
	

https://vijiwipeti.oalroax.com/gdy?utm_term=w163+repair+manual+pdf

W163	repair	manual	pdf

StyleCop	Analyzers	is	configured	using	two	separate	mechanisms:	code	analysis	rule	set	files,	and	stylecop.json.	
Code	analysis	rule	set	files	Enable	and	disable	individual	rules	Configure	the	severity	of	violations	reported	by	individual	rules	stylecop.json	Specify	project-specific	text,	such	as	the	name	of	the	company	and	the	structure	to	use	for	copyright	headers	Fine-tune	the	behavior	of	certain	rules	Code	analysis	rule	sets	are	the	standard	way	to	configure	most
diagnostic	analyzers	within	Visual	Studio.	
Information	about	creating	and	customizing	these	files	can	be	found	in	the	Using	Rule	Sets	to	Group	Code	Analysis	Rules	documentation	on	docs.microsoft.com.	

An	example	rule	set	file	containing	the	default	StyleCop	Analyzers	configuration	is	available	at	.	Getting	Started	with	stylecop.json	The	easiest	way	to	add	a	stylecop.json	configuration	file	to	a	new	project	is	using	a	code	fix	provided	by	the	project.	To	invoke	the	code	fix,	open	any	file	where	SA1633	is	reported¹	and	press	Ctrl+.	to	bring	up	the	Quick
Fix	menu.	From	the	menu,	select	Add	StyleCop	settings	file	to	the	project.	The	dot	file	naming	convention	is	also	supported,	which	makes	it	possible	to	name	the	configuration	file	.stylecop.json.	JSON	Schema	for	IntelliSense	A	JSON	schema	is	available	for	stylecop.json.	By	including	a	reference	in	stylecop.json	to	this	schema,	Visual	Studio	will	offer
IntelliSense	functionality	(code	completion,	quick	info,	etc.)	while	editing	this	file.	The	schema	may	be	configured	by	adding	the	following	top-level	property	in	stylecop.json:	{	"$schema":	"	}		The	code	fix	described	previously	automatically	configures	stylecop.json	to	reference	the	schema.	If	the	schema	appears	to	be	out-of-date	in	Visual	Studio,	right
click	anywhere	in	the	stylecop.json	document	and	then	select	Reload	Schemas.	Source	Control	For	best	results,	stylecop.json	should	be	included	in	source	control.	This	will	automatically	propagate	the	expected	settings	to	all	team	members	working	on	the	project.	⚠		If	you	are	working	in	Git,	make	sure	your	.gitignore	file	does	not	contain	the
following	line.	This	line	should	be	removed	if	present.	Indentation	This	section	describes	the	indentation	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	indentation	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"indentation":	{	}	}	}	Basic	Indentation	The	following	properties
are	used	to	configure	basic	indentation	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	indentationSize	4	1.1.0	The	number	of	columns	to	use	for	each	indentation	of	code.	Depending	on	the	useTabs	and	tabSize	settings,	this	will	be	filled	with	tabs	and/or	spaces.	tabSize	4	1.1.0	The	width	of	a	hard	tab	character	in	source
code.	This	value	is	used	when	converting	between	tabs	and	spaces.	useTabs	false	1.1.0	true	to	indent	using	hard	tabs;	otherwise,	false	to	indent	using	spaces		When	working	in	Visual	Studio,	the	IDE	will	not	automatically	adjust	editor	settings	according	to	the	values	in	stylecop.json.	To	provide	this	functionality	as	well,	we	recommend	duplicating	the
basic	indentation	settings	in	a	.editorconfig	file.	Users	of	the	EditorConfig	extension	for	Visual	Studio	will	not	need	to	update	their	C#	indentation	settings	in	order	to	match	your	project	style.	Spacing	Rules	This	section	describes	the	features	of	spacing	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in
the	spacingRules	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"spacingRules":	{	}	}	}	Currently	there	are	no	configurable	settings	for	spacing	rules.	Readability	Rules	This	section	describes	the	features	of	readability	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the
readabilityRules	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"readabilityRules":	{	}	}	}	Aliases	for	Built-In	Types	Property	Default	Value	Minimum	Version	Summary	allowBuiltInTypeAliases	false	1.1.0-beta007	Specifies	whether	aliases	are	allowed	for	built-in	types.	By	default,	SA1121	reports	a	diagnostic	for	the	use	of	named
aliases	for	built-in	types:	using	HRESULT	=	System.Int32;	HRESULT	hr	=	SomeNativeOperation();	//	SA1121	The	allowBuiltInTypeAliases	configuration	property	can	be	set	to	true	to	allow	cases	like	this	while	continuing	to	report	diagnostics	for	direct	references	to	the	metadata	type	name,	Int32.	Ordering	Rules	This	section	describes	the	features	of
ordering	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	orderingRules	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"orderingRules":	{	}	}	}	Element	Order	The	following	properties	are	used	to	configure	element	ordering	in	StyleCop	Analyzers.	Property	Default	Value
Minimum	Version	Summary	elementOrder	["kind",	"accessibility",	"constant",	"static",	"readonly"]	1.0.0	Specifies	the	traits	used	for	ordering	elements	within	a	document,	along	with	their	precedence	The	elementOrder	property	is	an	array	of	element	traits.	The	ordering	rules	(SA1201,	SA1202,	SA1203,	SA1204,	SA1214,	and	SA1215)	evaluate	these
traits	in	the	order	they	are	defined	to	identify	ordering	problems,	and	the	code	fix	uses	this	property	when	reordering	code	elements.	Any	traits	which	are	omitted	from	the	array	are	ignored.	The	following	traits	are	supported:	kind:	Elements	are	ordered	according	to	their	kind	(see	SA1201	for	this	predefined	order)	accessibility:	Elements	are	ordered
according	to	their	declared	accessibility	(see	SA1202	for	this	predefined	order)	constant:	Constant	elements	are	ordered	before	non-constant	elements	static:	Static	elements	are	ordered	before	non-static	elements	readonly:	Readonly	elements	are	ordered	before	non-readonly	elements	This	configuration	property	allows	for	a	wide	variety	of	ordering
configurations,	as	shown	in	the	following	examples.	Example:	All	Constants	First	The	following	example	shows	a	customized	element	order	where	all	constant	fields	are	placed	before	non-constant	fields,	regardless	of	accessibility.	{	"settings":	{	"orderingRules":	{	"elementOrder":	["kind",	"constant",	"accessibility",	"static",	"readonly"]	}	}	}
Example:	Ignore	Accessibility	The	following	example	shows	a	customized	element	order	where	element	accessibility	is	simply	ignored,	but	other	ordering	rules	remain	enforced.	{	"settings":	{	"orderingRules":	{	"elementOrder":	["kind",	"constant",	"static",	"readonly"]	}	}	}	Using	Directives	The	following	properties	are	used	to	configure	using
directives	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	systemUsingDirectivesFirst	true	1.0.0	Specifies	whether	System	using	directives	are	placed	before	other	using	directives	usingDirectivesPlacement	"insideNamespace"	1.0.0	Specifies	the	desired	placement	of	using	directives	blankLinesBetweenUsingGroups	"allow"
1.1.0	Specifies	is	blank	lines	are	required	to	separate	groups	of	using	statements	Using	Directives	Placement	The	usingDirectivesPlacement	property	affects	the	behavior	of	the	following	rules	which	report	incorrectly	placed	using	directives.	SA1200	Using	directives	should	be	placed	correctly	⚠		Use	of	certain	features,	including	but	not	limited	to
preprocessor	directives,	may	cause	the	using	directives	code	fix	to	not	relocate	using	directives	automatically.	If	SA1200	is	still	reported	after	applying	the	Fix	All	operation	for	using	directives,	the	remaining	cases	will	need	to	be	resolved	manually.	This	property	has	three	allowed	values,	which	are	described	as	follows.	

"insideNamespace"	In	this	mode,	using	directives	should	be	placed	inside	of	namespace	declarations.	This	is	the	default	mode,	and	adheres	to	the	original	SA1200	behavior	from	StyleCop	Classic.	SA1200	reports	using	directives	which	are	located	outside	of	a	namespace	declaration	(a	few	exceptions	exist	for	cases	where	this	is	required)	Using
directives	code	fix	moves	using	directives	inside	of	namespace	declarations	where	possible	"outsideNamespace"	In	this	mode,	using	directives	should	be	placed	outside	of	namespace	declarations.	SA1200	reports	using	directives	which	are	located	inside	of	a	namespace	declaration	Using	directives	code	fix	moves	using	directives	outside	of	namespace
declarations	where	possible	"preserve"	In	this	mode,	using	directives	may	be	placed	inside	or	outside	of	namespaces.	SA1200	does	not	report	any	violations	Using	directives	code	fix	may	reorder	using	directives,	but	does	not	relocate	them	Blank	Lines	Between	Groups	The	blankLinesBetweenUsingGroups	property	affects	the	behavior	of	the	following
rules	which	report	the	presence	/	absence	of	blanks	lines	between	groups	of	using	directives.	SA1516	Elements	should	be	separated	by	blank	line	Using	directives	can	grouped	based	on	the	purpose	of	the	using	directive.	StyleCop	Analyzers	recognizes	the	following	using	directive	group	types:	System	using	directives	(only	when
systemUsingDirectivesFirst	is	true)	Normal	using	directives	Static	using	directives	Alias	using	directives	This	property	has	three	allowed	values,	which	are	described	as	follows.	"allow"	In	this	mode,	a	blank	line	between	groups	for	using	directives	is	optional.	
No	diagnostic	will	be	produced.	Using	directives	code	fix	will	not	insert	blank	lines.	

"require"	In	this	mode,	a	blank	line	between	groups	for	using	directives	is	mandatory.	SA1516	reports	missing	blank	lines	between	using	directive	groups.	Using	directives	code	fix	will	insert	blank	lines.	SA1516	code	fix	will	add	a	missing	blank	line.	"omit"	In	this	mode,	a	blank	line	between	groups	for	using	directives	is	not	allowed.	SA1516	reports
blank	lines	between	using	directive	groups.	Using	directives	code	fix	will	not	insert	blank	lines.	SA1516	code	fix	will	remove	blank	lines	between	using	directive	groups.	
Naming	Rules	This	section	describes	the	features	of	naming	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	namingRules	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"namingRules":	{	}	}	}	Hungarian	Notation	The	following	properties	are	used	to	configure	allowable
Hungarian	notation	prefixes	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	allowCommonHungarianPrefixes	true	1.0.0	Specifies	whether	common	non-Hungarian	notation	prefixes	should	be	allowed.	When	true,	the	two-letter	words	'as',	'at',	'by',	'do',	'go',	'if',	'in',	'is',	'it',	'no',	'of',	'on',	'or',	and	'to'	are	allowed	to	appear	as
prefixes	for	variable	names.	allowedHungarianPrefixes	[]	1.0.0	Specifies	additional	prefixes	which	are	allowed	to	be	used	in	variable	names.	See	the	example	below	for	more	information.	The	following	example	shows	a	settings	file	which	allows	the	common	prefixes	as	well	as	the	custom	prefixes	'md'	and	'cd'.	{	"settings":	{	"namingRules":	{
"allowedHungarianPrefixes":	["cd",	"md"]	}	}	}	Namespace	Components	The	following	property	is	used	to	configure	allowable	namespace	components	(e.g.	ones	that	start	with	a	lowercase	letter).	Property	Default	Value	Minimum	Version	Summary	allowedNamespaceComponents	[]	1.2.0	Specifies	namespace	components	that	are	allowed	to	be	used.
See	the	example	below	for	more	information.	The	following	example	shows	a	settings	file	which	allows	namespace	components	such	as	eBay	or	Apple.iPod.	{	"settings":	{	"namingRules":	{	"allowedNamespaceComponents":	["eBay",	"iPod"]	}	}	}	Tuple	element	names	The	following	properties	are	used	to	configure	the	behavior	of	the	tuple	element
name	analyzers.	Property	Default	Value	Minimum	Version	Summary	includeInferredTupleElementNames	false	1.2.0	Specifies	whether	inferred	tuple	element	names	will	be	analyzed	as	well.	tupleElementNameCasing	"PascalCase"	1.2.0	Specifies	the	casing	convention	used	for	tuple	element	names.	The	following	example	shows	a	settings	file	which
requires	tuple	element	names	to	use	camel	case	for	all	tuple	elements	(including	inferred	element	names).	{	"settings":	{	"namingRules":	{	"includeInferredTupleElementNames":	true,	"tupleElementNameCasing"	:	"camelCase"	}	}	}	Tuple	Element	Name	Casing	The	tupleElementNameCasing	property	affects	the	behavior	of	the	SA1316	Tuple	element
names	should	use	correct	casing	analyzer.	This	property	has	two	allowed	values,	which	are	described	as	follows.	"camelCase"	In	this	mode,	tuple	element	names	must	start	with	a	lowercase	letter.	"PascalCase"	In	this	mode,	tuple	element	names	must	start	with	an	uppercase	letter.	Maintainability	Rules	This	section	describes	the	features	of
maintainability	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	maintainabilityRules	object,	which	is	shown	in	the	following	sample	file.	

{	"settings":	{	"maintainabilityRules":	{	}	}	}	The	following	properties	are	used	to	configure	maintainability	rules	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	topLevelTypes	["class"]	1.1.0	Specifies	which	kind	of	types	that	should	be	placed	in	separate	files	The	topLevelTypes	property	is	an	array	which	specifies	which
kind	of	types	that	should	be	placed	in	separate	files	according	to	rule	SA1402.	The	following	types	are	supported:	class	interface	struct	enum	delegate	Layout	Rules	This	section	describes	the	features	of	layout	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	layoutRules	object,	which	is	shown	in
the	following	sample	file.	{	"settings":	{	"layoutRules":	{	}	}	}	The	following	properties	are	used	to	configure	layout	rules	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	newlineAtEndOfFile	"allow"	1.0.0	Specifies	the	handling	for	newline	characters	which	appear	at	the	end	of	a	file	allowConsecutiveUsings	true	1.1.0
Specifies	if	SA1519	will	allow	consecutive	using	statements	without	braces	allowDoWhileOnClosingBrace	false	>1.2.0	Specifies	if	SA1500	will	allow	the	while	expression	of	a	do/while	loop	to	be	on	the	same	line	as	the	closing	brace,	as	is	generated	by	the	default	code	snippet	of	Visual	Studio	Lines	at	End	of	File	The	behavior	of	SA1518	can	be
customized	regarding	the	manner	in	which	newline	characters	at	the	end	of	a	file	are	handled.	The	newlineAtEndOfFile	property	supports	the	following	values:	"allow":	Files	are	allowed	to	end	with	a	single	newline	character,	but	it	is	not	required	"require":	Files	are	required	to	end	with	a	single	newline	character	"omit":	Files	may	not	end	with	a
newline	character	Consecutive	using	statements	without	braces	The	behavior	of	SA1519	can	be	customized	regarding	the	manner	in	which	consecutive	using	statements	without	braces	are	treated.	The	allowConsecutiveUsings	property	specifies	the	behavior:	true:	consecutive	using	statements	without	braces	will	not	produce	diagnostics	false:
consecutive	using	statements	without	braces	will	produce	a	SA1519	diagnostic	This	only	allows	omitting	the	braces	for	a	using	followed	by	another	using	statement.	A	using	statement	followed	by	any	other	type	of	statement	will	still	require	braces	to	used.	Do-While	Loop	Placement	The	behavior	of	SA1500	can	be	customized	regarding	the	manner	in
which	the	while	expression	of	a	do/while	loop	is	allowed	to	be	placed.	The	allowDoWhileOnClosingBrace	property	specified	the	behavior:	true:	the	while	expression	of	a	do/while	loop	may	be	placed	on	the	same	line	as	the	closing	brace	or	on	a	separate	line	false:	the	while	expression	of	a	do/while	loop	must	be	on	a	separate	line	from	the	closing	brace
Documentation	Rules	This	section	describes	the	features	of	documentation	rules	which	can	be	configured	in	stylecop.json.	Each	of	the	described	properties	are	configured	in	the	documentationRules	object,	which	is	shown	in	the	following	sample	file.	{	"settings":	{	"documentationRules":	{	}	}	}	Copyright	Headers	The	following	properties	are	used	to
configure	copyright	headers	in	StyleCop	Analyzers.	Property	Default	Value	Minimum	Version	Summary	companyName	"PlaceholderCompany"	1.0.0	Specifies	the	company	name	which	should	appear	in	copyright	notices	copyrightText	"Copyright	(c)	{companyName}.	All	rights	reserved."	1.0.0	Specifies	the	default	copyright	text	which	should	appear
in	copyright	headers	xmlHeader	true	1.0.0	Specifies	whether	file	headers	should	use	standard	StyleCop	XML	format,	where	the	copyright	notice	is	wrapped	in	a	element	variables	n/a	1.0.0	Specifies	replacement	variables	which	can	be	referenced	in	the	copyrightText	value	headerDecoration	n/a	1.1.0	This	value	can	be	set	to	add	a	decoration	for	the
header	comment	so	headers	look	similar	to	the	ones	generated	by	the	StyleCop	Classic	ReSharper	fix	Configuring	Copyright	Text	In	order	to	successfully	use	StyleCop-checked	file	headers,	most	projects	will	need	to	configure	the	companyName	property.	The	companyName	property	is	so	frequently	customized	that	it	is	included	in	the	default
stylecop.json	file	produced	by	the	code	fix.	The	copyrightText	property	is	a	string	which	may	contain	placeholders.	Each	placeholder	has	the	form	{variable},	where	variable	is	either	a	built-in	variable	(see	below),	or	the	name	of	a	property	in	the	variables	property.	The	following	sample	file	shows	a	custom	stylecop.json	file	which	references	both
companyName	and	two	custom	variables	within	the	copyrightText.	{	"settings":	{	"documentationRules":	{	"companyName":	"FooCorp",	"copyrightText":	"Copyright	(c)	{companyName}.	

All	rights	reserved.Licensed	under	the	{licenseName}	license.	See	{licenseFile}	file	in	the	project	root	for	full	license	information.",	"variables":	{	"licenseName":	"MIT",	"licenseFile":	"LICENSE"	}	}	}	}	With	the	above	configuration,	a	file	TypeName.cs	would	be	expected	to	have	the	following	header.	//	//	Copyright	(c)	FooCorp.	All	rights	reserved.	//
Licensed	under	the	MIT	license.	See	LICENSE	file	in	the	project	root	for	full	license	information.	//	Built-In	Variables	Variable	Meaning	companyName	The	value	of	the	companyName	configuration	property	in	stylecop.json	fileName	The	file	name	of	the	current	source	file		If	a	fileName	variable	is	explicitly	included	within	the	variables	property	of
stylecop.json,	that	value	will	be	used	instead	of	the	name	of	the	current	source	file.	Configuring	XML	Headers	When	the	xmlHeader	property	is	true	(the	default),	StyleCop	Analyzers	expects	file	headers	to	conform	to	the	following	standard	StyleCop	format.	//	//	{copyrightText}	//	When	the	xmlHeader	property	is	explicitly	set	to	false,	StyleCop
Analyzers	expects	file	headers	to	conform	to	the	following	customizable	format.	Configuring	Copyright	Text	Header	Decoration	The	headerDecoration	property	is	a	string	which	can	contain	text	that's	used	for	decorating	the	generated	header	so	headers	look	similar	to	the	ones	generated	by	the	StyleCop	Classic	ReSharper	fix.	The	default	value	for	the
headerDecoration	property	is	empty,	so	no	decoration	will	be	added.		The	header	decoration	is	not	checked,	it's	only	used	for	fixing	the	header.	{	"settings":	{	"documentationRules":	{	"companyName":	"FooCorp",	"copyrightText":	"Copyright	(c)	{companyName}.	All	rights	reserved.",	"headerDecoration":	"--
---"	}	}	}	With	the	above	configuration,	the	fix	for	a	file	TypeName.cs	would	look	like	the	following.	//	---	//	//	Copyright	(c)	FooCorp.	All	rights	reserved.	//	//	---	Documentation	Requirements	StyleCop	Analyzers	includes	rules	which	require	developers	to	document
the	majority	of	a	code	base	by	default.	This	requirement	can	easily	overwhelm	a	team	which	did	not	use	StyleCop	for	the	entire	development	process.	To	help	guide	developers	towards	a	properly	documented	code	base,	several	properties	are	available	in	stylecop.json	to	progressively	increase	the	documentation	requirements.	Property	Default	Value
Minimum	Version	Summary	documentInterfaces	true	1.0.0	Specifies	whether	interface	members	need	to	be	documented.	
When	true,	all	interface	members	require	documentation,	regardless	of	accessibility.	documentExposedElements	true	1.0.0	Specifies	whether	exposed	elements	need	to	be	documented.	When	true,	all	publicly-exposed	types	and	members	require	documentation.	documentInternalElements	true	1.0.0	Specifies	whether	internal	elements	need	to	be
documented.	When	true,	all	internally-exposed	types	and	members	require	documentation.	
documentPrivateElements	false	1.0.0	Specifies	whether	private	elements	need	to	be	documented.	When	true,	all	types	and	members	except	for	declared	private	fields	require	documentation.	documentPrivateFields	false	1.0.0	Specifies	whether	private	fields	need	to	be	documented.	
When	true,	all	fields	require	documentation,	regardless	of	accessibility.	
These	properties	affect	the	behavior	of	the	following	rules	which	report	missing	documentation.	Rules	which	report	incorrect	or	incomplete	documentation	continue	to	apply	to	all	documentation	comments	in	the	code.	The	following	example	shows	a	configuration	file	which	requires	developers	to	document	all	publicly-accessible	members	and	all
interfaces	(regardless	of	accessibility),	but	does	not	require	other	internal	or	private	members	to	be	documented.		Documenting	interfaces	is	a	low-effort	task	compared	to	documenting	an	entire	code	base,	but	provides	high	value	in	the	fact	that	it	covers	the	sections	of	code	most	likely	to	impact	cross-team	usage	scenarios.	{	"settings":	{
"documentationRules":	{	"documentInterfaces":	true,	"documentInternalElements":	false	}	}	}	Documentation	Culture	Some	documentation	rules	require	summary	texts	to	start	with	specific	strings.	To	allow	teams	to	document	their	code	in	their	native	language,	stylecop.json	contains	the	documentationCulture	property.	Property	Default	Value
Minimum	Version	Summary	documentationCulture	"en-US"	1.1.0	Specifies	the	culture	or	language	to	be	used	for	certain	documentation	texts.	This	property	affects	the	behavior	of	the	following	rules	which	report	incorrect	documentation.		The	default	value	for	documentationCulture	is	fixed	instead	of	reflecting	the	user's	system	language.	This	is	to
ensure	that	different	developers	working	on	the	same	project	always	use	the	same	value.	The	following	values	are	currently	supported.	Unsupported	values	will	automatically	fall	back	to	the	default	value.	"de-DE"	"en-GB"	"en-US"	"es-MX"	"fr-FR"	"pl-PL"	"pt-BR"	"ru-RU"	{	"settings":	{	"documentationRules":	{	"documentationCulture":	"de-DE"	}	}	}
File	naming	conventions	The	fileNamingConvention	property	will	determine	how	the	SA1649	File	name	should	match	type	name	analyzer	will	check	file	names.	Given	the	following	code:	public	class	Class1	{	}	The	analyzer	will	expect	file	names	according	the	table	below.	When	the	fileNamingConvention	property	is	not	set,	the	stylecop	convention	is
used	as	default.	File	naming	convention	Expected	file	name	stylecop	Class1{T1,T2,T3}.cs	metadata	Class1`3.cs	Text	ending	with	a	period	The	SA1629	Documentation	Text	Must	End	With	A	Period	analyzer	checks	if	sections	within	XML	documentation	end	with	a	period.	The	following	properties	can	be	used	to	control	the	behavior	of	the	analyzer:
Property	Default	Value	Minimum	Version	Summary	excludeFromPunctuationCheck	["seealso"]	1.1.0	Specifies	the	top-level	tags	within	XML	documentation	that	will	be	excluded	from	analysis.	
Sharing	configuration	among	solutions	It	is	possible	to	define	your	preferred	configuration	once	and	reuse	it	across	multiple	independent	projects.	This	involves	rolling	out	your	own	NuGet	package,	which	will	contain	the	stylecop.json	configuration	and	potentially	a	custom	ruleset	file.	A	custom	.props	file	glues	that	configuration	to	any	project	that
will	use	the	NuGet	package.	Example	.nuspec	file:	acme.stylecop	1.0.0	Example	.props	file:	Page	2	You	can’t	perform	that	action	at	this	time.	You	signed	in	with	another	tab	or	window.	Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.	Page	3	You	can’t	perform	that	action	at	this	time.	You	signed
in	with	another	tab	or	window.	
Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.

