

Data Center Non-Potable Water Use Dan Sampson March 4, 2024 HOR

Data Center Water Consumption

- Off-site 2 gal/kWh
- On-site 0.46 gal/kWh
- Today's focus is onsite, but sustainability initiatives may benefit from thinking outside of that box.

Data Center Cooling

- Many specific methods, but three basic approaches:
 - Adiabatic (evaporative coolers)
 Chilled water loops (cooling tower)
 Ambient air
- Adiabatic vs. Chilled Water Loops – very different treatment requirements

Adiabatic Cooling

- Potable water usually allows:
 - o 3-6 cycles of concentration without exceeding limits
 - $_{\rm O}$ No specialty chemicals
 - $_{\rm O}$ Lower biocide dosages
- Nonpotable water:
 - May have high TSS, high TDS, high organics no guarantees
 - $_{\rm \circ}$ Requires more biocide
 - May require pretreatment (TSS, hardness, TDS, or organics removal)

Adiabatic Cooling System – Typical Limits

Contaminant	Units	Lower Limit	Upper Limit
Total Alkalinity	mg/L		250.00
Calcium	mg/L	10.80	100.00
Chloride	mg/L		400.00
Iron	mg/L		1.00
рН	S.U.	6.50	8.50
Silica	mg/L		100.00
Sodium	mg/L		400.00
Specific Conductance	µS/cm		3000.00
Total Suspended Solids	mg/L		20.00

Chillers with Cooling Towers

- Chilled water loop:
 - $_{\rm O}$ Closed loop, very little makeup
 - $_{\rm O}$ Small amount of chemical feed
- Cooling Tower:
 - Greater ability to utilize high TDS water
 - May still require TSS and/or organics removal
 - Uses several chemicals (acid, biocide, mineral dispersant, corrosion inhibitor)

Drivers for Nonpotable Water Use

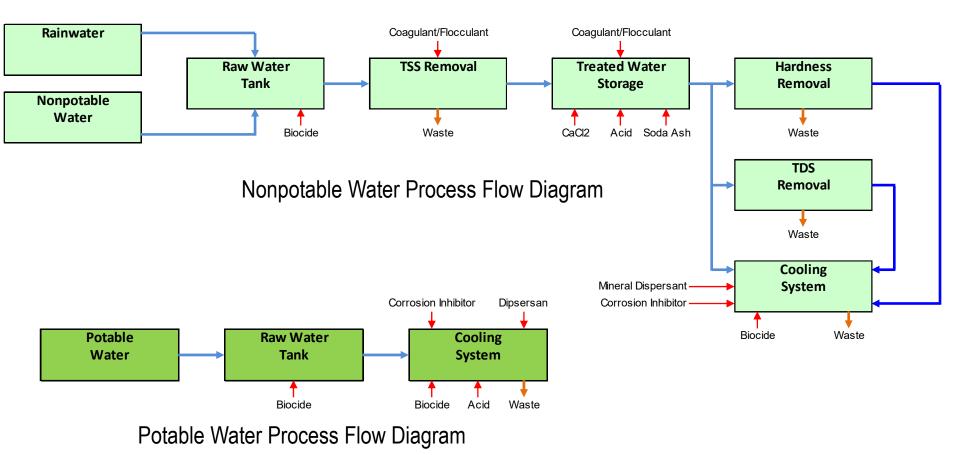
- Availability potable may not be available in sufficient quantity
- Reliability provide a better primary or reliable secondary water supply
 - May not be impacted by freshwater conservation requirements
 - Recycled water relatively drought-proof, ration-proof supply
 - Need to consider mechanical reliability of supply and distribution system
- Sustainability (recycled water) no consumptive freshwater usage
- Cost may be less expensive (requires detailed analysis including treatment costs)
- Required by regulation

Nonpotable Water Sources

- Other freshwater
 - Surface impoundments & lakes
 Divers & streams
 - $_{\circ}$ Rivers & streams
 - $_{\circ}$ Wells
- Recycled/recovered water
 - $_{\circ}$ Municipal
 - $_{\circ}$ Industrial

Nonpotable Water

- Usually contains higher concentration of:
 - Soluble and insoluble salts (sodium chloride, calcium carbonate)
 - $_{\odot}~$ Higher TSS (except most well waters)
 - $_{\circ}$ Organics
- Variable quality (surface and recycled waters)
- Corrosion, scaling, and salinity concerns and may dictate treatment and usage options

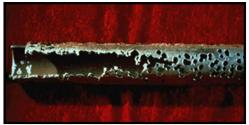


Water Costs, Concerns, and Risks

- Costs vary widely depending on source
- May cost less than fresh water on \$/gal basis, but may require substantially more treatment (operating and equipment costs may increase)

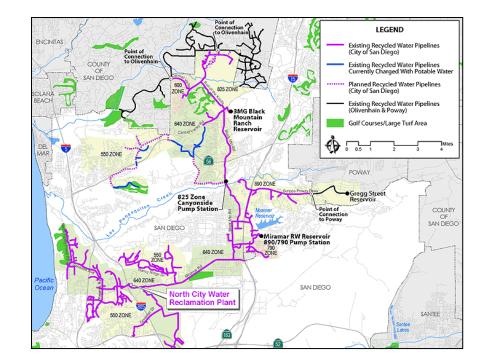
Water Costs, Concerns, and Risks

Concerns and Risks

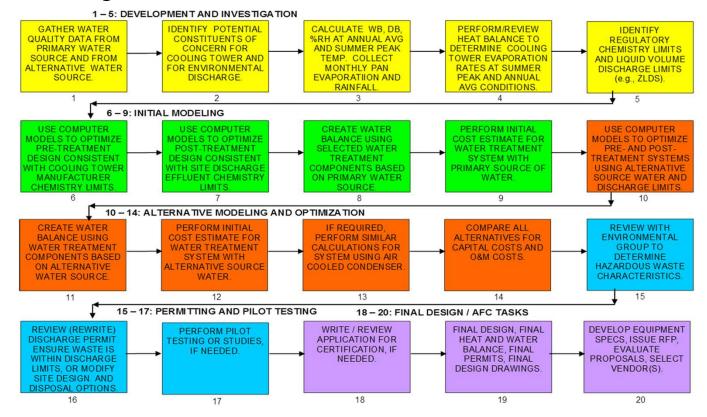

- Easiest use is cooling tower makeup
 - Other uses (high purity water production or adiabatic cooler makeup) may require additional equipment
- Contaminant Concerns
 - Higher microbial potential (compared to potable water)
 - Salinity also higher (modern cooling water treatments can usually mitigate)
 - Organic contaminants vary widely (ammonia, nitrate, nitrite, TOC, etc.) – mitigate with pretreatment or in-situ treatment
 - Microbial control and biocide selection/feeding critical (microbial dispersant may be required)

Concerns and Risks - Cooling

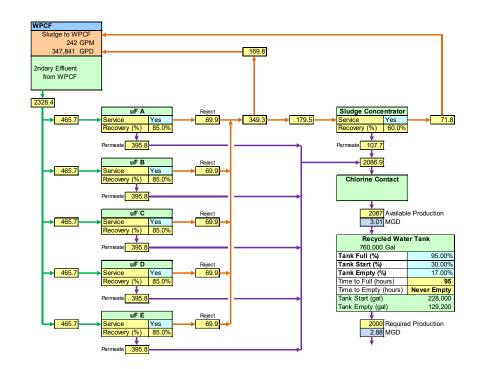
- Inorganic Contaminant Concerns
 - $_{\circ}$ Phosphate
 - If high, may cause scale
 - Sequestration possible with pretreatment
 - May be possible to operate tower with high phosphate
 - Modeling tools and expertise required
 - $_{\circ}$ Chloride
 - Increases risk of general corrosion and stress corrosion cracking (SS)
 - Materials of construction must be checked, maybe changed
 - $_{\circ}~$ Other Scale-Forming Minerals
 - Concentrations vary, may limit cycles of concentration
 - Must evaluate scale, corrosion, and microbial impacts


Concerns and Risks – High Purity Water Production

- High Purity Water Production
 - Simple filtration (media filters) usually can't consistently remove smaller than 10 microns in size – can cause rapid RO fouling if not removed
 - Coagulation/flocculation difficult, membrane filtration usually required
 - $_{\rm \circ}$ Modeling tools sometimes fail
 - Pilot testing or actual operating experience strongly recommended



Changing from Potable to Nonpotable


- Water Supply Development
- Detailed
 Engineering
- Installation and Operation

General Project Process

- Start with project location, end with final conceptual design, water balance, supply/discharge permits, and agreements
- ALL must be final before usage begins, specs are issued, or equipment purchased
- Premature use may result in costly changes, degraded performance, and/or poor efficiency

- Identify suppliers, determine discharge and regulatory requirements
- Discharge and regulatory requirements MUST be determined first
 - $_{\rm O}$ Discharge permits may be impacted
 - Regulations may require specific equipment, treatment programs, and monitoring equipment
- Determine availability and CONFIRM discharge permits
 - $_{\circ}$ "Will-serve" letters
 - $_{\rm O}$ Firm delivery amounts
 - $_{\circ}$ Model or pilot test to confirm resulting wastewater meets permit limits

- Water quality data
 - o Obtain and analyze (again, no guarantees)
 - Determine historical variability, evaluate future change possibilities
 - $_{\odot}~$ Evaluate operating and design constraints
 - Mineral solubility analysis
 - Materials of construction
 - Microbial control and monitoring programs
 - Treatment programs
- Plant Water and Chemistry Balances
 - $_{\odot}~$ Begin with current process flow diagram and modify
 - Contact suppliers (equipment and chemical) to confirm treatability and technologies (pilot testing if possible)
 - Use updated water/chemistry balance to confirm discharge permit compliance and to negotiate recycled water supply agreements

- Initial studies/calculations determine need for and configuration of additional treatment systems and equipment – creates preliminary design
- Completed preliminary design
 - $_{\odot}\,$ Used to calculate average and peak water/wastewater flows and chemistry
 - $_{\odot}\,$ Create nonpotable water utilization plan
 - $_{\odot}\,$ Calculate "buy-in" fees and obtain budgetary estimates
 - $_{\circ}~$ Calculate usage fees
 - $_{\circ}$ Determine infrastructure changes
- Back-track if conditions change
 - Evaluate alternatives and repeat process
 - $_{\odot}\,$ Hours can save millions at this stage

Detailed tasks vary, may include:

- Assess suitability of existing piping configurations and water systems
- Conceptual design for incorporation of new infrastructure into existing equipment
- Assess need for civil work
- Pressure testing of selected lines and/or systems
- Determine site-specific regulatory requirements and systems
- Fire system assessments and impact mitigation
- Recommendations for onsite infrastructure improvements
- Discharge permit review and investigation, especially potential impacts associated with higher recycled water total dissolved solids (TDS)

Detailed Engineering

- Begins with completed water development, ends with engineering package and final utilization plan
- Required work varies widely, depends on
 - Existing infrastructure (pipelines, treatment plants)
 - Planned use (cooling tower makeup, adiabatic cooler makeup)

 $_{\circ}$ Water quality

- Work can be minor (install back-flow preventers, local pipelines) or major (build entire water plant and distribution system)
- Detailed engineering tasks
 - $_{\odot}$ Determine treatment system capacity, redundancy, and tank sizes
 - Equipment budgetary estimates and specifications

Detailed Engineering

Common mechanical changes:

- Influent pressure regulator and strainer installation
- Meter installation
- Potable water separation requirements
- Backflow prevention
- Review materials of construction and corrosion concerns (distribution system, pipelines, cooling tower, & heat exchangers)
- Review and modify cooling tower design (mist eliminators, for example)
- Modifications to tower basin level control, irrigation systems, make up water systems for boilers and demineralizers
- Chemical feed and control systems review and modification (number and capacity of feed systems)

Installation and Operation

- Procurement and construction management
 - Management often overlooked ("just another pipeline")
 - o Should be formal and detailed
 - Many projects fail at this stage (no driver, everybody gets lost, and the installed system/equipment doesn't work)
- Establish a baseline
 - MUST compare key performance indicators before and after the change
 - Eliminates perception as a failure mechanism

Installation and Operation

- Operational Changes
 - $_{\circ}$ Personnel training
 - $_{\rm O}$ Monitoring programs
 - $_{\rm O}$ Operating procedure updates
- Chemical Changes
 - $_{\rm o}$ New chemical feeds
 - $_{\rm o}$ Biocide selection
 - $_{\rm \circ}$ Microbial dispersants
 - $_{\circ}$ Anti-foam

Picking the Right Project

Potential Use Area	1	2	3	4	5
Capital Cost Improvements (Rank 10=Highest Cost)	6	3	5	1	2
Operating Cost Impact (Rank 10-Highest Cost)	6	1	2	5	4
Average Cooling Tower Melcoup Flow (Depk 10-1 owert Flow)	6	4	3	1	2
Average Cooling Tower Makeup Flow (Rank 10=Lowest Flow) Copper Alloys? (1 = Yes)	1	4	0	0	1
Current Cooling Tower Cycles of Concentration	10	6	5	3	4
Time to Connect to Pipeline (Weeks)	22	5	14	5	9
Connection Difficulty (Rank 10=Most Difficult)	6	3	5	1	2
Operating Difficulty (Rank 10=Most Difficult)	4	6	2	5	1
Permitting Risk (Rank 10=Highest Risk)	6	4	3	2	1
Plant Willingness to Change (People Survey) (Rank 10=Least Willing)	6	3	4	1	2
Ranking (Lowest=Best Opportunity to Convert)	73	35	43	24	28

Roadblocks

- Lack of Commitment address with outreach
- Health Concerns –address with early and detailed training and fact sheets
- Performance Concerns create baselines before any change for objective evaluation
- 3rd Party Resistance Involve chemical suppliers and consultants to create win-win situations

Recent Examples and Lessons Learned

- Use recycled water to replace fresh water for cooling tower makeup without additional treatment
- Use recycled water for whole-plant supply with significant treatment
- Build new recycled water plant to provide whole-plant supply

- Evaluation of potable vs. recycled water for cooling tower makeup
- Recycled water more cost effective, but TDS much higher
- Performed mass and chemical balance, evaluated equipment upgrades, performed total cost analysis

Different Water Qualities

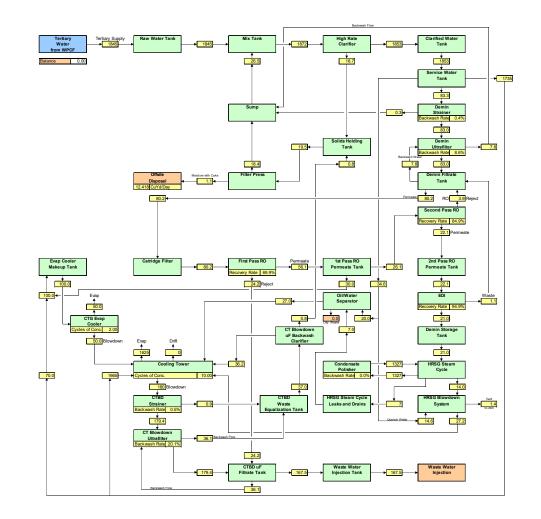
Contaminant	Units	Conduct Conv	CaCO3 Conv Factors	Potable Water (Existing Local Supply)	Recycled (Title 22) Water (Calculated)
Alkalinity-Bicarbonate	mg/L	0.72	0.82	102.44	122.93
Alkalinity-Carbonate	mg/L	2.82	1.67	0.00	0.00
Alkalinity-OH	mg/L	0.00	2.94	0.00	0.00
Barium	mg/L	0.00	0.73	0.00	0.00
Chloride	mg/L	2.14	1.41	79.90	119.85
Fluoride	mg/L	0.00	2.63	0.00	0.00
Calcium	mg/L	2.6	2.50	30.10	36.12
Magnesium	mg/L	3.82	4.12	11.10	13.32
Iron	mg/L	0.00	2.69	0.00	0.25
Nitrate	mg/L	1.15	0.81	2.57	3.86
pH	s.u.	0.00	0.00	7.28	7.60
Phosphate	mg/L	0.00	1.58	0.06	3.00
Potassium	mg/L	1.84	1.28	3.09	3.71
Silica	mg/L	0.00	0.83	16.00	19.20
Sodium	mg/L	2.13	2.18	54.50	81.75
Sulfate	mg/L	1.54	1.04	55.00	82.50
Total Dissolved Solids	mg/L	()		354.76	486.48
Specific Conductance	umhos/cm			574.32	801.60
Free CO2	mg/L			8.95	5.14
Total Cations	mg/L CaCO3			243.75	328.81
Total Anions	mg/L CaCO3			256.04	363.45
Total Hardness	mg/L CaCO3	1		120.98	145.18

Cooling System Mass and Chemical Balance

				Softener Waste				
				(Assume RO	Quenched			
			Recycled (Title	Reject and	HRSG	Evap Cooler	Combined	Cooling Tower
Contaminant	Units	Potable Water	22) Water	75% Recovery)	Blowdown	Blowdown	Influent	Blowdown
Flow	GPM	0.00	74.45	39.27	23.51	1.26	138.49	66.38
Alkalinity-Bicarbonate	mg/L	102.44	122.93	185.52	93.11	56.60	135.01	107.31
Alkalinity-Carbonate	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Alkalinity-OH	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Barium	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chloride	mg/L	79.90	119.85	319.36	72.63	79.91	168.04	350.00
Fluoride	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calcium	mg/L	30.10	36.12	120.31	27.36	30.10	58.45	121.74
Magnesium	mg/L	11.10	13.32	44.37	10.09	11.10	21.55	44.89
Iron	mg/L	0.00	0.25	0.00	0.00	0.00	0.13	0.28
Nitrate	mg/L	2.57	3.86	10.27	2.34	2.57	5.41	11.26
pH	s.u.	7.28	7.60	7.00	10.89	7.00	7.98	7.50
Phosphate	mg/L	0.06	3.00	0.26	0.74	10.00	1.90	10.00
Potassium	mg/L	3.09	3.71	12.35	2.81	3.09	6.00	12.50
Silica	mg/L	16.00	19.20	63.95	14.69	16.00	31.10	64.77
Sodium	mg/L	54.50	81.75	217.84	50.45	54.51	114.78	239.06
Sulfate	mg/L	55.00	82.50	396.23	49.99	97.59	166.08	491.59
Total Dissolved Solids	mg/L	354.76	486.48	1370.46	324.21	361.47	708.45	1453.40
Specific Conductance	umhos/cm	574.32	801.60	2407.09	523.98	607.18	1207.94	2615.94
Free CO2	mg/L	8.95	5.14	30.88	0.00	9.42	2.34	5.65
Total Cations	mg/L CaCO3	243.75	328.81	974.26	223.54	243.77	493.19	1027.21
Total Anions	mg/L CaCO3	256.04	363.45	1023.23	233.81	278.46	527.75	1117.67
Total Hardness	mg/L CaCO3	120.98	145.18	483.57	109.97	120.99	234.93	489.32

Chemical and Equipment Upgrades and Cost

O&M Costs	Units	Concentration	Cost	
Potable Water Cost	\$/1000 Gal		\$4.71	
Recycled Water Cost	\$/1000 Gal		\$1.77	
Tower Blowdown Discharge Cost	\$/1000 Gal		\$0.00	
Sulfuric Acid Cost	\$/Lb	93.00%	\$0.12	
Tower Corrosion Inhibitor	\$/Lb		\$1.50	
Tower Dispersant	\$/Lb		\$1.80	
Tower Anti-Foam	\$/Lb		\$1.25	
Tower Microbial Dispersant	\$/Lb		\$1.30	
Tower Non-Ox Biocide	\$/Lb		\$2.20	
Oxidizing Biocide 1 (Bleach)	\$/Lb	12.50%	\$0.20	
Oxidizing Biocide 2 (Bromine)	\$/Lb	50.00%	\$1.95	
Capital Costs			Value	
Titanium Condenser Upgrade				
Anti-Foam Feed System				
Microbial Dispersant Feed System				
Non-oxidizing Biocide Feed System				
Oxidizing Biocide 2 (Bromine) Feed System				


Operating and Capital Cost Analysis

			Total (CAPEX +	
Option	CAPEX	OPEX NPV	OPEX NPV)	
Option 1A: Wet Cooling, Potable Water, Stainless Steel Condenser	\$0	\$1,821,859	\$1,821,859	
Option 1B: Wet Cooling, Potable Water, Titanium Condenser	\$600,000	\$886,656	\$1,486,656	
Option 2: Dry Cooling, Potable Water	\$1,844,000	\$0	\$1,844,000	
Option 3A: Wet Cooling, Recycled Water, Stainless Steel Condenser	\$70,000	\$1,377,772	\$1,447,772	
Option 3B: Wet Cooling, Recycled Water, Titanium Condenser	\$670,000	\$616,212	\$1,286,212	
NPV Term (Years)			30	
NPV Interest Rate (%) (Used to Calculate Current Value of Operating Costs)				

 $_{\circ}$ Recycled water lowest cost option

- Equipment upgrades required
 - Heat exchanger materials of construction
 - Additional chemical feed systems
 - Additional chemical usage

- Whole-plant supply with cold lime softening for hardness & silica removal
- MANY issues
 - Vendor detailed design required substantial field revision
 - Performance test after 1+ years of operation

- Too many problems to list
- Plugging everywhere, often
- Conceptual design sound, vendor detailed design an issue

- New system
- Receives secondary effluent, produces recycled water
- Targets:
 - $_{\odot}$ < 5 NTU from clarifiers
 - $_{\circ}$ <2 NTU from sand filters
 - $_{\circ}$ < 1 mg/l phosphate
 - 5 ppm total chlorine after 450 minute contact time

Conceptual design fine, but vendor detailed design very problematic

- Clarifier and mixing design fractures floc, can't meet turbidity target from clarifiers or filters (energy gradient)
- Designed to work with one and only one coagulant (ferric chloride)
 - $_{\rm \circ}\,$ Inadequate mixing time for others
 - Users can't tolerate high chloride
- Back to the drawing board
 - $_{\rm \circ}\,$ Substantial re-engineering required
 - $_{\rm \odot}$ Took nearly 2 years to correct
 - $_{\circ}$ Used temporary systems to bridge gap (\$1mm/month)

Lessons Learned

- Major design issues on recent projects
 - $_{\rm O}$ Various suppliers
 - Substantial retrofits/reengineering required
- Can't assume systems will work
 - "Caveat Emptor"
 - $_{\rm \odot}\,$ Check references and pilot test
- Iron-clad performance guarantees with substantial LDs
- Map it out and follow it

Questions

Dan Sampson

925.570.0842 Daniel.Sampson@hdrinc.com

