fig.  3A and B, respectively. There is a possible 
proportional correlation between  O2 consumption 
and organic decomposition, but the two factors do 
not necessarily change with the same magnitude. 
The average accuracy (%) of the built and trained 
models shown in Fig. 3C based on the applied algo-
rithm and the involved number of features confirmed 
the optimal models: the fine Gaussian support vec-
tor machines (FGSVM), medium trees (MT), and 
ensemble boosted trees (EBT)-based models had 
the highest accuracies (with R2 > 0.82) among the 
other tested supervised models used in the prediction 
of  DO5. Less than 20% of the FGSVM plotted data 
points of the observed (predicted) responses against 
true responses of  DO5 had shown strong deviations. 
This indicated the highly observed accuracies for 
 DO5 prediction determined from the three mod-
els (FGSVM, MT, and EBT) based on the different 
combinations and numbers of predictors as shown 
in Fig.  3D–F. The maximum accuracy of 95% (R2 
= 0.95) was achieved from FGSVM-[UBOD-X] to 
FGSVM-[UBOD-X-T-COD] whereas the minimum 
accuracy of 80% (R2 = 0.8) was found from the use 
of EBT-[UBOD-X] and EBT-[T-COD], knowing 
the general term XX-[a-b-c-d-e-f] has XX = regres-
sor and a,b,c,d,e,f = predictors (inputs). Thus, it was 
concluded that the acquired datasets that were curated 
from earlier studies (Abdulla et  al., 2016; Alagha 
et al., 2020; Al-Sulaiman & Khudair, 2018) would be 
better modeled via SVMs rather than ensembles/deci-
sion tree algorithms.

The identified raw datasets from Abdulla et al., 2016, 
Al-Sulaiman & Khudair, 2018, Alagha et al., 2020 con-
veyed the relationship between BODM and df which 
were then utilized to estimate the trends of the changing 
patterns for each of the studied wastewater (domestic, 
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Fig. 3  The determined fitted linear relationships between  DO5 
and X = 60–70% according to raw data used in the machine 
learning analysis. A Training and B testing; C average accu-
racy of various built and trained models used in the predic-
tion of  DO5; the observed (predicted) responses against true 

responses of  DO5 using various models based on different 
combinations and numbers of predictors: D UBOD-X as the 
only two features, E T-COD as the only two features, and F 
UBOD-X-T-COD as four features
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industrial, and storm), as shown in Fig.  4A–C. As 
expected, stormwater showed the lowest required df 
among the other studied wastewater types with the min-
imum observed BOD (or BODM < 100 mg/L) as illus-
trated in Fig. 4C. Conversely, the industrial wastewater 
with its specific characteristics reported in the “Meth-
odology and Equations” section, and from Al-Sulaiman 
& Khudair, 2018; Attiogbe et al., 2009, had the maxi-
mum required df for BOD analysis as shown in Fig. 4B. 
Industrial wastewater requires three orders of magni-
tudes higher df values than that for domestic and storm 
wastewaters. The fitted third-order polynomial relation-
ships enabled the initiation of model formulation analy-
sis. The established collective model describes changes 
in df and  DO5 according to BOD. The EBT-trained 
models were found to have much better average predic-
tion accuracies than MT. The models’ reliability and 

prediction capability were generally enhanced when 
more predictors were included in the training (Fig. 4D). 
The given asterisk for #2* features (in the x-axis) refers 
to the unreported results from MT or EBT with an 
accuracy of less than 60% (excluded). The use of differ-
ent numbers of predictors is also referred to as “sensi-
tivity analysis” in which it was performed to understand 
the impact of variations in the input on the results from 
the trained models with a CV of 5-fold. This approach 
enables the selection of appropriate features by under-
standing their importance by trying each input feature 
one at a time and checking/examining the response of 
the ML models to determine the feature’s rank.

EBT predictions were more accurate than MT pre-
dictions in nearly all cases as shown in Fig.  5. This 
observation is consistent with data shown earlier in 
Fig. 4D which shows the incapability of MT-trained 

Fig. 4  The determined fitted third-order polynomial rela-
tionships between df and BODM (mg/L) according to raw 
data collected from influents in various wastewater treatment 
plants. A Domestic wastewater (DOM), B industrial wastewa-
ter (IND), C storm wastewater (STM), and D comparison of 

average accuracy of MT- and EBT-trained models in predicting 
df using different number of features for regression training, 
which show an increase in EBT accuracy and a slight decrease 
in MT accuracy with more included predictors
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Fig. 5  The observed (predicted) responses against true 
responses of df from influents in various industrial wastewa-
ter treatment plants using various models based on different 

combinations and numbers of predictors. A BODM-BODA, 
B UBOD-X, C T-COD, D UBOD-X-T-COD, and E BODM-
BODA-UBOD-X-T-COD



 Environ Monit Assess        (2023) 195:1346 

1 3

 1346  Page 14 of 23

Vol:. (1234567890)

models to achieve accuracy higher than 60%. The low 
accuracy of MT models was reflected in the predicted 
responses deviating from the true responses for df 
values. Note that df is reported and found in high val-
ues due to the impact of industrial wastewater in the 
model building. Industrial wastewater mostly contains 
very high amounts of organic compounds that would 
cause a significant increase in df value. The closer the 
data points were found to the diagonal-dotted line in 
Fig. 5, the more accuracy we inferred from such com-
binations of predictors and this is in agreement with a 
high accuracy of  R2> 94% reserved for the following 
predictors’ combinations: (i) MT-[UBOD-X], MT-
[UBOD-X-T-COD], and EBT-[UBOD-X-T-COD] 
for  DO5 predictions; and (ii) EBT-[BODM-BODA] 
and EBT-[BODM-BODA-UBOD-X-T-COD] for df 
predictions. It should be noted that the general term 
XX-[a-b-c-d-e-f] has XX = regressor and a,b,c,d,e,f 
= predictors (inputs). Over-fitting is a possibility, but 
it mostly occurs when adding many predictors (more 
than 4) for model training yielding unexpectedly high 
accuracies. However, it is not necessary that adding 
more predictors will always result in higher model 
prediction accuracies since a two-predictor model 
(e.g., EBT-[BODM-BODA]) was able to achieve the 
same high accuracy as a six-predictor model (e.g., 
EBT-[BODM-BODA-UBOD-X-T-COD]) for df esti-
mations as shown in Fig. 5A and E. Similarly, these 

observations were found true for  DO5 MT-based 
models and were seen from a comparison between 
MT-[UBOD-X] against MT-[UBOD-X-T-COD]. 
These results suggest the ability to have a good fit-
ting with fewer errors using fewer predictors. In other 
words, some 2-predictor models yielded the same or 
better accuracies than those (+3)-predictor models, 
opposing the expected impact of over-fitting.

The residual analysis, QR, and IQR methods were 
applied to confirm the selection of the best models. 
The 1.5IQR range-median criterion ensures finding 
models with the fewest statistical anomalies (outli-
ers). Using these techniques, unusual responses from 
the trained models can be detected for both the train-
ing and testing datasets. Both MT and EBT outcomes 
from the +10 distinct input models (b. MT-[UBOD-
X] i. EBT-[UBOD-X-T-COD]) had the least range of 
residuals for  DO5 as shown in Fig. 6A. This confirms 
the high accuracy owing to the minimum detected 
outliers (near the zero line). The same analysis was 
applied to df models and brought about an unex-
pected outcome, as shown in Fig.  6B, which sug-
gested that only one model (a. MT-[BODM-BODA]) 
had the minimum outliers among the +10 models. 
However, this observation seems to be partially true 
since BODM-BODA was the optimum selection of 
predictors for a close-to-perfect estimation, but with 
EBT rather than the MT algorithm. This discrepancy 

Fig. 6  The residual ranges within 1.5IQR associated with the 
expected errors from various trained models based on different 
combinations and numbers of predictors for the prediction of 
outputs: A  DO5 output, B df output. Note: the x-axis refers to 

{ Obs. Observed, a. FGSVM-[UBOD-X], b. MT-[UBOD-X], 
c. EBT-[UBOD-X], d. FGSVM-[T-COD], e. MT-[T-COD], 
f. EBT-[T-COD], g. FGSVM-[UBOD-X-T-COD], h. MT-
[UBOD-X-T-COD], i. EBT-[UBOD-X-T-COD] }
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can be explained by the fact that df for IND waste-
water is three orders of magnitude higher than that of 
DOM and STM wastewaters which might impact out-
lier detection. In general, small ranges within 1.5IQR 
indicate minimal deviations from actual observations 
which would mean much less spread of residuals and 
fewer errors.

The relationships between BODM and UBOD 
(mg/L) have been determined for the three wastewa-
ters according to raw data of influents. It has been 
found that the raw data followed exponential pat-
terns which were utilized later in the model formu-
lation analysis. The importance of the found expo-
nential fittings from UBOD = f(BODM) yielded 

Fig. 7  The determined fitted exponential relationships 
between BODM and UBOD (mg/L) according to raw data col-
lected from influents in various wastewater treatment plants: A 

domestic wastewater (DOM), B industrial wastewater (IND), C 
storm wastewater (STM)

BODT = f (BODM)

(

1 − e−k1T
)

 for each wastewater 
type, which assisted in obtaining the correlations 
between df and  DO5 against  BODT (or BODM) for 
the construction of collective models. For the cor-
rectness of the fitted relationships shown in Fig.  7, 
BODM must always be less than its corresponding 
UBOD (max  BODT) as per the BODM constraints. 
BODM exponentially increases with UBOD as 
found for the three wastewater types implying that 
the BODM parameter becomes larger over time until 
reaching the UBOD.

Algebraic rearrangements of the exponential rela-
tionships of BODM against UBOD showed that both 
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UBOD in domestic and storm wastewaters could be 
explained by quadratic equations knowing the loga-
rithmic value of BODM as shown in Fig.  8. Con-
versely, industrial wastewater had a unique fractional 
relationship to correlate UBOD to the logarithmic 
value of BODM. Each of the identified equations 
was applied to visualize the change of both UBOD 
and  BOD5 as a function of BODM at a constant 
water temperature (20°C). The results confirmed that 

 BOD5 is always less than UBOD which is a function 
of BODM according to the derived quadratic and/or 
logarithmic equations. These findings confirmed the 
correctness of derived relationships since BODM is 
always less than the average  BOD5. The increment-
ing patterns of UBOD and  BOD5 (against BODM or 
time) are due to the near-complete organic decompo-
sition attributed to 60–70% oxygen consumption from 
the available  O2 in wastewater.

Fig. 8  The change of both UBOD and  BOD5 (mg/L) as a 
function of BODM (mg/L) at a constant water temperature 
(20°C) with the corresponding UBOD’s derived quadratic 
and/or logarithmic equations according to  the determined fit-

ted exponential relationships between BODM and UBOD: 
A domestic wastewater (DOM) with k1, avg = 0.14  day−1, B 
industrial wastewater (IND) with k1, avg = 0.731  day−1, C storm 
wastewater (STM) with k1, avg = 0.16  day−1



Environ Monit Assess        (2023) 195:1346  

1 3

Page 17 of 23  1346 

Vol.: (0123456789)

For industrial wastewater, it was found that UBOD and 
 BOD5 were very close in values at different BODM which 
might be explained by high organic contents as illustrated 
in Fig. 8B. High amounts of organics would make organic 
decomposition occur within the first few days (5 days) 
leading to having close values of average and maximum 
BOD. High organic levels depend on the industry type 
in which food processing, pulping processes, and meat 
processing industries would have much higher levels of 
organics in wastewater than those from mineral process-
ing. The progression of organic decomposition would be 
much faster over time (or based on BODM) for industrial 
wastewater because of the high organic contents, resulting 
in having  BOD5 approaching UBOD.

Collective model

Considering the three wastewater types together in the 
modeling analysis, it is possible to estimate a correla-
tion between df and BODM. This ultimately enables 
finding the approximated relationship of  DO5 against 
both  BOD5 and BODM using the aid of Eq. (1). The 
analysis was carried out with k1,avg based on the selected 
wastewater for  BODT @ T = 5 and T = 60 days. Note 
that  BOD5 and  DO5 are inversely proportional to each 
other as confirmed by Eq. (13) to (15) (i.e., a decline in 
 DO5 levels reflects a high level of  BOD5).

(13)df =
BOD5

DO0 − DO5

(14)df =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

DOM → −0.39BODM + 0.0025BODM2
− 4.06 × 10

−6
BODM

3
− 30.12

IND → 0.52BODM − 4.12 × 10
−6
BODM

2
+ 1.02 × 10

−11
BODM

3
− 117.35

STM → −0.078BODM + 0.0049BODM2
− 3.31 × 10

−5
BODM

3
+ 5

(15)
DO

5
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

DOM →
1

(1∕X−1)

BOD5

−0.39BODM+0.0025BODM2−4.06×10
−6
BODM3−30.12

IND →
1

(1∕X−1)

BOD5

0.52BODM−4.12×10
−6
BODM2+1.02×10

−11
BODM3−117.35

STM →
1

(1∕X−1)

BOD5

−0.078BODM+0.0049BODM2−3.31×10
−5
BODM3+5

The constructed collective model was used to 
plot how the 5-day dissolved oxygen  (DO5) changes 
concerning both BODM and  BOD5 for an organic 
decomposition extent of X = 60–70%. The proposed 
collective model equations enable the prediction of 
changes in  DO5 against the minimum and average 
BOD with deviations ranging from 5 to 10% and 
R2 approaching unity as shown in Fig.  9. The red-
dotted lines correspond to the linear fitting of model 
approximations for BODM vs.  DO5. The maximum 
observed errors in  DO5 predictions against BODM 
were ±0.30 (10%), +0.20 (5%), and +0.60 (10%) 
in mg/L for DOM, IND, and STM wastewaters, 
respectively, as shown in Fig.  9A–C. Furthermore, 
considering the existence of some outliers resulted 
in fitted model trends similar to the linear trends of 
those raw data points. When it comes to the aver-
age  BOD5 against  DO5 analysis (blue lines/mark-
ers), it was found that deviations from actual values 
were around 10% at maximum with −0.60, +0.40, 
and +0.70 in mg/L in  DO5 predictions for DOM, 
IND, and STM wastewaters, respectively, as shown 
in Fig. 9A–C. The regression-based analytical mod-
els from Eq. (15) enable prediction of  DO5 changes 
according to changes in  BOD5, while taking into 
consideration that IND-BOD numeric values should 
be multiplied by  103 for correct predictions.

The  DO5 for wastewater was initially estimated 
based on the linear fitting of observed changes. How-
ever, the collective model relationships Eq. (13) to 
(15) required imposing further constraints and 
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corrections to optimally predict the  DO5 changing 
patterns with the highest possible accuracy. The intro-
duced correction factor +

(

UBODi

BODMi

)

�

 for the DOM 
wastewater relationship shown in Eq. (15) included 
two constraints, where i = 0, 1, 2…6 refers to the 
selected BODM datapoint and its corresponding 
UBOD and [ =3.8 + i for BODM ≤ 200 mg/L, 
α = 6 + 2i for BODM > 200-275 mg/L ]. Moreover, it 
was observed that adding a correction factor to the 
right-hand side (RHS) of the IND wastewater rela-
tionship shown in Eq. (15) as +

(

UBODi

BODMi

)

�

 would fur-
ther eliminate existing prediction errors for  DO5 as 
shown in Fig.  9. It should be noted that for IND 

wastewater i = 0, 1, 2…6 refers to the selected BODM 
datapoint and its corresponding UBOD and [ 
=1.6 + 0.3i for BODM ≤ 60×103 mg/L, α = 0.8 + 0.7i 
for BODM > 60-120×103 mg/L ]. However, STM 
wastewater had a simple correction factor which 
resulted in a higher prediction accuracy. Such high 
predictions were achieved by the addition of the fac-
tor −

(

UBODi

BODMi

)

�

 to the STM wastewater relationship 
shown in Eq. (15), where i = 0, 1, 2…6 refers to the 
selected BODM datapoint and its corresponding 
UBOD and [ α = 1.85 + 0.2i ] for the studied range of 
BODM (20–90 mg/L). The derived models are only 
applicable to wastewaters similar to the studied 

Fig. 9  The change of  DO5 (mg/L) as a function of both 
BODM (mg/L) and  BOD5 (mg/L) at a constant water tem-
perature (20°C) according to the literature raw data and model 
prediction from the corresponding  DO5’s derived equations 
determined from the fitted exponential relationships between 
BODM and UBOD: A domestic wastewater (DOM) with k1, avg 
= 0.14  day−1, adopted from Abdulla et al., 2016; Al-Sulaiman 

& Khudair, 2018; Alagha et al., 2020, B industrial wastewater 
(IND) with k1, avg = 0.731  day−1, adopted from Al-Sulaiman 
& Khudair, 2018; Attiogbe et  al., 2009, C storm wastewater 
(STM) with k1, avg = 0.16  day−1, adopted from Adedeji & Olay-
inka, 2013; Langeveld et  al., 2012; Łapiński & Wiater, 2018. 
Note: dev. refers to deviation of model results from the experi-
ments or the reported raw data in the literature
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characteristics of the three different types considering 
the BODM constraints in model building.

According to the initial estimation for  BOD5 and 
BODM ranges as per the type of wastewater that 
WWTP engineers are dealing with, Eq. (14) and 
(15) enable wastewater operators and engineers to 
choose the optimal df and  DO5 to ensure the effec-
tiveness of the experimental (sampling) measurement 
of  BODT. By taking into account the developed charts 
for BODM vs. df (Fig. 4) and  BOD5 vs.  DO5 (Fig. 9), 
the average oxygen consumption rate would provide 
the best forecast for estimating df values for each of 
the analyzed wastewater types. An increase in the df 
is predominated by  BOD5 levels (i.e., more dilution is 

needed for higher  BOD5). Dilution techniques should 
be performed following the previously mentioned 
“standard methods for water and wastewater exami-
nation,” which states that five samples should be cre-
ated with a variety of dilutions. At least two samples 
should produce acceptable minimum DO depletion 
(> 2 mg/L uptake after a 5-day incubation period) and 
residual limits (> 1 mg/L) (APHA, AWWA, WEF, 
2012). As a general rule, existing oxygen (also known 
as DO content) and consumption or organic degrada-
tion are always inversely correlated and are dependent 
upon the oxygen addition by using aerators/diffus-
ers; the greater the  DO5 level in the water, the more 
organic breakdown takes place. Anaerobic digestion 

Fig. 10  The collective model predictions and the patterns 
of change of  DO5 (mg/L) as a function of  BOD5 (mg/L) at a 
constant water temperature (T=20 °C): A domestic wastewa-

ter (DOM) with k1, avg = 0.14  day−1, B industrial wastewater 
(IND) with k1, avg = 0.731  day−1, C storm wastewater (STM) 
with k1, avg = 0.16  day−1
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of organic matter can occur leading to organic degra-
dation which yields methane production (Chynoweth, 
1987). The average df values were indicated by 
Fig. 4, with df≈9.2 for STM water, df≈12 ×  103 for 
IND wastewater, and df≈18.5–28.5 for DOM waste-
water demonstrating the lack of organic elements in 
storm wastewater influents. The derived df values can 
be useful for wastewater engineers to start with when 
trying to find a cost-effective DO concentration that 
would enable maximal organic decomposition.

The implemented collective models (with intro-
duced corrections) enabled improved prediction accu-
racy for  DO5 against  BOD5 as shown in Fig. 10. Both 
proposed collective model equations for DOM and 
STM wastewater were highly accurate when consider-
ing fitting the model observations against the raw lit-
erature results for  DO5 against  BOD5 (Abdulla et al., 
2016; Adedeji & Olayinka, 2013; Alagha et al., 2020; 
Al-Sulaiman & Khudair, 2018; Attiogbe et al., 2009; 
Langeveld et  al., 2012; Łapiński & Wiater, 2018). 
The fitted-model results showed similar patterns to 
the raw-data patterns suggesting the models’ appli-
cability for the studied  BOD5 ranges. However, some 
deviations from the raw data were evident as shown 

for IND wastewater and  BOD5 = 140−180×103 
mg/L, with a maximum of +5% errors. For better pre-
dictions, it is advised to use the identified exponential 
equations presented in Fig. 10 instead of those linear 
equations obtained previously as shown in Fig.  9. 
This is because the collective model equations were 
further optimized from the developed correction fac-
tors which resulted in the exponential fitted-model 
equations. Table  2 summarizes the estimated  BODT 
as well as maximum errors in  DO5 predictions and df 
with the average df range for the various wastewaters. 
Moreover, the developed correction factors and con-
straints are reported in Table 2. The formulated mod-
els approximated the relationship of  DO5 against both 
 BOD5 and BODM, noting that  BOD5 and  DO5 are 
inversely proportional to each other (a decline in  DO5 
levels reflects a high level of  BOD5). However, the 
proportionality will differ based on the microbial con-
centration at varying locations. Despite that the  BOD5 
ranges in Fig. 10 are small, these are different for the 
various wastewaters and as per the constraints taken 
in building the collective model. The model’s useful-
ness is in the possibility of estimating  DO5 knowing 
 BOD5 or the other way around.

Table 2  The estimated average and maximum  BODT with the maximum observed errors in  DO5 predictions, proposed experimental 
dilution factor (df), average df range, and introduced corrections/constraints for the built collective models

*Average values from k1, avg at 20°C which correspond to the selected wastewater type experimental results with  DO5 and df obtained 
from near-complete organic oxidation and  O2 consumption at 60–70%. The df values for IND must be multiplied by  103 as per the 
model formulation analysis. Note that i = 0, 1, 2…6 refers to the selected BODM datapoint and its corresponding UBOD

Wastewater type 
(abbrev.)

BODT* (mg/L) UBOD (mg/L) DO5 vs. BODM, 
max err

DO5 vs.  BOD5, 
max err

df* df range* Correction factors 
and constraints

Storm (STM) 49.3 89.6 10% (+0.60) 10% (+0.70) 9.2 4.5–13.5
−

(

UBOD
i

BODM
i

)

�

[α = 1.85 + 0.2i]
Industrial (IND) 150,000 174,000 5% (+0.20) 10% (+0.40) 12 1–22

+

(

UBOD
i

BODM
i

)

�

[α = 1.6 + 0.3i 
for BODM ≤ 
60×103 mg/L, 
α = 0.8 + 0.7i 
for BODM > 
60-120×103 
mg/L]

Domestic 
(DOM)

175.4 348.4 10% (±0.30) 10% (−0.60) 18.5–28.5 12–35
+

(

UBOD
i

BODM
i

)

�

[α = 3.8 + 1i for 
BODM ≤ 200 
mg/L, α = 6 + 2i 
for BODM > 
200-275 mg/L]
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Conclusion

This study investigated organic decomposition rates 
in BOD-containing wastewater from  BODT literature 
datasets of domestic, industrial, and storm wastewa-
ters. Determination of the average laboratory dilution 
factors (df) was carried out from ∆DO based on the 
 O2 consumption (X) in the range of 60–70%. Accurate 
machine learning models were built from the defined 
independent variables (inputs) including (i) UBOD, 
(ii) BODM, (iii) BODA, (iv) COD, (v)  O2 consump-
tion (X) of 60–70%, and (vi) time (T). The proposed 
analysis enabled estimating the corresponding desired 
outputs  [DO5 and df] from knowing  BOD5, COD, 
 DO0, and  O2 consumption (X) information for train-
ing with mixing and matching independent parame-
ters. Residual analysis and inter-quartile range (IQR) 
based on the 1.5IQR range-median decision rule 
would guide researchers towards useful correlations 
with minimum statistical errors. The formulated mod-
els approximated the relationship of  DO5 against both 
 BOD5 and BODM, noting that  BOD5 and  DO5 are 
inversely proportional to each other (a decline in  DO5 
levels reflects a high level of  BOD5).

The maximum accuracy of 95% was achieved from 
FGSVM-[UBOD-X] and FGSVM-[UBOD-X-T-
COD], indicating the potential of SVMs training. It 
should be noted that the general term XX-[a-b-c-d-e-
f] has XX = regressor and a,b,c,d,e,f = predictors 
(input features). Such df and  DO5 numbers are useful 
as a starting point for sampling analysis to quantify 
organic decomposition rates attributed to the intro-
duced oxygen. An increase in df is predominated by 
 BOD5 levels (more dilution needed for higher  BOD5), 
with df≈9.2 for storm (STM) wastewater, df≈12 × 
 103 for industrial (IND) wastewater, and 
df≈18.5–28.5 for domestic (DOM) wastewater. 
Stormwater had shown the lowest required df (BODM 
< 100 mg/L) whereas industrial wastewater had the 
maximum required df for BOD analysis. In models 
training, more predictors generally enhanced the 
model reliability with a high accuracy > 94% for pre-
dictors combinations: (i) MT-[UBOD-X], MT-
[UBOD-X-T-COD], and EBT-[UBOD-X-T-COD] for 
 DO5 predictions; and (ii) EBT-[BODM-BODA] and 
EBT-[BODM-BODA-UBOD-X-T-COD] for df pre-
dictions. The least range of residual was found for 
MT-[UBOD-X] and EBT-[UBOD-X-T-COD]) for 
 DO5, but only MT-[BODM-BODA] had the minimum 

outliers among df models. It was found that BODM 
exponentially increases over time until reaching 
UBOD.  BOD5 was found to be a function of BODM 
from the derived quadratic and/or logarithmic equa-
tions according to the fitted exponential relationships. 
The proposed collective models were capable of pre-
dicting changes in  DO5 with deviations ranging from 
5 to 10%. Moreover, imposing constraints and intro-
ducing correction factors as ±

(

UBODi

BODMi

)

�

 resulted in 
achieving the highest accuracy for  DO5 estimations. 
The optimized collective models yield cubic equa-
tions derived for df and  DO5 from BODM which is an 
exponent function in UBOD. Proposed models would 
bridge the gap between science and industry best 
practices for optimal design and operation to mini-
mize organic contamination and facilitate effluent 
quality assessment.
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